

NI 43-101 TECHNICAL REPORT MEEKATHARRA GOLD OPERATIONS MURCHISON GOLDFIELDS, WESTERN AUSTRALIA

Report Date: September 27, 2024

Effective Date: June 30, 2024

Prepared for:

Westgold Resources Limited Level 6, 200 St Georges Terrace Perth WA 6000

Qualified Persons:

Jake Russell, MAIG - Westgold Resources Limited (Australia) Leigh Devlin, FAusIMM – Westgold Resources Limited (Australia)

DATE AND SIGNATURE PAGE

Technical Report Title:	NI 43-101 Technical Report Meekatharra Gold Operations Murchison Goldfields, Western Australia
Technical Report Date: Effective Date:	September 27, 2024 June 30, 2024
Signed by:	
EM.	September 27, 2024
Jake Russell, MAIG	September 27, 2024
R.	
Leigh Devlin, FAusIMM	September 27, 2024

CONTENTS

1	SUMMARY1
1.1	INTRODUCTION
1.2	PROPERTY DESCRIPTION AND OWNERSHIP 1
1.3	MEEKATHARRA - GEOLOGY AND MINERALISATION
1.4	MINERAL RESOURCE ESTIMATES8
1.5	MINERAL RESERVE ESTIMATES
1.6	OPERATIONS AND DEVELOPMENT
1.7	ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT
1.8 1.8.1	CAPITAL AND OPERATING COSTS
1.8.2	Open Pit Mining
1.8.3	Processing and Tailings Storage Facilities11
1.8.4	General and Administration11
1.8.5	Royalties11
1.8.6	Closure Costs
1.9	CONCLUSION AND RECOMMENDATIONS 12
2	INTRODUCTION13
2.1	REPORT CONTRIBUTORS AND QUALIFIED PERSON
3	RELIANCE ON OTHER EXPERTS16
4	PROPERTY DESCRIPTION AND LOCATION
4.1	LOCATION
4.2 4.2.1	MINERAL TENURE 17 Meekatharra 17
4.3	UNDERLYING AGREEMENTS
4.3.1 4.3.2	Royalties
4.4	ENVIRONMENTAL CONSIDERATIONS
4.5	PERMITS AND AUTHORISATION
4.6	MINING RIGHTS IN WESTERN AUSTRALIA
4.6.1	Mining Tenements
4.6.2	Native Title Act 1993
4.6.3	Aboriginal Heritage Act 197231
5	ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, CLIMATE AND
	PHYSIOGRAPHY32
5.1	ACCESSIBILITY
5.1.1	Meekatharra North

5.1.2 5.1.3 5.1.4 5.1.5	Paddy's Flat Yaloginda Nannine Reedy's	32 33
5.1. 3	LOCAL RESOURCES AND INFRASTRUCTURE	
5.3	CLIMATE	
5.4	PHYSIOGRAPHY	
5.4.1	Meekatharra Gold Operations	
5.4.2	Landscape	
5.4.3	Vegetation	
6	HISTORY	36
6.1	PRE-WESTGOLD	
6.2	WESTGOLD RESOURCES	39
7	GEOLOGICAL SETTING AND MINERALISATION	10
, 7.1	REGIONAL GEOLOGY	
7.2	MINERALISATION (BY GEOLOGICAL DOMAIN)	
7.2.1	Meekatharra North	
7.2.2	Paddy's Flat	
7.2.3	Yaloginda	
7.2.4	Nannine	
7.2.5	Reedy's	65
8	DEPOSIT TYPES	69
8.1	BANDED IRON FORMATION SULPHIDE REPLACEMENT GOLD DEPOSITS	
8.1.1	Diagnostic Features	
8.1.2	Grade and Tonnage Characteristics	
8.2	SHEAR RELATED GOLD DEPOSITS	
8.2.1	Diagnostic Features	
8.2.2	Grade and Tonnage Characteristics	71
8.3	FAULT RELATED GOLD DEPOSITS	
8.3.1	Diagnostic Features	
8.3.2	Grade and Tonnage Characteristics	/2
8.4	STOCKWORK VEIN AND ALTERATION RELATED GOLD DEPOSITS	
8.4.1	Diagnostic Features	
8.4.2	Grade and Tonnage Characteristics	
8.5	SECONDARY GOLD DEPOSITS	
8.5.1 8.5.2	Diagnostic Features	
0.5.2	Grade and formage Grianacteristics	/ 4
9		
9.1	EXPLORATION	
	SUMMARY	
9.2		75

9.4	TARGET SELECTION FOR DRILL TESTING	79
10	DRILLING	80
10.1	DRILLING SUMMARY	80
10.2	DRILLING MAPS	83
10.3	RESULTS	84
10.3.1	Meekatharra North	84
10.3.2	Paddy's Flat	89
10.3.3	Yaloginda	
10.3.4	Nannine	
10.3.5	Reedy's	89
11	SAMPLE PREPARATION, ANALYSIS AND SECURITY	91
11.1	SAMPLE COLLECTION AND SECURITY	
11.1.1	Aircore (AC)	
11.1.2	Reverse Circulation Drilling (RC)	
11.1.3	Diamond Drilling (DD)	
11.1.4	Sample Security	
11.1.5	Prospect Sample Summary	93
11.2	LABORATORY SAMPLE PREPARATION, ASSAYING AND ANALYTICAL P	
11.2.1	Fire Assay	
11.2.1	Screen Fire Assay	
	•	
11.3	QUALITY CONTROL PROCEDURES AND QUALITY ASSURANCE	
11.3.1	Quality Control Procedures	
11.3.2	Quality Control Analysis	
11.3.3	Database Integrity	134
11.4	SAMPLE PREPARATION, SECURITY AND ANALYTICAL PROCEDURE	
12	DATA VERIFICATION	
13	MINERAL PROCESSING AND METALLURGICAL TESTING	137
13.1	GOLD PROCESSING	
14	MINERAL RESOURCE ESTIMATES	
14.1	SUMMARY	
14.2	MEEKATHARRA GOLD OPERATIONS	142
14.3	PADDY'S FLAT	
14.3.1	Fatt's	
14.3.2	Magazine	
14.3.3	Golden Bar	
14.3.4	Paddy's North	
14.3.5	Prohibition	
14.3.6	Vivian - Consols	
14.3.7	Mudlode - Hendrix	229

14.4	YALOGINDA	248
14.4.1	Albury Heath	250
14.4.2	Batavia	260
14.4.3	Bluebird Group	271
14.4.4	Euro	305
14.4.5	Great Northern Highway	312
14.4.6	Rhen's Group	322
14.4.7	Romsey	337
14.4.8	Luke's Junction	346
14.4.9	Whangamata	356
14.5	NANNINE	367
14.5.1	Aladdin	
14.5.2	Caledonian	
14.6	REEDY'S	
14.6.1	Boomerang - Kurara	
14.6.2	Callisto	
14.6.3	Culculli	
14.6.4	Jack Ryan	
14.6.5	Rand	
14.6.6	South Emu - Triton	
14.6.7	Thompson's Bore	
14.6.8	Turn of the Tide	
14.7	STOCKPILES	504
15	MINERAL RESERVE ESTIMATE	505
15.1	INTRODUCTION	505
15.2	PADDY'S FLAT	506
15.2 15.2.1	PADDY'S FLAT	506
15.2 15.2.1 15.2.2	PADDY'S FLAT Prohibition Vivian - Consols	506 506
15.2 15.2.1 15.2.2 15.2.3	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix	506 506 508
15.2 15.2.1 15.2.2 15.2.3 15.3	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA	506508510
15.2 15.2.1 15.2.2 15.2.3	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group	506 506 510 513
15.2 15.2.1 15.2.2 15.2.3 15.3	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA	506 506 510 513
15.2 15.2.1 15.2.2 15.2.3 15.3.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group	506 508 510 513
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE	506 508 510 513 513
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin	506 508 510 513 515 515
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S	506 508 510 513 515 515
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES	506 508 510 513 515 515 517
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton	506 508 510 513 515 515 517
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES	506508513515515517519
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES MINING METHODS	506508513515515517519
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1 15.6 16.1	PADDY'S FLAT. Prohibition Vivian - Consols. Mudlode - Hendrix YALOGINDA. Bluebird Group. NANNINE. Aladdin REEDY'S. South Emu - Triton. STOCKPILES. MINING METHODS. PADDY'S FLAT. Prohibition, Vivian-Consols and Mudlode-Hendrix.	506508513515515517519
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1 15.6 16 16.1 16.1.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES MINING METHODS PADDY'S FLAT Prohibition, Vivian-Consols and Mudlode-Hendrix YALOGINDA	506508513513515517517519520545
15.2 15.2.1 15.2.2 15.2.3 15.3.1 15.4 15.4.1 15.5 15.5.1 15.6 16 16.1 16.1.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES MINING METHODS PADDY'S FLAT Prohibition, Vivian-Consols and Mudlode-Hendrix YALOGINDA Bluebird Group	506508513515515517519520545
15.2 15.2.1 15.2.2 15.2.3 15.3 15.3.1 15.4 15.4.1 15.5 15.5.1 15.6 16 16.1 16.1.1	PADDY'S FLAT Prohibition Vivian - Consols Mudlode - Hendrix YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S South Emu - Triton STOCKPILES MINING METHODS PADDY'S FLAT Prohibition, Vivian-Consols and Mudlode-Hendrix YALOGINDA	506508513515517517519520545545

16.4 16.4.1	REEDY'S	
16.5 16.5.1	Stockpiles	
17	PROCESSING	572
17.1	BLUEBIRD MILL	572
17.1.1	Process Description	573
17.1.2	Plant Performance	576
18	PROJECT INFRASTRUCTURE	578
18.1	BLUEBIRD MILL	578
18.1.1	Utilities	578
18.1.2	Disposal and Drainage	579
18.1.3	Buildings and Facilities	579
18.1.4	Communications	581
18.1.5	Tailings Storage	581
19	MARKET STUDIES AND CONTRACTS	582
19.1	GOLD MARKET STUDIES	582
19.2	CONTRACTS	583
20	ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR C	
		584
20 20.1 20.1.1	IMPACT	584 584
20.1	MEEKATHARRA GOLD OPERATIONS	584 584 584
20.1 20.1.1	MEEKATHARRA GOLD OPERATIONS Environmental Approvals	584 584 587
20.1 20.1.1 20.1.2	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining	584 584 587 588
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure	584 584 587 588 588
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972	584 584 587 588 588 591
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure	584 584 587 588 588 591
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972	584 584 587 588 591 591
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7	MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community	584 584 587 588 591 591 592
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS	584584587588591591592593
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex	584584587588591591592593
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.1.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT	584584587588588591592593594594
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining. Environmental Compliance. Environmental Studies. Mine Rehabilitation and Closure. Aboriginal Heritage Act 1972. Social and Community. CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex. PADDY'S FLAT. Paddy's Flat.	
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community. CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA	584584584588588591591592593594595
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining. Environmental Compliance. Environmental Studies. Mine Rehabilitation and Closure. Aboriginal Heritage Act 1972. Social and Community. CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex. PADDY'S FLAT. Paddy's Flat.	584584584588588591591592593594595
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community. CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA	584584587588591591592593594595595
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1 21.3 21.3.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA Bluebird Group	584584584588588591591592593594595596596
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1 21.3 21.3.1 21.4 21.4.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA Bluebird Group NANNINE Aladdin	
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1 21.3 21.3.1 21.4 21.4.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA Bluebird Group NANNINE Aladdin. REEDY'S	
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1 21.3 21.3.1 21.4 21.4.1 21.5.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA Bluebird Group NANNINE Aladdin REEDY'S Triton – South Emu	
20.1 20.1.1 20.1.2 20.1.3 20.1.4 20.1.5 20.1.6 20.1.7 21 21.1 21.2 21.2.1 21.3 21.3.1 21.4 21.4.1	IMPACT MEEKATHARRA GOLD OPERATIONS Environmental Approvals Required Permits and Status for Future Mining Environmental Compliance Environmental Studies Mine Rehabilitation and Closure Aboriginal Heritage Act 1972 Social and Community CAPITAL AND OPERATING COSTS MEEKATHARRA Meekatharra Complex PADDY'S FLAT Paddy's Flat YALOGINDA Bluebird Group NANNINE Aladdin. REEDY'S	

22	ECONOMIC ANALYSIS	600
22.1	CASH FLOW ANALYSIS	600
22.2	COMMENTS ON SECTION 22	600
23	ADJACENT PROPERTIES	601
23.1	SIDE WELL GOLD PROJECT	601
23.1.1	Side Well Gold Project Overview	
23.1.2	Side Well Gold Project Geology	
23.2	MURCHISON GOLD PROJECT (MEEKA METALS)	
23.2.1	Murchison Gold Project Overview	
23.2.2	Murchison Gold Project Geology	
23.2.3	Murchison Gold Project Mining and Milling	
23.3	MURCHISON GOLD PROJECT (MONUMENT MINING)	
23.3.1 23.3.2	Murchison Gold Project Overview Murchison Gold Project Geology	
23.3.2	Murchison Gold Project Geology	
20.0.0	That of the order to jeech thinning and thinking.	
24	OTHER RELEVANT DATA AND INFORMATION	612
25	INTERPRETATION AND CONCLUSIONS	613
25.1	MINERAL RESOURCES	613
25.2	MINERAL RESERVES	614
25.3	MINERAL PROCESSING	614
25.4	MINING	614
25.5	ENVIRONMENTAL	614
25.6	CAPITAL REQUIREMENTS	615
25.7	GOLD EXPLORATION POTENTIAL	615
25.7.1	Nannine Project Area Resource Development	
25.7.2	Paddy's Flat Project Area Resource Development	
25.7.3	Meekatharra North Resource Development	
25.7.4 25.7.5	Reedy Project Area Resource Development	
23.7.3	ratognida Project Area Nesodrice Development	
26	RECOMMENDATIONS	620
27	REFERENCES	621
28	APPENDIX 1 DEFINITIONS	628
29	CERTIFICATE OF QUALIFIED PERSON	632
30	CERTIFICATE OF QUALIFIED PERSON	633

LIST OF TABLES

Table 1-1 Meekatharra Gold Operation Mineral Resources on June 30, 20248
Table 1-2 Meekatharra Gold Operation Mineral Reserves on June 30, 20249
Table 2-1 Persons who prepared or contributed to this Technical Report14
Table 2-2 Other parties relied upon to provide technical content to this Technical Report
Table 4-1 Meekatharra Gold Operations Mineral Tenure Information
Table 6-1 Paddy's Flat periods of historical activity
Table 6-2 Meekatharra Gold Operation Mineral Resources under Reed Resources Limited at May 201439
Table 6-3 Meekatharra Gold Operation Mineral Reserves under Reed Resources Limited at May 2014
Table 6-4 Meekatharra Gold Operation Mineral Resources at June 30, 201440
Table 6-5 Meekatharra Gold Operation Mineral Reserves on June 30, 201440
Table 6-6 Meekatharra Gold Operation Mineral Resources on December 24, 2014 – Purchase of Nannine tenure
Table 6-7 Meekatharra Gold Operation Mineral Reserves on December 24, 2014 – Purchase of Nannine tenure
Table 6-8 Meekatharra Gold Operation Mineral Resources on June 30, 201541
Table 6-9 Meekatharra Gold Operation Mineral Reserves on June 30, 201542
Table 6-10 Meekatharra Gold Operation Mineral Resources on June 30, 201642
Table 6-11 Meekatharra Gold Operation Mineral Reserves on June 30, 2016
Table 6-12 Meekatharra Gold Operation Mineral Resources on June 30, 201743
Table 6-13 Meekatharra Gold Operation Mineral Reserves on June 30, 201743
Table 6-14 Meekatharra Gold Operation Mineral Resources on June 30, 201843
Table 6-15 Meekatharra Gold Operation Mineral Reserves on June 30, 201844
Table 6-16 Meekatharra Gold Operation Mineral Resources on June 30, 201944
Table 6-17 Meekatharra Gold Operation Mineral Reserves on June 30, 201944
Table 6-18 Meekatharra Gold Operation Mineral Resources on May 8, 2020 – Albury Heath Acquisition
Table 6-19 Meekatharra Gold Operation Mineral Reserves on May 8, 2020 – Albury Heath Acquisition.
Table 6-20 Meekatharra Gold Operation Mineral Resources on June 30, 2020
Table 6-21 Meekatharra Gold Operation Mineral Reserves on June 30, 2020
Table 6-22 Meekatharra Gold Operation Mineral Resources on June 30, 2021
Table 6-23 Meekatharra Gold Operation Mineral Reserves on June 30, 2021
Table 6-24 Meekatharra Gold Operation Mineral Resources on June 30, 2022
Table 6-25 Meekatharra Gold Operation Mineral Reserves on June 30, 2022
Table 6-26 Meekatharra Gold Operation Mineral Resources on June 30, 2023
Table 6-27 Meekatharra Gold Operation Mineral Reserves on June 30, 2023
Table 6-28 Meekatharra Gold Operation Mineral Resources on June 30, 202448

Table 6-29 Meekatharra Gold Operation Mineral Reserves on June 30, 2024	48
Table 10-1 MGO drill hole database– number of holes and metres drilled between May 14, 201 June 30, 2024	
Table 10-2 MGO drilling by prospect and hole type from between May 14, 2014 and June 30, 202	2480
Table 10-3 Meekatharra North Regional AC Drillin – Significant Results	87
Table 10-4 Banjo Bore Prospect RC Drilling – Significant Results	89
Table 11-1 Sample count for each Meekatharra prospect by sample type, laboratory and method	od 93
Table 11-2 Independent commercial laboratories.	98
Table 11-3 Summary of laboratories used and assay method.	99
Table 11-4 Westgold-inserted CRM and blank standards for gold for the reporting period to July	
Table 11-5 Laboratory summary for Au fire assay July 15, 2015 to June 30, 2024	104
Table 11-6 QC category ratios July 15, 2015 to June 30, 2024	104
Table 11-7 Standard type ratios July 15, 2015 to June 30, 2024	104
Table 11-8 Standards submitted July 15, 2015 to June 30, 2024	105
Table 11-9 Drill hole laboratory original (Au) v. repeat submitted July 15, 2015 to June 30, 2024.	130
Table 14-1 Westgold Consolidated Meekatharra Gold Mineral Resources as of June 30, 2024	139
Table 14-2 Fatt's domain top-cuts.	147
Table 14-3 Fatt's density values	147
Table 14-4 Fatt's variogram model and interpolation parameters	148
Table 14-5 Fatt's block model parameters.	149
Table 14-6 Fatt's stope and high-grade development production reconciliation, project to date	151
Table 14-7 Fatt's Mineral Resources on June 30, 2024.	153
Table 14-8 Magazine Group open pit production July 1989 to June 1995 (Hollingsworth, 2010)	156
Table 14-9 Magazine group 1000 (Hawks Hill) mineralisation domain raw and top-cut statistics	158
Table 14-10 Magazine group 2000 (Magazine south) mineralisation domain raw and top-cut stati	
Table 14-11 Magazine group 3000 (Magazine Allons-Fisher) mineralisation domain raw and to statistics, part 1	-
Table 14-12 Magazine group 3000 (Magazine Allons-Fisher) mineralisation domain raw and to statistics, part 2	•
Table 14-13 Magazine group 4000 (Grants Central) mineralisation domain raw and top-cut stati	
Table 14-14 Magazine group 5000 (Grants) mineralisation domain raw and top-cut statistics	161
Table 14-15 Magazine density values.	161
Table 14-16 Magazine group variogram model and interpolation parameters for the major don	
Table 14-17 Magazine block model parameters	162
Table 14-18 Magazine mineralisation domain groups	163
Table 14-19 Magazine Mineral Resources on June 30, 2024.	166

Table 14-20 Variogram parameters for the Golden Bar mineralisation domains (Cube, 2005) 1	69
Table 14-21 Block model parameters (Cube, 2005)	69
Table 14-22 Golden Bar domains 7, 9, 12 and 13 assigned mean composite grade (Cube, 2005) 1	70
Table 14-23 Golden Bar Mineral Resource on June 30, 2024 1	71
Table 14-24 Historic underground production for Paddy's North deposits 1	74
Table 14-25 Historic open pit production for Paddy's North deposits (Hollingsworth, 2010) 1	74
Table 14-26 Paddy's North statistics by mineralisation domain group (Graindorge, 2011b)	76
Table 14-27 Paddy's North top-cuts by mineralisation domain group (Graindorge, 2011b)	76
Table 14-28 Paddy's North density values (Graindorge, 2011b)	76
Table 14-29 Paddy's North variogram model parameters (Graindorge, 2011b) 1	77
Table 14-30 Paddy's North pass 1 search ranges (Graindorge, 2011b)	77
Table 14-31 Paddy's North block model parameters1	78
Table 14-32 Paddy's North Mineral Resources on June 30, 2024 1	80
Table 14-33 Prohibition domain top-cuts and statistics - part 1	85
Table 14-34 Prohibition domain top-cuts and statistics - part 2	85
Table 14-35 Prohibition domain top-cuts and statistics - part 3	86
Table 14-36 Prohibition domain top-cuts and statistics - part 4	86
Table 14-37 Prohibition domain top-cuts and statistics - part 5	87
Table 14-38 Prohibition domain top-cuts and statistics - part 6	87
Table 14-39 Prohibition domain top-cuts and statistics - part 7	88
Table 14-40 Prohibition domain top-cuts and statistics - part 8	88
Table 14-41 Prohibition model density values	89
Table 14-42 Prohibition estimation parameters updated for 2023 reportable resource model, part	
Table 14-43 Prohibition estimation parameters updated for 2023 reportable resource model, part	t 2. 191
Table 14-44 Prohibition estimation parameters unchanged since the 2021 resource model, part	
Table 14-45 Prohibition estimation parameters unchanged since the 2021 resource model, part	
Table 14-46 Prohibition estimation parameters unchanged since the 2021 resource model, part	t 3.
Table 14-47 Prohibition estimation parameters unchanged since the 2021 resource model, part	t 4 .
Table 14-48 Prohibition estimation parameters unchanged since the 2021 resource model, part	t 5 .
Table 14-49 Prohibition block model parameters	197
Table 14-50 Prohibition stope and high-grade development production reconciliation, project date	to
Table 14-51 Prohibition Mineral Resources on June 30, 2024	

Table 14-52 Historic underground production to 1953 for the area encompassed by the Vivian Consols model
Table 14-53 Historic open pit production for the area encompassed by the Vivian – Consols mode
Table 14-54 Vivian domain raw and top cut statistics for gold (3D OK) domains unchanged from 2023
Table 14-55 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023 Part 1
Table 14-56 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023 Part 2
Table 14-57 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023 Part 3
Table 14-58 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Par 1
Table 14-59 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Par 2
Table 14-60 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Par 3
Table 14-61 Consols domains raw and top-cut statistics for gold (3D OK) domains unchanged from 2022
Table 14-62 Consols domains raw and top cut statistics for accumulation values unchanged from 2022. Part 1
Table 14-63 Consols domains raw and top cut statistics for accumulation values unchanged from 2022. Part 2
Table 14-64 Consols domains raw and top cut statistics for accumulation values updated for 2024 Part 1
Table 14-65 Consols domains raw and top cut statistics for accumulation values updated for 2024 Part 2
Table 14-66 Consols domains raw and top cut statistics for accumulation values updated for 2024 Part 3
Table 14-67 Vivian - Consols model density values21
Table 14-68 Vivian's estimation parameters updated for the 2023 resource model21
Table 14-69 Vivian's variogram models determined for the 2018 resource model21
Table 14-70 Vivian's estimation parameters for domains unchanged since the 2018 resource mode part 1
Table 14-71 Vivian's estimation parameters for domains unchanged since the 2018 resource mode part 2
Table 14-72 Consols variogram models determined for the 2018 resource model
Table 14-73 Consols estimation parameters, part 121
Table 14-74 Consols estimation parameters, part 221
Table 14-75 Consols estimation parameters, part 3
Table 14-76 Consols estimation parameters, part 4
Table 14-77 Consols block model parameters
Table 14-78 Vivian's block model parameters

Table 14-79 Vivian's stope and high-grade development production reconciliation, project to date	
Table 14-80 Consols stope and high-grade development production reconciliation, project to date	e.
Table 14-81 Vivian - Consols Mineral Resources on June 30, 202422	28
Table 14-82 Mudlode-Hendrix domains raw and top cut statistics for accumulation values 23	₹5
Table 14-83 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) unchanged from 2023	
Table 14-84 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) updated for 2024 Part 1	
Table 14-85 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) updated for 202- Part 2	
Table 14-86 Mudlode - Hendrix model density values	37
Table 14-87 New estimation parameters for the Mudlode - Hendrix 2024 resource model 23	<u>}</u> 9
Table 14-88 Estimation parameters updated for the Mudlode - Hendrix 2023 resource model 24	10
Table 14-89 Estimation parameters unchanged since the Mudlode - Hendrix 2022 resource model part 1	
Table 14-90 Estimation parameters unchanged since the Mudlode - Hendrix 2022 resource model part 2	
Table 14-91 Mudlode - Hendrix block model parameters24	13
Table 14-92 Mudlode stope and high-grade development production reconciliation, project to date	e.
Table 14-93 Hendrix stope and high-grade development production reconciliation, project to date	
Table 14-94 Fatts North stope and high-grade development production reconciliation, project to date24	
Table 14-95 Mudlode-Hendrix Mineral Resources on June 30, 202424	!7
Table 14-96 Statistics and top cuts for Albury Heath domains	53
Table 14-97 Albury Heath density values25	3
Table 14-98 Albury Heath variogram model and interpolation parameters, primary quartz sheadomains 1010 to 1070	
Table 14-99 Albury Heath variogram model and interpolation parameters, supergene domains 201 to 2080	
Table 14-100 Albury Heath block model parameters25	56
Table 14-101 Albury Heath Mineral Resources on June 30, 202425	59
Table 14-102 Statistics and top cuts for Batavia domains	3
Table 14-103 Batavia density values	34
Table 14-104 Batavia variogram model and interpolation parameters	35
Table 14-105 Batavia block model parameters	6
Table 14-106 Batavia open pit production reconciliation, project to date	8
Table 14-107 Batavia Mineral Resources on June 30, 2024	70
Table 14-108 Total open pit production for the Bluebird Group mines to October 31, 2022 27	72

Table 14-109 Bluebird (BLU) domains statistics and top-cuts. Part 1	280
Table 14-110 Bluebird (BLU) domains statistics and top-cuts. Part 2	280
Table 14-111 Bluebird (BLU) domains statistics and top-cuts. Part 3	281
Table 14-112 Bluebird (BLU) domains statistics and top-cuts. Part 4	281
Table 14-113 Edin Hope (EDH) domains statistics and top-cuts. Part 1	282
Table 14-114 Edin Hope (EDH) domains statistics and top-cuts. Part 2	282
Table 14-115 South Junction (EDH) domains statistics and top-cuts	283
Table 14-116 Polar Star (POL) domains statistics and top-cuts. Part 1	283
Table 14-117 Polar Star (POL) domains statistics and top-cuts. Part 2.	28 4
Table 14-118 Archenar (ARC) domains statistics and top-cuts. Part 1	284
Table 14-119 Archenar (ARC) domains statistics and top-cuts. Part 2	285
Table 14-120 Bluebird Group model density values	285
Table 14-121 Bluebird (BLU) domain estimation parameters. Part 1	287
Table 14-122 Bluebird (BLU) domain estimation parameters. Part 2	288
Table 14-123 Bluebird (BLU) domain estimation parameters. Part 3	289
Table 14-124 Bluebird (BLU) domain estimation parameters. Part 4	290
Table 14-125 Bluebird North (NTH) domain estimation parameters	291
Table 14-126 Edin Hope (EDH) domain estimation parameters. Part 1	292
Table 14-127 Edin Hope (EDH) domain estimation parameters. Part 2	293
Table 14-128 Polar Star (POL) domains estimation parameters. Part 1	294
Table 14-129 Polar Star (POL) domains estimation parameters. Part 2	295
Table 14-130 South Junction (SJN) domains estimation parameters. Part 1	296
Table 14-131 South Junction (SJN) domains estimation parameters. Part 2	297
Table 14-132 Iron Bar domain estimation parameters from the 2016 resource model	299
Table 14-133 Bluebird Group block model parameters.	299
Table 14-134 Bluebird open pit and underground production reconciliation, Westgold project to	
Table 14-135 Bluebird Group Open Pit Mineral Resources on June 30, 2024	
Table 14-136 Bluebird Group Underground Mineral Resources on June 30, 2024	
Table 14-137 Euro domains statistics and top-cut.	
Table 14-138 Density values for the Euro block model	
Table 14-139 Euro domain estimation parameters	
Table 14-140 Euro block model parameters	
Table 14-141 Euro Mineral Resources on June 30, 2024.	
Table 14-142 Total historical production for the GNH deposit area	
Table 14-143 GNH interpretation domains supplied by Reed Resources to Snowden	
Table 14-144 GNH block model attribute MINZONE field coding	
Table 14-145 GNH block model attribute OXIDE field coding	
Table 14-145 GNT Block Hough attribute Oxide Held Coully	<i>3 1</i> 3

Table 14-146 GNH mineralisation domain statistics	315
Table 14-147 GNH domain top-cuts.	316
Table 14-148 GNH model density values.	316
Table 14-149 GNH variogram model parameters.	317
Table 14-150 GNH block model parameters.	317
Table 14-151 Default gold grade assigned to un-estimated blocks in the GNH model	318
Table 14-152 Great Northern Highway Mineral Resources on June 30, 2024	321
Table 14-153 Historic underground production from the Karangahaki Belt (Clarke, 1916)	324
Table 14-154 Open pit and underground production from the Rhen's Group (Hollingsworth, 2	-
Table 14-155 Rhen's group mineralisation domain statistics and top-cuts. Part 1	327
Table 14-156 Rhen's group mineralisation domain statistics and top-cuts. Part 2	328
Table 14-157 Rhen's Group density values.	328
Table 14-158 Rhen's group variogram model parameters. Part 1	329
Table 14-159 Rhen's group variogram model parameters. Part 2	329
Table 14-160 Rhen's group variogram model parameters. Part 3	330
Table 14-161 Rhen's Group block model parameters	330
Table 14-162 Gibraltar Mineral Resource Estimation sub-model parameters	330
Table 14-163 Mystery Mineral Resource Estimation sub-model parameters	331
Table 14-164 Rehn's Group estimation parameters. Part 1	332
Table 14-165 Rehn's Group estimation parameters. Part 2	333
Table 14-166 Rhen's Group Mineral Resources on June 30, 2024	336
Table 14-167 Romsey mineralisation domain statistics and top-cuts	340
Table 14-168 Romsey model density values.	341
Table 14-169 Romsey mineralisation domain estimation parameters	342
Table 14-170 Romsey block model parameters.	343
Table 14-171 Romsey Mineral Resources on June 30, 2024	346
Table 14-172 Luke's Junction domain statistics and top-cuts.	349
Table 14-173 Luke's Junction model density values.	349
Table 14-174 Luke's Junction variogram model parameters.	350
Table 14-175 Luke's Junction block model parameters.	350
Table 14-176 Luke's Junction estimation parameters - pass 1.	352
Table 14-177 Luke's Junction estimation parameters - pass 2.	352
Table 14-178 Luke's Junction estimation parameters - pass 3.	353
Table 14-179 Luke's Junction Mineral Resources on June 30, 2024.	355
Table 14-180 Whangamata mineralisation domain statistics and top-cuts	359
Table 14-181 Whangamata density values	360
Table 14-182 Whangamata mineralisation domain variogram models	360

Table 14-183 Whangamata north and south domains	361
Table 14-184 Whangamata block model parameters.	361
Table 14-185 Whangamata estimation parameters - Pass 1	362
Table 14-186 Whangamata estimation parameters - Pass 2	362
Table 14-187 Whangamata open pit production reconciliation, Westgold project to date	364
Table 14-188 Whangamata Mineral Resources on June 30, 2024.	. 365
Table 14-189 Aladdin mineralisation domain raw and top-cut statistics.	371
Table 14-190 Aladdin density values.	372
Table 14-191 Aladdin variogram model and interpolation parameters, domains 1010 to 1090	373
Table 14-192 Aladdin variogram model and interpolation parameters, domains 2010 to 2051	. 374
Table 14-193 Aladdin block model parameters	375
Table 14-194 Aladdin Open Pit Mineral Resources at June 30, 2024	3 <i>7</i> 8
Table 14-195 Aladdin Underground Mineral Resources at June 30, 2024	3 <i>7</i> 8
Table 14-196 Caledonian mineralisation domains raw and top-cut statistics	382
Table 14-197 Caledonian density values.	382
Table 14-198 Caledonian variogram model and interpolation parameters, domains 1510 to 6010	0.383
Table 14-199 Caledonian variogram model and interpolation parameters, domains 9010 to 9097	1.384
Table 14-200 Caledonian block model parameters.	. 384
Table 14-201 Caledonian Open Pit Mineral Resources on June 30, 2024.	. 387
Table 14-202 Caledonian Underground Mineral Resources on June 30, 2024	. 388
Table 14-203 Boomerang - Kurara historical production, 1987 to 1997	392
Table 14-204 Statistics and top-cuts for Gidgee Laterite, Washdown, Phoenix and South Boome	_
domains	
Table 14-205 Statistics and top-cuts for Boomerang Hangingwall domains	
Table 14-206 Statistics and top-cuts for Boomerang footwall domains.	
Table 14-207 Statistics and top-cuts for Kurara domains.	
Table 14-208 Boomerang – Kurara model density values.	
Table 14-209 Boomerang - Kurara model estimation parameters - part 1	
Table 14-210 Boomerang - Kurara model estimation parameters - part 2	
Table 14-211 Boomerang - Kurara model estimation parameters - part 3	
Table 14-212 Boomerang - Kurara block model parameters	
Table 14-213 Boomerang - Kurara Open Pit Mineral Resources on June 30, 2024	
Table 14-214 Boomerang - Kurara Underground Mineral Resources on June 30, 2024	
Table 14-215 Raw and cut statistics for domains at Callisto	
Table 14-216 Callisto assigned densities.	
Table 14-217 Callisto variogram model parameters	
Table 14-218 Callisto block model parameters	
Table 14-219 Interpolation parameters used within the Callisto resource	. 416

Table 14-220 Callisto Mineral Resources on June 30, 2024	420
Table 14-221 Westgold open pit production for the Culculli Group	423
Table 14-222 Statistics and top-cuts for Culculli Group mineralisation domains	425
Table 14-223 Culculli Group model density values	425
Table 14-224 List of Culculli domains with estimation parameters applied from major domai	ins 426
Table 14-225 Culculli MW MZ domain estimation parameters	427
Table 14-226 Culculli North MW MZ domain estimation parameters	428
Table 14-227 Culculli and Culculli North whole domain OK estimation parameters	429
Table 14-228 Culculli Group block model parameters	429
Table 14-229 Culculli and Culculli North production reconciliation, Westgold project to date) 43 3
Table 14-230 Culculli Mineral Resources on June 30, 2024	435
Table 14-231 Jack Ryan domain statistics and top-cuts	440
Table 14-232 Jack Ryan model density values	441
Table 14-233 Jack Ryan estimation parameters.	442
Table 14-234 Jack Ryan block model parameters	442
Table 14-235 Jack Ryan open pit production reconciliation, Westgold project to date	444
Table 14-236 Jack Ryan underground production reconciliation, Westgold project to date	444
Table 14-237 Jack Ryan Open Pit Mineral Resources on June 30, 2024	446
Table 14-238 Jack Ryan Underground Mineral Resources at June 30, 2024	446
Table 14-239 Raw and top-cut statistics for domains at Rand	451
Table 14-240 Rand assigned densities.	451
Table 14-241 Rand block model parameters	454
Table 14-242 Interpolation parameters used within the Rand resource	455
Table 14-243 Rand domains estimate block mean versus declustered input composite mea	
Table 14-244 Rand Open Pit Mineral Resources on June 30, 2024	
Table 14-245 South Emu domains statistics and top-cuts. Part 1	464
Table 14-246 South Emu domains statistics and top-cuts. Part 2	464
Table 14-247 South Emu domains statistics and top-cuts. Part 3	465
Table 14-248 Triton domains statistics and top-cuts. Part 1	465
Table 14-249 Triton domains statistics and top-cuts. Part 2	466
Table 14-250 South Emu - Triton model assigned densities	466
Table 14-251 Triton mineralisation domain interpolation parameters. Part 1	468
Table 14-252 Triton mineralisation domain interpolation parameters. Part 2	469
Table 14-253 South Emu mineralisation domain interpolation parameters. Part 1	470
Table 14-254 South Emu mineralisation domain interpolation parameters. Part 2	47 1
Table 14-255 South Emu mineralisation domain interpolation parameters. Part 3	472
Table 14-256 South Emu - Triton block model parameters	473

Table 14-257 South Emu - Triton Open Pit Mineral Resources on June 30, 2024	. 477
Table 14-258 South Emu - Triton Underground Mineral Resources on June 30, 2024	. 477
Table 14-259 Uncut and cut statistics for domains at Thompson's Bore	. 480
Table 14-260 Thompson's Bore assigned densities	. 481
Table 14-261 Thompson's Bore back-transformed variogram parameters	. 483
Table 14-262 Thompson's Bore block model parameters	. 483
Table 14-263 Interpolation parameters used within the Thompson's Bore resource	. 484
Table 14-264 Thompson's Bore domains estimate block mean v. informing composite mean	. 485
Table 14-265 Thompson's Bore Mineral Resources on June 30, 2024	. 487
Table 14-266 Statistics and top-cuts for Turn of the Tide domains – part 1	. 493
Table 14-267 Statistics and top-cuts for Turn of the Tide domains – part 2	. 494
Table 14-268 Statistics and top-cuts for Turn of the Tide domain 201 MW and MZ sub-domains	. 495
Table 14-269 Turn of the Tide density values	. 496
Table 14-270 Turn of the Tide ordinary kriging domain estimation parameters	. 497
Table 14-271 List of estimation parameters applied to poorly-informed Turn of the Tide domain	
Table 14-272 Turn of the Tide domain 201 indicator domain, and MW / MZ sub-domain ordinary kr	
estimation parameters.	
Table 14-273 Turn of the Tide ID² domain estimation parameters.	. 498
Table 14-274 Turn of the Tide block model parameters.	. 499
Table 14-275 Turn of the Tide Mineral Resources on June 30, 2024	. 503
Table 14-276 Stockpiles Mineral Resources on June 30, 2024.	. 504
Table 15-1 Meekatharra Gold Mineral Reserves on June 30, 2024	. 505
Table 15-2 Prohibition Gold Mineral Reserves on June 30, 2024.	. 507
Table 15-3 Prohibition Underground Mineral Reserves – net gold price calculation	. 508
Table 15-4 Prohibition cut-off grade calculation inputs	. 508
Table 15-5 Vivian-Consols Gold Mineral Reserves on June 30, 2024	. 509
Table 15-6 Vivian - Consols Underground Mineral Reserves – net gold price calculation	. 510
Table 15-7 Vivian - Consols cut-off grade calculation inputs.	. 510
Table 15-8 Mudlode - Hendrix Gold Mineral Reserves on June 30, 2024.	. 511
Table 15-9 Mudlode - Hendrix Underground Mineral Reserves – net gold price calculation	. 512
Table 15-10 Mudlode - Hendrix cut-off grade calculation inputs.	. 512
Table 15-11 Bluebird Gold Mineral Reserves on June 30, 2024.	. 514
Table 15-12 Bluebird Underground Mineral Reserves – net gold price calculation	. 514
Table 15-13 Bluebird cut-off grade calculation inputs.	. 515
Table 15-14 Aladdin Gold Mineral Reserves as of June 30, 2024.	. 515
Table 15-15 Aladdin cut-off grade calculation inputs.	. 516
Table 15-16 South Emu-Triton Gold Mineral Reserves on June 30, 2024	. 518
Table 15-17 South Emu-Triton Underground Mineral Reserves – net gold price calculation	. 519

Table 15-18 South Emu-Triton cut-off grade calculation inputs.	519
Table 15-19 Stockpiles Gold Mineral Reserves on June 30, 2024.	519
Table 16-1 Paddy's Flat discontinuity sets	523
Table 16-2 Dominant Vivian - Consols underground mapping data discontinuity sets	525
Table 16-3 Hendrix data discontinuity sets (based upon diamond drill holes)	525
Table 16-4 Consols stress magnitude (initial).	526
Table 16-5 Prohibition uniaxial compressive strength (UCS) test results	527
Table 16-6 Prohibition deformability determination test results	528
Table 16-7 Vivian / Consols / Mudlode / Fatt's uniaxial compressive strength (UCS) test results.	528
Table 16-8 Hendrix uniaxial compressive strength (UCS) test results	529
Table 16-9 Consols uniaxial compressive strength (UCS) test results	529
Table 16-10 Mudlode Uniaxial Compressive Strength (USE) Test Results	530
Table 16-11 Paddy's Flat stability graph assessment	536
Table 16-12 Vivian domain stability graph assessment	536
Table 16-13 Consols domain stability graph assessment	537
Table 16-14 Mudlode domain stability graph assessment	537
Table 16-15 Fatt's Domain Stability Graph Assessment	537
Table 16-16 Hendrix domain stability assessment (preliminary)	538
Table 16-17 Airleg unsupported spans	539
Table 16-18 Primary underground fleet	544
Table 16-19 Labour requirements	544
Table 16-20 Dominant defect 'sets' for Bluebird borehole interval data	547
Table 16-21 South Emu-Triton Underground Mineral Reserves – net gold price calculation	547
Table 16-22 Bluebird stability graph assessment	551
Table 16-23 Primary underground fleet	554
Table 16-24 Labour requirements	555
Table 16-25 South Emu-Triton Underground Mineral Reserves – net gold price calculation	557
Table 16-26 Pit design parameters	557
Table 16-27 Aladdin Mineral Reserves schedule	558
Table 16-28 Main discontinuity sets at South Emu as of May 2019	561
Table 16-29 South Emu uniaxial compressive strength (UCS) test results	562
Table 16-30 Triton uniaxial compressive strength (UCS) test results	562
Table 16-31 Q-System values for South Emu - Triton 2015	563
Table 16-32 South Emu stope design parameters (2015)	568
Table 16-33 Primary underground fleet	570
Table 16-34 Labour requirements	
Table 19-1 Gold market supply – demand balance- Source: World Gold Council	
Table 20-1 Licenses and Approvals	586

Table 21-1 Meekatharra Complex capital costs	594
Table 21-2 Meekatharra Complex operating costs	595
Table 21-3 Paddy's Flat capital costs	595
Table 21-4 Paddy's Flat operating costs 5	595
Table 21-5 Bluebird capital costs	596
Table 21-6 Bluebird operating costs	59 <i>7</i>
Table 21-7 Aladdin capital costs	59 <i>7</i>
Table 21-8 Aladdin operating costs 5	59 <i>7</i>
Table 21-9 Triton – South Emu capital costs	598
Table 21-10 Triton – South Emu operating costs	599

LIST OF FIGURES

Figure 4-1 Westgold Murchison operations asset map - Source: Westgold
Figure 4-2 Meekatharra Gold Operations map showing location of mineral tenure - Source: Westgold.
Figure 4-3 Meekatharra Mill tenure map - Source: Westgold
Figure 6-1 Bluebird Mill - Source: Westgold
Figure 7-1 Simplified geology of the Murchison Domain of Watkins and Hickman (1990) showing greenstone belts, major structures, and stratigraphy - Source: Westgold
Figure 7-2 Murchison Supergroup stratigraphy of Watkins and Hickman (1990) showing groups, subgroups, formations, and rock types. Stratigraphic thicknesses are approximate and variable along strike - Source: Westgold
Figure 7-3 Simplified geology of the Murchison Domain of Hallberg (2000) showing belts, major structures, and lithological assemblages - Source: Westgold
Figure 7-4 Deposits of the Meekatharra North project area - Source: Westgold53
Figure 7-5 Paddy's Flat Geological map deduced from field mapping and aeromagnetic image interpretation (Thébaud, 2007) - Source: Westgold55
Figure 7-6 Schematic evolution of the Paddy's Flat shear zone (Thébaud, 2007) - Source: Westgold.
Figure 7-7 Deposits of the Paddy's Flat project area - Source: Westgold59
Figure 7-8 geology mapping superimposed on IKONOS satellite image of the southern Yaloginda area (Timms, 2011)
Figure 7-9 Northern Yaloginda area factual and interpreted geology map (Timms, 2011)
Figure 7-10 Deposits of the Yaloginda project area - Source: Westgold63
Figure 7-11 Deposits of the Nannine project area - Source: Westgold65
Figure 7-12 Reedy deposits open pit mine outlines and interpreted Reedy and Turn of the Tide Shear Zones overlain on 1VD magnetic intensity geophysical data (Thébaud, 2007)
Figure 7-13 Deposits of the Reedy's project area - Source: Westgold68
Figure 9-1 Location Of 2021 Reedy's High Resolution Aeromagnetic Survey (Survey Area 3) - Source: Westgold
Figure 9-2 2021 Reedy's High Resolution Aeromagnetic Survey – Overview Results – TMI Magnetics (left) and Radiometrics (right) - Source: Westgold
Figure 9-3 Map Showing the Completed Gravity Survey for The Norie to Nannine Gravity Survey - Source: Westgold
Figure 10-1 Distribution of drilling between May 14 2014, and June 30 2024 within the MGO tenements - Source: Westgold
Figure 10-2 Meekatharra North – Banjo Bore AC Anomalies On Gravity (RGB) Over Aeromagnetics (Greyscale)- Source: Westgold
Figure 10-3 Meekatharra North – Banjo Bore AC Drilling - Source: Westgold87
Figure 11-1 Representative fire assay sample flow chart Bureau Veritas. Source: Westgold 101
Figure 11-2 Standard BLANK: Outliers Included
Figure 11-3 Standard G300-8: Outliers Included
Figure 11-4 Standard G300-9: Outliers Included

Figure 11-5 Standard G308-3: Outliers Included	. 108
Figure 11-6 Standard G310-3: Outliers Included	. 109
Figure 11-7 Standard G310-6: Outliers Included	. 109
Figure 11-8 Standard G310-9: Outliers Included	. 110
Figure 11-9 Standard G311-6: Outliers Included	. 110
Figure 11-10 Standard G312-1: Outliers Included	. 111
Figure 11-11 Standard G312-2: Outliers Included	. 111
Figure 11-12 Standard G313-5: Outliers Included	. 112
Figure 11-13 Standard G313-7: Outliers Included	. 112
Figure 11-14 Standard G314-6: Outliers Included	. 113
Figure 11-15 Standard G314-7: Outliers Included	. 113
Figure 11-16 Standard G315-9: Outliers Included	. 114
Figure 11-17 Standard G316-6: Outliers Included	. 114
Figure 11-18 Standard G319-4: Outliers Included	. 115
Figure 11-19 Standard G319-5: Outliers Included	. 115
Figure 11-20 Standard G398-2: Outliers Included	. 116
Figure 11-21 Standard G398-4: Outliers Included	. 116
Figure 11-22 Standard G900-2: Outliers Included	. 117
Figure 11-23 Standard G901-5: Outliers Included	. 117
Figure 11-24 Standard G901-7: Outliers Included	. 118
Figure 11-25 Standard G904-8: Outliers Included	. 118
Figure 11-26 Standard G906-3: Outliers Included	. 119
Figure 11-27 Standard G906-8: Outliers Included	. 119
Figure 11-28 Standard G911-10: Outliers Included	. 120
Figure 11-29 Standard G911-6: Outliers Included	. 120
Figure 11-30 Standard G913-10: Outliers Included.	. 121
Figure 11-31 Standard G913-7: Outliers Included	. 121
Figure 11-32 Standard G914-2: Outliers Included	. 122
Figure 11-33 Standard G914-6: Outliers Included	. 122
Figure 11-34 Standard G914-7: Outliers Included	. 123
Figure 11-35 Standard G915-6: Outliers Included	. 123
Figure 11-36 Standard G915-9: Outliers Included	. 124
Figure 11-37 Standard G916-3: Outliers Included	. 124
Figure 11-38 Standard G916-7: Outliers Included	. 125
Figure 11-39 Standard G916-9: Outliers Included	. 125
Figure 11-40 Standard G917-10: Outliers Included.	. 126
Figure 11-41 Standard G918-10: Outliers Included.	. 126
Figure 11-42 Standard G918-6: Outliers Included	. 127

Figure 11-43 Standard G919-3: Outliers Included
Figure 11-44 Standard G921-8: Outliers Included
Figure 11-45 Standard G922-3: Outliers Included
Figure 11-46 Standard G922-6: Outliers Included
Figure 11-47 Standard G998-3: Outliers Included
Figure 11-48 Standard GLG314-2: Outliers Included
Figure 11-49 Q-Q Plot - Drillhole (Repeat Code) : Original v. All Rpts for Au ppm
Figure 11-50 Q-Q Plot - drillhole (Repeat Code) : original v. laboratory pulp checks for Au ppm 132
Figure 11-51 Q-Q Plot - drillhole (Repeat Code) : original v. field duplicate for Au ppm 133
Figure 11-52 Boxplot by Standard for Au by Fire Assay (all methods)
Figure 14-1 Location of Westgold MGO Mineral Resources and Mineral Reserves effective 30 June 2024. Source: Westgold142
Figure 14-2 Location of deposits of the MGO Paddy's Flat Mineral Resources - Source: Westgold
Figure 14-3 Location of the Fatt's deposit - Source: Westgold
Figure 14-4 Fatt's depleted resource model. Low-grade alteration halo domain 4000 hidden - Source. Westgold
Figure 14-5 Fatt's resource classification. Yellow Measured, Green Indicated, Red Inferred, Grey Depleted - Source: Westgold
Figure 14-6 Location of the Magazine Group deposits - Source: Westgold
Figure 14-7 Long section of contoured grams per tonne for the eastern and eastern shear lodes at Magazine - Source: Westgold
Figure 14-8 Magazine depleted Mineral Resource model, all domains - Source: Westgold 163
Figure 14-9 Magazine Mineral Resource classification. Green = Indicated, red = Inferred, Magenta = Unreported - Source: Westgold
Figure 14-10 Location of the Golden Bar deposit - Source: Westgold 167
Figure 14-11 Location of the Paddy's North Group deposits - Source: Westgold
Figure 14-12 Paddy's North mineralisation domain groups (Graindorge, 2011b) - Source: Westgold
Figure 14-13 Paddy's North Mineral Resource classification. Green = Indicated, red = Inferred, blue = Unclassified - Source: Westgold
Figure 14-14 Location of the Prohibition deposit - Source: Westgold
Figure 14-15 Prohibition depleted resource model, all domains - Source: Westgold 198
Figure 14-16 Prohibition resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted (backfilled with waste). Open pit and underground void depleted material hidden - Source: Westgold
Figure 14-17 Location of the Vivian - Consols deposit - Source: Westgold
Figure 14-18 Consols mineralisation domains (pink) for the 2024 reportable resource. CON 1190 level and below. Channel lodes were mined through the historic workings (green) - Source: Westgold
Figure 14-19 Vivian's 2024 depleted resource model, alteration domain 3900 hidden - Source

Figure 14-20 Consols 2024 depleted resource model, alteration domain 3900 hidden - Source Westgold
Figure 14-21 Vivian resource classification. Yellow = Measured, green = Indicated, red = Inferred magenta = Unreported, blue = Sterilised, grey = depleted. Open pit topography not shown - Source Westgold
Figure 14-22 Consols resource classification. Yellow = Measured, green = Indicated, red = Inferred magenta = Unreported, blue = Sterilised. Depleted material hidden - Source: Westgold
Figure 14-23 Location of the Mudlode - Hendrix deposits - Source: Westgold230
Figure 14-24 A geological sketch map of the 6 Level of the Ingliston Alberts underground mine showing the distribution of the East, Central and Hanging wall lodes - Ethridge and Henley, 1992.
Figure 14-25 Mudlode domains (orange) north of the dolerite dyke (green). Westgold underground development grey, historic development blue - Source: Westgold
Figure 14-26 Mineralisation domains for Mudlode East (yellow), Hendrix (light blue), Fatt's North (purple), Fatt's (blue), and shear/vein/fault domains (red). Dolerite dyke (green), porphyry intrusive (pink) and the Paddy's Flat Shear Zone (PFSZ – Orange) lithology models. Westgold underground development grey - Source: Westgold.
Figure 14-27 Mudlode - Hendrix depleted and sterilised 2024 resource model, all mineralisation domains. Dolerite dyke waste domain hidden - Source: Westgold
Figure 14-28 Mudlode - Hendrix resource classification. Yellow = Measured, Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted. Unreported dolerite dyke background estimate domain hidden - Source: Westgold246
Figure 14-29 Location of deposits of the MGO Yaloginda Mineral Resources - Source: Westgold. 249
Figure 14-30 Location of the Albury Heath deposit - Source: Westgold
Figure 14-31 Albury Heath depleted resource model, all domains - Source: Westgold256
Figure 14-32 Albury Heath resource classification. Green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold258
Figure 14-33 Location of the Batavia deposit - Source: Westgold
Figure 14-34 Batavia mineralisation domains, long section looking west - Source: Westgold 262
Figure 14-35 Batavia depleted resource model, all domains - Source: Westgold
Figure 14-36 Batavia resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold269
Figure 14-37 Location of the Bluebird Group deposits - Source: Westgold
Figure 14-38 Bluebird group mineralisation domain groups - Source: Westgold273
Figure 14-39 Bluebird mine sequence mineralisation interpretation - Source: Westgold 274
Figure 14-40 Major shear model (purple) crosscutting PHO 1135 ACC and PHO 1135 WS1 - Source Westgold
Figure 14-41 Bluebird group lithology model - Source: Westgold
Figure 14-42 Cross section (17960n +/-50m) of Edin Hope, South Junction, Polar Star and Archena mineralisation domains Source: Westgold276
Figure 14-43 Polar Star West Ultramafic mineralisation - Source: Westgold
Figure 14-44 Mineralisation zones within the South Junction open pit. Mapping by Timms (2011) Source: Westgold

Figure 14-45 Bluebird Group depleted resource model, all domains above a 0.7 g/t COG (Open Pit) or 1.5 g/t COG (Underground) for Measured, Indicated, and Inferred classification - Source: Westgold
Figure 14-46 Bluebird Group resource classification. All domains above a 0.7 g/t COG (OP) or 1.5g/t COG (UG) for Measured, Indicated, and Inferred classification. Yellow = Measured, green = Indicated, red = Inferred - Source: Westgold
Figure 14-47 Location of the Euro deposit - Source: Westgold
Figure 14-48 Euro mineralisation domains - Source: Westgold
Figure 14-49 Location of the Great Northern Highway deposit - Source: Westgold 313
Figure 14-50 GNH mineralisation domains and the fault, oblique view looking northwest - Source: Westgold
Figure 14-51 GNH depleted resource model, all domains, below the as-mined open pit. Plan view - Source: Westgold
Figure 14-52 GNH depleted resource model, all domains, below the as-mined open pit. Long Section view looking west - Source: Westgold
Figure 14-53 GNH resource classification. All domains. Green Indicated, Red Inferred. Long Section looking west - Source: Westgold
Figure 14-54 Location of the Rhen's group deposits - Source: Westgold
Figure 14-55 Mineralisation domains, Mystery to Gibraltar. Karangahaki not pictured - Source: Westgold
Figure 14-56 Rhen's group depleted reportable resource. Excluded Gibraltar underground area outlined - Source: Westgold
Figure 14-57 Rhen's group resource classification. Excluded Gibraltar underground area outlined - Source: Westgold
Figure 14-58 Location of the Romsey deposit - Source: Westgold
Figure 14-59 Romsey depleted resource model, all domains. Viewing west, tilted view - Source: Westgold
Figure 14-60 Romsey resource classification. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted. Tilted view looking west - Source: Westgold 345
Figure 14-61 Location of the Luke's Junction deposit - Source: Westgold347
Figure 14-62 Luke's Junction block model estimate - Source: Westgold
Figure 14-63 Luke's Junction resource classification. Green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold
Figure 14-64 Location of the Whangamata deposit - Source: Westgold
Figure 14-65 Whangamata mineralisation domains - Source: Westgold
Figure 14-66 Whangamata resource model, pre-Westgold mining depletion with final Westgold open pit void surveys - Source: Westgold
Figure 14-67 Whangamata resource classification, pre-Westgold mining depletion with final Westgold open pit void surveys shown. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold
Figure 14-68 Location of Nannine Mineral Resources - Source: Westgold
Figure 14-69 Location of the Aladdin deposit - Source: Westgold
Figure 14-70 Aladdin pit as-mined topography, logged and mapped BIF (red) and BIF ore domains (group 2000, blue). Talc chlorite ultramafic (purple) with shear mineralisation domains (group 1000,

yellow/brown) propagating along both sides of the talc chlorite ultramafic unit - Source: Westgold
Figure 14-71 Aladdin depleted resource model, all domains - Source: Westgold
Figure 14-72 Aladdin resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold
Figure 14-73 Location of the Caledonian deposit - Source: Westgold
Figure 14-74 Caledonian depleted resource model, all domains - Source: Westgold
Figure 14-75 Caledonian resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised - Source: Westgold
Figure 14-76 Location of the Reedy's Mineral Resources - Source: Westgold
Figure 14-77 Location of the deposits in the Boomerang - Kurara group - Source: Westgold 391
Figure 14-78 Boomerang - Kurara domains (Tomsett, 2016)
Figure 14-79 Schematic representation of the Boomerang, Kurara, Phoenix and Washdown mineralised areas with respect to the talc-carbonate marker horizon and the footwall talc-carbonate unit (Tomsett, 2016)
Figure 14-80 Boomerang - Kurara depleted resource model, plan view, all domains - Source: Westgold
Figure 14-81 Boomerang - Kurara depleted resource model, long section view looking east. Phoenix and Washdown hidden - Source: Westgold
Figure 14-82 Boomerang Kurara resource classification, long-section view looking east. Phoenix and Washdown hidden. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted - Source: Westgold
Figure 14-83 Boomerang Kurara resource classification, plan view. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted - Source: Westgold
Figure 14-84 Location of the Callisto deposit - Source: Westgold
Figure 14-85 Mineralisation interpretation of Callisto primary domains - Source: Westgold 412
Figure 14-86 Mineralisation interpretation cross section of Callisto supergene domains - Source: Westgold
Figure 14-87 Callisto domain 100 model validation - Source: Westgold
Figure 14-88 Callisto domain 200 model validation - Source: Westgold
Figure 14-89 Callisto domain 300 model validation - Source: Westgold
Figure 14-90 Callisto domain 400 model validation - Source: Westgold
Figure 14-91 Long section of the Callisto block model with blocks coloured by classification - Source: Westgold419
Figure 14-92 Location of the Culculli deposit - Source: Westgold
Figure 14-93 Mineral Resource Estimate, Culculli mineralisation domains, pre-WGX mining depletion - Source: Westgold431
Figure 14-94 Mineral Resource Estimate, Culculli North mineralisation domains, pre-WGX mining depletion - Source: Westgold
Figure 14-95 Culculli mineralisation domain classification before historic open pit (shown) and WGX mining depletion - Source: Westgold
Figure 14-96 Culculli North mineralisation domain classification before historic open pit (shown) and WGX mining depletion - Source: Westgold

Figure 14-97 Location of the Jack Ryan deposit - Source: Westgold
Figure 14-98 Mineralisation in the north wall of the Jack Ryan open pit. September 22, 2017 - Source: Westgold
Figure 14-99 Jack Ryan mineralisation. Bedded volcaniclastic rock, weak alteration and sulphides, weak foliation - Source: Westgold
Figure 14-100 Jack Ryan mineralisation. Mylonite texture. Strongly sheared/foliated, intense silicification and sulphides - Source: Westgold
Figure 14-101 Jack Ryan mineralisation. Material approaching footwall, fine to medium grained mafic rock with disseminated sulphides, localised foliation and alteration - Source: Westgold 439
Figure 14-102 Jack Ryan mineralisation. Carbonate stockwork veining approaching footwall - Source: Westgold
Figure 14-103 Jack Ryan depleted Mineral Resource Estimate, all domains - Source: Westgold 443
Figure 14-104 Jack Ryan resource classification. Yellow Measured, Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = Depleted - Source: Westgold
Figure 14-105 Location of the Rand deposit - Source: Westgold
Figure 14-106 Mineralisation Interpretation of the Rand deposit in plan view - Source: Westgold. 449
Figure 14-107 Mineralisation Interpretation of the Rand deposit in long-section view with drill hole traces shown - Source: Westgold450
Figure 14-108 Rand continuity models for domain 1- Source: Westgold
Figure 14-109 Rand directional variograms for domain 1 - Source: Westgold
Figure 14-110 Domain 1 grade contours. Contours were generated using an ID ² interpolation method at 0.5 g/t Au intervals within the range from 0.0 g/t Au to 5.0 g/t Au. Warmer colours indicate higher grade - Source: Westgold453
Figure 14-111 Rand block model validation – Domain 1 swath plot by easting (X) - Source: Westgold
Figure 14-112 Rand block model validation – Domain 1 swath plot by northing (Y) - Source: Westgold.
Figure 14-113 Rand block model validation – Domain 1 swath plot by elevation (Z) - Source: Westgold.
Figure 14-114 Mineral Resource Classification of Rand with drill hole composites shown. Red = Indicated, green = Inferred, blue = Unclassified, grey = Depleted - Source: Westgold
Figure 14-115 Location of the Triton – South Emu deposit - Source: Westgold
Figure 14-116 South Emu – Triton interpreted mineralisation domains - Source: Westgold 463
Figure 14-117 South Emu - Triton depleted Mineral Resource Estimate, constrained to 0.7 g/t COG (Open Pit) and 2.0 g/t COG (Undergroud) Source: Westgold
Figure 14-118 South Emu - Triton Mineral Resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised. Depleted blocks hidden - Source: Westgold
Figure 14-119 Location of the Thompson's Bore deposit - Source: Westgold
Figure 14-120 South wall of Thompson's Bore open cut with geology annotations superimposed - Source: Westgold
Figure 14-121 Variogram model for Thompson's Bore domain 101 - Source: Westgold 481
Figure 14-122 Variogram model for Thompson's Bore domain 102 - Source: Westgold 482
Figure 14-123 Variogram model for Thompson's Bore domain 103 - Source: Westgold

Figure 14-124 Thompson's Bore block model validation plots for domain 101 - Source: Westgold
Figure 14-125 Thompson's Bore block model validation plots for domain 102 - Source: Westgold
Figure 14-126 Thompson's Bore block model validation plots for domain 103 - Source: Westgold
Figure 14-127 Location of the Turn of the Tide deposit - Source: Westgold
Figure 14-128 Turn of the Tide pit south ramp. Later dilatational quartz veins cut across earlier tourmaline rich quartz veins and the foliation in high angle, later folded and sheared (Witten, 2016b) - Source: Westgold
Figure 14-129 Turn of the Tide block Mineral Resource Estimate, depleted blocks hidden - Source: Westgold
Figure 14-130 Turn of the Tide block Mineral Resource Estimate. Depleted block shown, grade and density zeroed for depleted blocks - Source: Westgold
Figure 14-131 Turn of the Tide Mineral Resource classification, pre-mining depletion. looking west. Indicated = green, Inferred = red, Unreported = magenta - Source: Westgold
Figure 14-132 Mineral Resource classification for Turn of the Tide, looking east. Indicated = green, Inferred = red, Unreported = magenta, Sterilised = blue - Source: Westgold
Figure 16-1 Prohibition underground mapping data to May 2019 - Source: Westgold 522
Figure 16-2 Vivian Consols underground mapping data to May 2019 - Source: Westgold 524
Figure 16-3 Hendrix diamond drill hole joint set data - Source: Westgold
Figure 16-4 Stress regime (Consols) - Source: Westgold
Figure 16-5 Consols stress gradient (initial) - Source: Westgold
Figure 16-6 Paddy's Flat local geology. Light and dark purple = high-Mg basalts and ultramafics respectively. Green = mafic volcanic succession. Orange = intermediate volcanic succession. Blue dashed lines = trend of the BIF units. Pink = granite. Red dashed lines = brittle faults. Red zig zag lines = brittle-ductile shear zones - Source: Westgold
Figure 16-7 Paddy's Flat area with the approximate trace of the central Paddy's Flat shear - Source: Westgold532
Figure 16-8 Paddy's Flat plan view of major geological features - Source: Westgold 533
Figure 16-9 Paddy's Flat pit, fold in BIF (black line) and Red Spider (west) - Source: Westgold 534
Figure 16-10 Northern wall of the Paddy's Flat pit showing the Paddy's Flat fault set - Source: Westgold
Figure 16-11 Definition of Spans (Palkanis and Vonpaisal, 1993) - Source: Westgold 539
Figure 16-12 Excavation Support Ratio - Source: Westgold
Figure 16-13 Critical Span Curve, Q of 7 converted to Rock Mass Rating (Lang 1994) 541
Figure 16-14 VC1220 AL Failure in ERF >7 area - Source: Westgold
Figure 16-15 Paddy's Flat underground Mineral Reserve design with existing pit looking West - Source: Westgold
Figure 16-16 Paddy's Flat underground Mineral Reserve design with existing pit (grey) looking north - Source: Westgold
Figure 16-17 Paddy's Flat Underground schedule - Source: Westgold
Figure 16-18 Schematic transverse primary / secondary open stope lifecycle showing progression from right to left - Source: Westgold

Figure 16-19 Current and Planned West Lode Extraction ERF Analysis as of 28/11/2022 - Source Westgold
Figure 16-20 RS2 Model regarding nearby development to Bluebird - Source: Westgold 55.
Figure 16-21 Underground Mineral Reserve design with existing pit (grey) looking east - Source Westgold
Figure 16-22 Bluebird Underground Mineral Reserve design with existing pit (grey) looking north Source: Westgold55
Figure 16-23 Bluebird Underground schedule - Source: Westgold
Figure 16-24 Aladdin open pit design - Source: Westgold
Figure 16-25 Monthly Aladdin schedule - Source: Westgold
Figure 16-26 Stereonet of structures at South Emu from underground mapping - Source: Westgold
Figure 16-27 Major rock mass units - UCS strength ranges - Source: Westgold 56
Figure 16-28 Looking North: Rock Mass Quality (Q) along drill holes - Source: Westgold 56
Figure 16-29 Looking West: Rock Mass Quality (Q) Projected onto the mining area - Source: Westgold
Figure 16-30 Geotechnical Q Model for South Emu - Triton - Source: Westgold 56
Figure 16-31 Example of Geotechnical Q Model in section view - Source: Westgold 56
Figure 16-32 Regional Geology of Meekatharra - Source: Westgold
Figure 16-33 South Emu-Triton Underground Mineral Reserve design with looking west - Source Westgold
Figure 16-34 South Emu-Triton Underground Mineral Reserve design looking north - Source Westgold
Figure 16-35 South Emu-Triton Underground schedule - Source: Westgold
Figure 17-1 Bluebird process flowsheet 2024- Source: Westgold
Figure 17-2 Bluebird process recoveries v. plant throughput - Source: Westgold 57
Figure 17-3 Bluebird process recoveries v. head grade - Source: Westgold57
Figure 18-1 Bluebird solar farm - Source: Westgold 57
Figure 18-2 Bluebird heavy vehicle workshop - Source: Westgold 57
Figure 18-3 Bluebird light vehicle workshops - Source: Westgold
Figure 18-4 Bluebird mill, workshop, store and administration complex - Source: Westgold 58
Figure 19-1 Gold price history and consensus forecast - Source: S&P Capital IQ58
Figure 23-1 Side Well Project tenure - Source: Great Boulder, 2024
Figure 23-2 Side Well project regional aeromagnetic image - Source: Great Boulder (2024) 60
Figure 23-3 Meeka Metals' Murchison Project tenure - Source: Meeka Metals (2023) 60
Figure 23-4 Monument's Murchison Project tenure - Source: Monument Mining, 2024 61
Figure 25-1 Consolidated Gold Mineral Resource timeline, 2014 to 2024
Figure 25-2 MGO Exploration Target Pipeline Source - Source: Westgold
Figure 25-3 2018 Haveluck North drill intercept through mineralised porphyry/alteration - Source
Westgold61

Rand Bridge - Source: Westgold.	U
Figure 25-5 Cross section of 17BMDD001 - Source: Westgold	619
Figure 25-6 Exploration potential associated with the footwall talc-carbonate hypothesised anticlinal fold structure - Source: Westgold	

1 SUMMARY

1.1 INTRODUCTION

This technical report (the Technical Report) titled Meekatharra Gold Operations, Murchison Goldfields, Western Australia has been prepared by Westgold Resources Limited (Westgold) following completion of the updated Mineral Resource and Mineral Reserve for Meekatharra Gold Operations.

This Technical Report dated September 27, 2024 can be found on Westgold's website at www.westgold.com.au and under Westgold's profile at www.sedarplus.ca.

The Report was prepared in accordance with the requirements of National Instrument 43-101 (NI 43-101), 'Standards of Disclosure for Mineral Projects', of the Canadian Securities Administrators (CSA) for lodgement on CSA's System for Electronic Document Analysis and Retrieval (SEDAR+).

All amounts have been presented in Australian dollars (\$) unless otherwise indicated.

1.2 PROPERTY DESCRIPTION AND OWNERSHIP

The Meekatharra Gold Operations (MGO) are owned by Big Bell Gold Operations Pty Ltd, a 100% owned subsidiary of Westgold.

MGO comprises the Meekatharra North, Nannine, Paddy's Flat, Reedy's and Yaloginda Mineral Fields, an accommodation village, the Bluebird Mill, 229 mineral leases (as of June 30, 2024) and one underground mining operation being the Bluebird underground mine.

Westgold acquired MGO on May 14, 2014, the Nannine project area was subsequently added to the package on December 24, 2014. The mill is located at Yaloginda, Western Australia, approximately 15 km south-southwest of the town of Meekatharra. The mill has a capacity of 1.8 Mtpa.

1.3 MEEKATHARRA - GEOLOGY AND MINERALISATION

MGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts. The following geological descriptions are summarised from the Westgold Annual Mineral Resource Commentary (Westgold, 2023).

The Meekatharra Gold Operations is in the Achaean Murchison Province, the granite-greenstone Youanmi Terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts. The greenstone belts comprise tholeiitic and high-Mg basalts, komatiites and other ultramafic volcanics, mafic and ultramafic intrusives (dolerites, gabbros, dunites), felsic and intermediate volcanics and metasediments including banded iron formations.

A definitive stratigraphic succession cannot be established for the greenstone belts as outcrop mapping and geochronological studies have shown inconsistencies in previous stratigraphic schemes. Watkins and Hickman (1990) included these lithologies within a lithostratigraphic scheme made of two groups, the Luke Creek Group and the overlying Mount Farmer Group, which together formed the Murchinson Supergroup.

More recently Hallberg (2000) argued that it was difficult to correlate units across the Murchinson Domain because of structural complexity and separation by granitic intrusions. They instead divided the greenstone sequence into five informal assemblages consisting of ultramafic, mafic, and felsic volcanic rocks including komatiite, komatiitic basalt, andesite, BIF, black shale, chert, and volcanic sandstone (Assemblages 1–3); felsic volcanic rocks of mostly rhyolitic to dacitic composition and associated sedimentary rocks (Assemblage 4); and graphitic clastic rocks and various sedimentary rocks spatially related to major faults (Assemblage 5). The assemblages are defined in terms of rock associations and are not necessarily time equivalents.

The available geochronological data indicate that most felsic volcanic rocks formed between c. 2,750 Ma and 2,700 Ma, but some older volcanic rocks are present at least locally. Whether these ages also represent typical ages of the mafic components of the greenstone belts is unknown because mafic rocks are difficult to date directly, and field relationships with the felsic rocks are uncertain.

Meekatharra Gold Operations can be subdivided into five major geological domains:

- Meekatharra North;
- Paddy's Flat;
- Yaloginda;
- Nannine;
- Reedy's.

The Meekatharra North area is located to the north of the Haveluck open pit, extending to the northern limit of the Westgold tenement package, approximately 15 km to the northeast. The area includes the eastern contact of the Chunderloo shear zone, running along the western side of the tenement group. To the east is a sequence of chlorite schists, interflow sediments, chlorite-talc schists, with small granitic intrusions and felsic porphyry dykes. Within and at the contact of the Chunderloo shear zone, rocks have undergone amphibolite facies metamorphism, but elsewhere are mid-to upper-greenschist facies.

Three existing deposits are known at Meekatharra North and have seen open pit mining by Westgold; Five Mile Well, Maid Marion and Sabbath. Five Mile Well is a quartz veined fault / shear zone that trends twenty degrees east of the regional foliation trend. Maid Marion is related to near-surface enrichment and silicification of a possible sulphide facies BIF, with intersections at depth within banded silicachlorite-pyrite rock of unknown origin.

The geology of the Paddy's Flat area is a simple sediment - mafic, ultramafic and intermediate volcanic succession. The mafic volcanic - sedimentary succession is present in the western parts of Paddy's Flat and consists of tholeiitic basalt flows with thin bands of interflow sediment. A thick (>50 m) package of volcaniclastic sediment and banded iron-formation (BIF) is present near the top of the sequence. Tholeitic basalt is variably deformed and contains abundant vesicles that are now filled with chlorite and chalcedony. Rare channel-like structures, possibly related to de-gassing of the lava and the presence of rare pillow structures suggest a submarine environment. Drill core shows that the basal contacts with sediments are often diffuse and suggest minor melting of the underlying sediment. In contrast, the upper contacts of flows are well defined and show sediment infilling of surface features. The volcaniclastic sediments are intermediate in composition and grain size ranges from fine ash to lapilli and graded bedding is evident in fresh exposures. The fine nature of the bedding laminations and the small-scale graded bedding suggest deposition in a water column. The BIF varies from an iron carbonate +/- magnetite BIF, to a chert magnetite BIF. Individual BIF units range from less than 2 m to 40 m in width and are generally strongly magnetic.

The ultramafic volcanic succession and schistose equivalents represent the dominant lithotype of the eastern part of Paddy's Flat. Undeformed ultramafics are mostly grey to dark blue massive aphyric high-Mg basalt. Rare relicts of pillows and spinifex texture can be seen in low strained domains. The ultramafic rocks display a wide range of strain from undeformed to highly schistose and the schists typically exhibit talc-chlorite +/- carbonate assemblages. In areas of moderate strain, this lithotype develops a brecciated texture with fragments of darker, less altered high-Mg basalt surrounded by quartz-chlorite-talc veins.

Within the eastern parts of the ultramafic sequence, cumulate textured peridotite is evident within some drill holes. The peridotite now consists of a talc-carbonate-serpentine-rutile rock with primary textures well preserved. It is believed that these peridotite pods reflect the basal parts of thick ultramafic lava flows.

The intermediate volcanic succession is located along the eastern margin of the Paddy's Flat area and consists of andesite and intermediate volcaniclastic. The intermediate volcanic succession is best exposed in the Macquarie pit in the northeast of the Paddy's Flat area where andesite and volcaniclastic rocks are present along the east wall of the pit. Andesitic volcanic rocks are also evident in outcrop immediately to the east of Paddy's Flat and have been encountered in the upper parts of drill holes located along the eastern margin of Paddy's Flat.

Felsic porphyries (porphyritic microgranite) are present along the length of the Paddy's Flat area and are most prevalent within and along the western contact of the sheared ultramafic succession. The porphyries commonly contain quartz and plagioclase phenocrysts (altered to albite), with rare muscovite phenocrysts also present. The intrusives form dyke-like bodies that vary from 2 to 20 m in thickness, and pinch and swell along strike. In some areas, the porphyries pinch out for several

to tens of metres. The 3D geometry of the porphyry bodies is complicated by the pinch and swell, but the host structure is somewhat consistent in orientation and geometry. In the northern part of Paddy's Flat, the quartz-plagioclase porphyry appears to be unmineralised. Within the Halcyon open pit, a plagioclase-rich porphyry hosts mineralisation.

The structure of the Paddy's Flat mining area is primarily controlled by a significant structural corridor referred to as the Paddy's Flat Shear Zone. At the local-scale, the Paddy's Flat Shear Zone is resolved into several sub-parallel ductile shear zones with associated brittle-ductile faulting. The central part of the shear system has developed on, or close to the boundary between the mafic volcanic succession and the ultramafic succession and has been intruded by a line of semi-continuous felsic porphyry dykes. At least two subsidiary shear zones are developed immediately to the east of the central shear zone.

Folding of the sequence has occurred prior to, or early in the development of, the Paddy's Flat Shear Zone, and numerous brittle faults are developed late in the formation of the shear zone. Folding of the stratigraphy at Paddy's Flat is best preserved within the sediments of the mafic volcanic succession. The folds show an open to tight rounded geometry within the banded iron-formation and vary from rounded to chevron within the volcaniclastic sediments. Fold axes plunge moderately toward the south-southeast, with variability in plunge related to non-cylindrical fold development. An axial planar foliation is well developed throughout the mafic and ultramafic rocks at Paddy's Flat, with lesser development of the foliation in the sediments. The orientation and style of folding observed locally at Paddy's Flat is consistent with the regional Polelle Syncline located to the northeast.

The largest fold structures in the Paddy's Flat area are evident at the Grant's pit and at the Prohibition pit. At Grant's, a sequence of BIF is evident in the form of a large-scale fold closure that has undergone extensive ductile deformation. At Prohibition, a large parasitic fold closure is evident in the southwest corner of the pit. Other large-scale fold closures are also evident in the aeromagnetic images of the area. Within the ultramafic sequence there is little evidence of folding, however a strong axial planar foliation is developed.

The central Paddy's Flat shear zone is host to most of the high-grade gold mineralisation at Paddy's Flat and is likely the controlling structure for mineralisation at a regional scale. The shear zone displays a complex array of ductile and brittle-ductile structures that both focus and offset mineralisation indicating a long-lived movement history. The porphyry emplaced along the shear zone, and extensive alteration related to fluid migration along the shear, have been instrumental in developing a rheological contrast across the shear zone that has resulted in a change from ductile deformation to brittle deformation. The margins of the porphyry have also channelled early gold bearing fluids that have formed lodes along one or both contacts of the porphyry.

The mineralisation at Paddy's Flat can be classified into three groups which, in part, relate to the host lithology and style of veining. The three styles of mineralisation are summarised as:

- (1) Sulphide replacement BIF hosted gold.
- (2) Quartz vein-hosted shear-related gold.
- (3) Quartz-carbonate-sulphide stockwork vein and alteration related gold.

The three styles of mineralisation represent a general progression from west to east across the Paddy's Flat area.

The Yaloginda area is a gold-bearing Archaean greenstone belt situated 15 km south-southwest of Meekatharra and encompasses the Bluebird Mill adjacent to the Great Northern Highway. The deposits in the area are hosted in a strained and metamorphosed volcanic sequence that consists primarily of ultramafic and high-magnesium basalt with minor komatiite, peridotite, gabbro, tholeiitic basalt and interflow sediments. The sequence was intruded by a variety of felsic porphyry and intermediate sills and dykes.

Deformation in the area is complex and heterogeneously distributed, rocks are strongly foliated to completely undeformed. Early regional-scale recumbent, isoclinal folding was followed by variably developed, upright north-northeast to north-northwest trending folding that dominates the structural trends in the area. Some of the felsic porphyry intruded into the hinge zones during the development of these folds. Differential and progressive deformation during this episode led to the development of similar trending, steeply-dipping, mainly reverse dextral fault and shear systems that nucleated on fold limbs and hinge zones. Rheological differences resulted in the focussing of strain at contacts between different lithotypes.

Gold mineralisation is not limited to a particular rock type at Yaloginda. Instead, the location of mineralisation is structurally and rheologically controlled. Mineralisation styles fit into two main categories, shear zone and vein related style. In shear zone style mineralisation, pervasive zones of metasomatism and associated low-grade mineralisation have resulted from gold-bearing fluid that has exploited the vertically connective fault and shear systems and high-strain domains that developed late during north-northeast to north-northwest trending folding. Alteration assemblages proximal to gold typically include quartz, iron carbonate, pyrite, +/- fuchsite, +/- chlorite +/- sericite, with distal halos of weak iron-carbonate +/- mica alteration.

Vein related gold is associated with zones of intense, variably orientated quartz +/-carbonate +/- chlorite veining, commonly with sulphides within veins or their selvedges. Veins tend to overprint rocks with coarse textures at structurally complex sites, such as at the contact of rheologically contrasting units, or the intersection of stronger rocks and fault or shear zone structures. Favourable vein orientations for gold mineralisation include moderate to shallow dipping east-west striking veins, horizontal veins, and arrays of sigmoidal (tension gash) veins. Tension gash kinematics are generally top-to-the west, consistent with the reverse dextral kinematics on the fault-shear zone systems. Gold is locally enriched in the vicinity of

brittle to semi-brittle cross structures that include late steep northeast-southwest to east-west trending faults that displace mineralisation.

In the Nannine area, the Meekatharra-Mount Magnet Archaean greenstone belt is dominated by a sequence of intercalated tholeiitic mafic volcanic rocks and silicified, ferruginous sedimentary rocks locally referred to as BIF. It is stratigraphically overlain by massive ultramafic intrusive and extrusive rocks, high-Mg tholeiitic basalt, and minor felsic volcanic rocks, which have been intruded by post-kinematic granodiorite-tonalite plutons to the west and east.

The Meekatharra-Mount Magnet greenstone belt wraps around the western margin of the syn-kinematic Norie pluton. There are significant changes in the orientation of the greenstone belt in the Nannine area. Volcanic-sedimentary rocks are transected by two major, sinuous north-northeast trending faults; the Gabanintha-Bluebird-Reedy and Reedy-Kurara shears.

In the Nannine area, there are two major changes in the orientation of the greenstone belt. North of Aladdin, the volcanic-sedimentary package trends north. Between Aladdin and Caledonian, the rocks trend north-northwest. South of Caledonian there is a return to north-trending stratigraphy. This kink matches the convex western margin of the Norie Pluton and appears to reflect broadly east-west compression and competency contrast between the granite and adjacent volcanic-sedimentary rocks.

At Bailey's Island, there is a sharp bend in orientation from north to west-northwest. A wedge-shaped segment of the greenstone belt extends three kilometres into the adjacent Western Nannine granitoid, south of the Bailey's Island open pits. Here two moderately magnetic units of mafic and ultramafic volcanic rocks appear to abut the granite pluton. This structural discontinuity is interpreted to reflect dextral displacement along a major east trending crustal scale structure, prior to emplacement of the post-kinematic granite.

There are two dominant structures. Layer-parallel shears occur at different stratigraphic positions within the volcanic-sedimentary succession. Many of these appear to ramp up through stratigraphy, locally truncating individual units. East of Caledonian, these layer-parallel structures converge into a single shear separating the Golconda and Gabanintha formations, forming a v-shaped structural trend. North-northeast to northeast trending sinuous shears are associated with dextral offset of volcano-sedimentary units. Some of these can be traced into the adjacent granitoids. They appear to have been active during and after the layer-parallel shears.

Aladdin and Caledonian lie on a major north-northeast trending dextral fault, the Caledonian-Aladdin shear zone, previously referred to as Caledonian shear. This structure cuts across the volcanic-sedimentary rocks and extends north into the Norie Pluton and south into the Western Nannine granitoid. In the Caledonian pit, this structure separates a unit of intercalated mafic volcanic and sedimentary rocks from the Western Nannine granitoid. However, north of the pit, the tonalite-mafic volcanic contact swings around to the west. In the Aladdin pit, the Caledonian-Aladdin shear cuts across the top of the intercalated volcanic-sedimentary unit obliquely, at a high

angle to the bedding trend. Within the Aladdin pit, there is a change in orientation of the Caledonian-Aladdin shear from northeast to east-northeast.

The eastern margin of the Western Nannine granitoid extends up to 1.5 km east of the Caledonian-Aladdin shear zone, at depth beneath the unit of intercalated mafic volcanic and sedimentary rocks. This has important implications for fluid flow along structures in the overlying volcanic-sedimentary unit.

The Reedy's gold deposits occur within a north-south trending part of the Meekatharra - Wydgee Greenstone belt composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled gold mineralisation occurs at the sheared contacts of dolerite, basalt, ultramafic schist, quartz-feldspar porphyry, and shale.

The Reedy's gold deposits occur within two lineaments or structural corridors. The western lineament corresponds to the Reedy Shear Zone along which gold mineralisation extends over 15 kilometres. The second lineament to the east sits on a structural corridor called the Turn of the Tide Shear Zone. It corresponds to the northern extension of the Mount Magnet Shear Zone. Both shear zones are located on either side of the Culculli Granitoid complex.

Two main mining centres are located along the Reedy Shear Zone (RSZ). A northern centre including the Phoenix-Kurara and the Boomerang deposits, and a southern centre hosting mineralisation at Jack Ryan, Missing Link, Rand, and South Emu - Triton.

The RSZ is flanked by a steeply dipping, folded, west facing Archaean sequence of tuffaceous pelitic sediments, mafic and ultramafic volcanics and dolerites from east to west. Black shale horizons occur in the vicinity of the sediment and mafic contact, and a series of banded iron units occur at higher levels in the mafic sequence. Syndeformation to late quartz-feldspar porphyritic microgranites intruded the greenstone sequence within the broad vicinity of the RSZ. The RSZ is generally developed layer parallel to the greenstone sequence. It is marked by strong flattening, mylonite development and occasional breccia zone. A combination of separate dip-slip and strike-slip displacement has been documented.

Gold is controlled in the first instance by the RSZ and deposited within this structure which is parallel to the axial plane cleavage of regional folds such as the Polelle syncline to the east of Meekatharra. Locally, gold is systematically concentrated in small volumes or shoots. Two main shoot orientations have been documented in the RSZ. One is shallowly plunging, probably overall horizontal, whilst the other corresponds to a steep to vertical southern plunge.

Deformation and mineralisation occur within a zoned alteration envelope characterised by biotite, carbonate, albite, and silica replacement and sulphidation of wall rocks. The common occurrence of black shale against the lode may account for a chemical control on the gold mineralisation. Quartz stockwork veining occurs in some areas.

The Turn of the Tide Shear Zone is located 6 km east of the Reedy Shear Zone and is host to the mineralisation at Turn of the Tide, Culculli Group and Thompson's Bore. The shear zone is trending toward the north-northeast and constitutes a portion of the strongly mineralised Mount Magnet shear zone. Mineralisation at Turn of the Tide and Culculli dips steeply toward the east and is hosted in highly foliated to mylonitic intermediate meta-volcanic rocks bound to the west by meta-basalt, and to the east by a volcano-sedimentary sequence including banded iron-formation, volcanic derived sediment, and meta-basalt. Quartz +/- tourmaline veins are common and are locally associated with disseminated pyrite in the wall rock. In the fresh rock the mineralised zone appears to be associated with strong sericite-carbonate alteration. The Thompson's Bore mineralisation is located within the banded iron-formation sequence 5 km north of Turn of the Tide and Culculli. Mineralisation at Thompson's Bore is evident as quartz veining and minor sulphidation along the contacts of the BIF.

1.4 MINERAL RESOURCE ESTIMATES

The Meekatharra Mineral Resource estimate, part of MGO, is presented in Table 1-1.

Table 1-1 Meekatharra Gold Operation Mineral Resources on June 30, 2024.

	Meekatharra Gold Project Mineral Resource Statement - Rounded for Reporting												
					30/06/	2024							
	Me	easured	t	In	dicated	t	Measure	ed and In	dicated	li li	nferred		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Bluebird Group UG	304	4.09	40	4,368	3.03	425	4,672	3.10	465	6,032	2.55	495	
Meekatharra North	0	0.00	0	97	1.98	6	97	1.98	6	75	2.11	5	
Nannine	68	2.55	6	859	2.06	57	927	2.09	62	340	2.26	25	
Paddy's Flat	376	3.67	44	10,641	1.65	564	11,017	1.72	608	2,574	1.93	160	
Reedy's	430	3.77	52	3,225	2.58	267	3,656	2.72	319	9,191	2.54	750	
Yaloginda District	53	2.59	4	4,128	1.47	195	4,181	1.49	200	5,879	1.40	265	
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15	0	0.00	0	
Total	1,583	3.18	162	23,318	2.02	1,515	24,901	2.09	1,676	24,090	2.19	1,699	

- 1 Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- 2 The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2023.

- 7 To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- 10 Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

1.5 MINERAL RESERVE ESTIMATES

The Meekatharra Mineral Reserve Estimate is presented **Table 1-2**.

Table 1-2 Meekatharra Gold Operation Mineral Reserves on June 30, 2024.

	Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2024										
		Proven			Probable		Prove	n and Prob	able		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Bluebird Group UG	75	3.91	9	2,967	2.81	268	3,041	2.83	277		
Meekatharra North	0	0.00	0	0	0.00	0	0	0.00	0		
Nannine	0	0.00	0	262	1.93	16	262	1.93	16		
Paddy's Flat	48	4.10	6	435	3.86	54	483	3.88	60		
Reedy's	57	3.35	6	398	3.42	44	455	3.41	50		
Yaloginda District	0	0.00	0	0	0.00	0	0	0.00	0		
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15		
Total	530	2.17	37	4,061	2.92	381	4,591	2.83	418		

- 1 The Mineral Reserve is reported at varying cut-off grades per based upon economic analysis of each individual deposit.
- 2 Key assumptions used in the economic evaluation include:
 - a) A metal price of A\$3,000/oz gold for underground operations and A\$2,750/oz gold for open pit operations.
 - b) Metallurgical recovery varies by deposit.
 - c) The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding capital.
- 3 The Mineral Reserve is depleted for all mining to June 30, 2024.
- 4 The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 6 CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 7 Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L Devlin, FAusIMM.

1.6 OPERATIONS AND DEVELOPMENT

At MGO, the Bluebird Mill has been operated by Westgold since September 2015, and local mill feed variability is well understood. Since acquisition by Westgold in 2015, the mill has processed ore from all the mineral fields surrounding Meekatharra. Paddy's Flat and Yaloginda have provided the majority of the ore treated, with some deposits from Reedy's and Nannine also processed. Ore from the CGO region has also been processed at various times. The plant is 2 stage crush to a SABC grinding circuit with a conventional carbon-in-leach (CIL) gold processing plant. The plant has a nominal the capacity of 1.8 Mtpa.

Since the restart of processing by Westgold in September 2015 until March 2024, the Bluebird Mill has processed 13.01 Mt at 2.37 g/t. Mining is active at the Bluebird - South Junction underground mine.

1.7 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

The Bluebird Mill operates under all necessary permits, with Westgold responsible for compliance with environmental regulations for both mining and processing activities. Bluebird (part of the Yaloginda mining group) is part of the Meekatharra Gold Operations, with tenure over 732 km². This area includes a processing facility, tailings storage facilities (TSF), open pits, underground mines, a worker camp, and haul roads.

The current workforce of approximately 360 people primarily consists of fly-in/fly-out (FIFO) workers from Perth. Westgold runs dedicated charter flights from Perth to Meekatharra Airport four days a week (Mondays, Tuesdays, Wednesdays and Thursdays) with capacity for the entire FIFO workforce. Additionally, the FIFO workers are supplemented by workers who reside in regional towns such as Geraldton.

The region is located in the state of Western Australia, which was ranked as the second-best jurisdiction in the world for mining investment by the Fraser Institute in their 2023 survey (Bromby, 2023).

1.8 CAPITAL AND OPERATING COSTS

Westgold has a long history of cost information for capital and operating costs and to the extent possible, mining, processing and site administration costs were derived from actual performance data, in addition to recent supplier quotations. As such, these costs are well understood and allow enough detail for Mineral Reserves to be declared.

The following data were used to inform the cost estimate.

1.8.1 Underground

The costs are scheduled based on combination of first principles and internal underground contractor unit costs and scheduled physicals. Fixed and variable costs have been included as appropriate. Personnel quantities (including mine management, supervision, underground personnel and maintenance) have been calculated from the activity required in the scheduled physicals and used to calculate salaries, wages, on costs, flights and accommodation.

Capital costs include non-sustaining capital for ventilation infrastructure upgrades and new equipment and sustaining capital in the form of mine development extending the decline, ventilation and electrical network.

1.8.2 Open Pit Mining

The costs are scheduled based on contractor unit costs. Fixed and variable costs have been included as appropriate. Personnel quantities (including mine management, supervision, open pit personnel and maintenance) have been calculated from the activity required in the scheduled physicals and used to calculate salaries, wages, on costs, flights, and accommodation. Capital costs have been separated.

1.8.3 Processing and Tailings Storage Facilities

The costs are scheduled based on first principles unit costs and the scheduled physicals. Fixed and variable costs have been included as appropriate. Personnel quantities (including mill management, supervision, mill operators and maintenance) have been calculated from the activity required in the scheduled physicals and used to calculate salaries, wages, on costs, flights, and accommodation.

Sustaining capital expenditure is allocated for tailings lifts, plant and process improvements including process optimisation, ongoing processing equipment costs (replacements, rebuilds and major overhauls), and other infrastructure replacement, including water security and electrical infrastructure.

1.8.4 General and Administration

The costs are scheduled based on first principles unit costs and scheduled physicals. Fixed and variable costs have been included as appropriate. Personnel quantities have been calculated from the activity required in the scheduled physicals and used to calculate salaries and wages.

1.8.5 Royalties

Gross royalties are calculated as respective percentage of block revenue less all relevant deductions applicable to that royalty.

The Net Smelter Royalties calculation considers revenue factors, metallurgical recovery assumptions, transport costs and refining charges. The site operating costs vary between royalty and commodity and can include mining cost, processing cost, relevant site, transport, general and administration costs, and relevant sustaining capital costs.

1.8.6 Closure Costs

Closure costs are based on detailed estimates prepared under the Mine Closure Plan.

1.9 CONCLUSION AND RECOMMENDATIONS

The recently updated Gold Mineral Reserves for the Meekatharra Gold Operations (MGO) provide the opportunity to deliver medium- to long-term security for the ongoing development of MGO.

Specific recommendations to support securing MGO's future include:

- Using the security of the gold Mineral Reserve to develop medium- to long-term improvements in operational performance and costs, and also to provide leverage for capital investment if required.
- Complete a property-wide review of the Mineral Resources with the aim to prioritise extensional opportunities to support the combined mill capacity for future production.
- Realise the growth potential of the project by supporting exploration with sufficient funds to test high quality greenfields exploration targets.

2 INTRODUCTION

The Technical Report has been prepared by and for Westgold Resources Limited (Westgold or the Company), a Perth, Western Australia headquartered mineral resource company focused on the exploration, development and acquisition of precious metals properties, at the request of the Company's senior executives.

The Company, demerged from ASX listed Metals X limited (Metals X), and commenced trading on the ASX on December 6, 2016.

Westgold acquired MGO through a staged acquisition process, firstly acquiring the core of the project inclusive of the Bluebird processing, administration and accommodation complexes, and the Meekatharra North, Paddy's Flat, Yaloginda and Reedy's mineral fields from the administrators of GMK Exploration Pty. Ltd. on May 14, 2014. The Nannine project area was subsequently added to the package on December 24, 2014, again from the administrators of GMK Exploration Pty. Ltd. Both of these acquisitions were completed when trading as Metals X Limited.

Metals X subsequently demerged its base metals and gold assets into separate listings in December 2016, with the gold asset vehicle being the current Westgold Resources Limited.

This Technical Report covers the Meekatharra Gold Operations and has been prepared by Westgold following completion of updated Mineral Resources and Reserves for MGO effective June 30, 2024. The Technical Report will also be available on the SEDAR+ website.

The Meekatharra Gold Operations (MGO) comprises the following:

- The Meekatharra North, Paddy's Flat, Yaloginda, Nannine and Reedy's mineral fields.
- 229 mineral leases as of 30 June 2024.
- The operating Bluebird mine.
- The 1.8 Mtpa Bluebird processing plant.
- The 400 room Bluebird accommodation village.

The Company has reported the Meekatharra Mineral Resources and Reserve estimations under 'The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves 2012 Edition' (JORC, 2012; the JORC Code). There are no material differences between the definitions of 'Mineral Resource' and 'Mineral Reserve' under the applicable definitions adopted by the Canadian Institute of Mining, Metallurgy and Petroleum (the CIM Definition Standards) and the corresponding equivalent definitions in the JORC Code.

This Technical Report supports the updated Meekatharra Gold Project Mineral Resource and Reserve estimations and has been prepared in accordance with the disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101 (NI 43-101), Companion Policy 43-101CP and Form 43-101F1.

2.1 REPORT CONTRIBUTORS AND QUALIFIED PERSON

The Technical Report was assembled by Qualified Person (QP) Jake Russell. The details of all QP's and contributors are summarised in **Table 2-1**, along with dates that each QP and contributor visited the operation.

Table 2-1 Persons who prepared or contributed to this Technical Report.

Name	Position	Employer	Independent	Operation Visit Date	Professional Designation	Contribution (section)						
QUALIFIED PERS	QUALIFIED PERSON RESPONSIBLE FOR THE PREPARATION AND SIGNING OF THIS TECHNICAL REPORT											
Jake Russell	General Manager - Technical Services	Westgold	No	Aug-24	BSc. (Hons), MAIG	1,2,3,4,5,6,7,8,9,10, 11, 12, 14, 19, 20, 22, 23,24, 25, 26, 27						
Leigh Devlin	General Manager – Long Term Planning and Studies	Westgold	No	Aug-24	BEng., Grad Dip Eng (Mining), BA FAusIMM	13, 15, 16, 17, 18, 21						
OTHER PERSON:	S WHO ASSISTED T	HE QUALIFIE	D PERSON									
Tim Cook	Manager - Compliance	Westgold	No	N/A	N/A	4, 20						
Mark Cronin	Regional Senior Planning Engineer	Westgold	No	Oct-23	BEng	13, 15, 16, 17, 18, 21						
Kaisan Critchell	Group Manager – Environment & Sustainability	Westgold	No	Jul-24	BSc, PGDip	4, 5, 17, 18, 20						
Geoff Cheong	Group Metallurgy Manager	Westgold	No	Sept-24	B. App. Sci (Metallurgy) MAusIMM	1, 4, 17, 18						
David Hunt	Superintendent Resource Geology	Westgold	No	Aug-24	BSc. (Hons). MAIG	6, 7, 8, 14						
Simon Rigby	General Manager Exploration and Growth	Westgold	No	Aug-24	BSc. (Hons), MAIG	9, 10, 24						
Reece Witten	Group Resource Geologist	Westgold	No	Aug-24	BSc. (Hons), MAIG, MAusIMM	6, 7, 8, 14						

The authors of this report have assumed and relied on the fact that all the information and technical documents listed in Section 27 (References), are accurate and complete in all material aspects. While the authors have carefully reviewed, within the scope of their technical expertise, all the available information presented to them, they cannot guarantee its accuracy and completeness. The authors reserve the right, but will not be obligated to, revise the Technical Report and its conclusions if additional information becomes known to them subsequent to the effective date of this report.

Information sources and other parties relied upon to provide technical content and review are shown in Table 2-2.

Table 2-2 Other parties relied upon to provide technical content to this Technical Report.

Information Supplied	Other Parties	Section
Ownership, title, social and environmental studies and information	Westgold	1, 2, 4, 6, 7, 9, 10, 20
Infrastructure capital and operating estimates	Westgold	1, 18, 21, 22
Market studies & contracts	Westgold	1, 19

3 RELIANCE ON OTHER EXPERTS

The authors are not experts with respect to legal, socio-economic, land title or political issues, and are therefore not qualified to comment on issues related to the status of permitting, legal agreements and royalties.

Information related to these matters has been provided directly by Westgold and include, without limitation, validity of mineral tenure, status of environmental and other liabilities, and permitting to allow completion of annual assessment work.

These matters were not independently verified by the QP's and appear to be reasonable representations that are suitable for inclusion in this report. Furthermore, the authors have not attempted to verify the legal status of the property; however, the Department of Mines, Industry Regulation and Safety (DMIRS) reports that Westgold's mineral claims are active and in good standing at the effective date of this report.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 LOCATION

The Meekatharra Gold Operations (MGO) comprises the 1.8 Mtpa Bluebird mill, two active underground mines (Bluebird and Paddy's Flat), and an accommodation village.

The Bluebird mill is located 15 km south-southwest of Meekatharra along the Great Northern Highway and 740 km north of the state capital of Perth, again along the Great Northern Highway. The mill is accessed via the Great Northern Highway, being located directly adjacent to this key piece of national infrastructure.

4.2 MINERAL TENURE

4.2.1 Meekatharra

The Meekatharra Gold Operations (MGO) encompass the Bluebird Mill, all related infrastructure, ongoing mining activities, and prospective exploration areas. These operations span over 227 active mining tenements across approximately 732 km² (live) owned by Westgold. The latest approved mining proposal for Bluebird (Registration ID 117227, approved 18 May 2023) authorised the construction of a hybrid power generation facility. This facility includes a power station, a photovoltaic solar array, and liquefied natural gas storage.

In respect of each tenement, there is an expenditure commitment, rent payable to DEMIRS and local rates. There is also an annual reporting requirement for each tenement or group of tenements, pursuant to the Mining Act 1978 (WA) (Mining Act).

The tenements that make up the MGO are currently in good standing supported by Westgold's strong compliance with regulatory reporting requirements and relevant operating conditions of licences and permits.

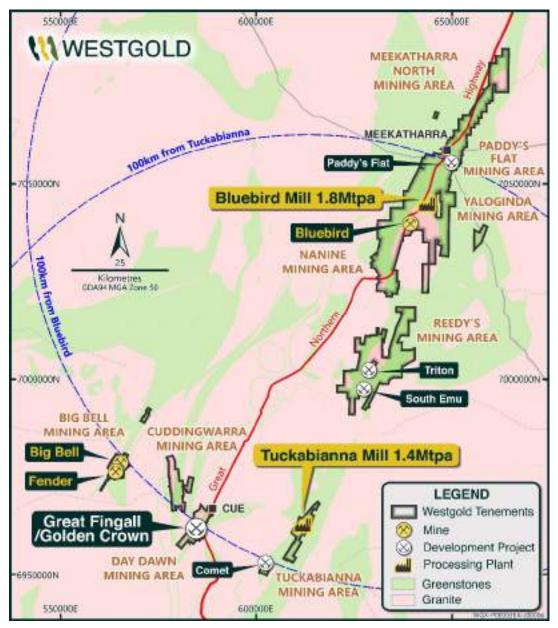


Figure 4-1 Westgold Murchison operations asset map - Source: Westgold.

Table 4-1 Meekatharra Gold Operations Mineral Tenure Information.

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
E51/1876	LIVE	4/09/2018	3/09/2028	\$50,000.00	\$4,140.00	3039.62	BIG BELL GOLD
							OPERATIONS PTY LTD
E51/1928	LIVE	4/02/2020	3/02/2025	\$20,000.00	\$1,156.00	1228.18	BIG BELL GOLD
							OPERATIONS PTY LTD
G51/9	LIVE	10/04/1986	22/09/2027		\$816.00	33.64	BIG BELL GOLD
							OPERATIONS PTY LTD
G51/13	LIVE	10/04/1987	9/04/2029		\$240.00	9.1118	BIG BELL GOLD
							OPERATIONS PTY LTD
G51/14	LIVE	10/04/1987	9/04/2029		\$240.00	9.255	BIG BELL GOLD
							OPERATIONS PTY LTD
G51/15	LIVE	10/04/1987	9/04/2029		\$216.00	8.2105	BIG BELL GOLD
							OPERATIONS PTY LTD
G51/17	LIVE	10/04/1987	9/04/2029		\$240.00	9.105	BIG BELL GOLD
							OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
G51/26	LIVE	15/11/1990	14/11/2032		\$264.00	9.8965	BIG BELL GOLD OPERATIONS PTY LTD
L20/8	LIVE	24/03/1987	23/03/2027		\$816.00	33.3	BIG BELL GOLD
L20/10	LIVE	23/02/1988	22/02/2028		\$3,240.00	135	OPERATIONS PTY LTD BIG BELL GOLD
L20/17	LIVE	26/07/1988	25/07/2028		\$1,188.00	44.8	OPERATIONS PTY LTD BIG BELL GOLD
L20/18	LIVE	28/06/1988	27/06/2028		\$1,200.00	50	OPERATIONS PTY LTD BIG BELL GOLD
L20/75	LIVE	27/03/2017	26/03/2038		\$240.00	9.379	OPERATIONS PTY LTD BIG BELL GOLD
					,		OPERATIONS PTY LTD
L51/18	LIVE	26/02/1985	25/07/2026		\$24.00	0.8355	BIG BELL GOLD OPERATIONS PTY LTD
L51/29	LIVE	26/02/1987	25/02/2027		\$456.00	18.2	BIG BELL GOLD OPERATIONS PTY LTD
L51/30	LIVE	26/02/1987	25/02/2027		\$48.00	1.65	BIG BELL GOLD OPERATIONS PTY LTD
L51/31	LIVE	26/02/1987	25/02/2027		\$336.00	13.5	BIG BELL GOLD
L51/33	LIVE	25/03/1987	24/03/2027		\$24.00	0.33	OPERATIONS PTY LTD BIG BELL GOLD
L51/34	LIVE	25/03/1987	24/03/2027		\$24.00	0.19	OPERATIONS PTY LTD BIG BELL GOLD
	LIVE	25/03/1987	24/03/2027		\$1,104.00		OPERATIONS PTY LTD BIG BELL GOLD
L51/35						45.5	OPERATIONS PTY LTD
L51/41	LIVE	23/03/1988	22/03/2028		\$3,720.00	154.5	BIG BELL GOLD OPERATIONS PTY LTD
L51/43	LIVE	23/12/1987	22/12/2027		\$501.60	19	BIG BELL GOLD OPERATIONS PTY LTD
L51/51	LIVE	21/11/1988	20/11/2028		\$448.80	16.3	BIG BELL GOLD OPERATIONS PTY LTD
L51/55	LIVE	28/06/1989	27/06/2029		\$504.00	20.55	BIG BELL GOLD
L51/56	LIVE	28/03/1990	27/03/2025		\$24.00	0.04	OPERATIONS PTY LTD BIG BELL GOLD
L51/67	LIVE	12/05/1993	11/05/2028		\$432.00	18	OPERATIONS PTY LTD BIG BELL GOLD
L51/71	LIVE	8/08/1994	7/08/2029		\$712.80	27	OPERATIONS PTY LTD BIG BELL GOLD
		8/08/1994	7/08/2029				OPERATIONS PTY LTD BIG BELL GOLD
L51/72	LIVE		7/08/2029		\$5,280.00	200	OPERATIONS PTY LTD
L51/73	LIVE	25/10/1995	24/10/2025		\$8,184.00	310	BIG BELL GOLD OPERATIONS PTY LTD
L51/77	LIVE	27/01/2000	26/01/2042		\$2,832.00	118	BIG BELL GOLD OPERATIONS PTY LTD
L51/78	LIVE	24/02/2000	23/02/2042		\$1,800.00	75	BIG BELL GOLD
L51/79	LIVE	15/03/2001	14/03/2043		\$456.00	19	OPERATIONS PTY LTD BIG BELL GOLD
L51/81	LIVE	26/07/2001	25/07/2043		\$105.60	4	OPERATIONS PTY LTD BIG BELL GOLD
L51/91	LIVE	19/06/2013	18/06/2034		\$96.00	3.9	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD
L51/98	LIVE	7/06/2019	6/06/2040		\$648.00	27	BIG BELL GOLD OPERATIONS PTY LTD
L51/99	LIVE	15/01/2021	14/01/2042		\$432.00	17.96437	BIG BELL GOLD OPERATIONS PTY LTD
L51/104	LIVE	22/10/2019	21/10/2040		\$1,874.40	70.21309	BIG BELL GOLD OPERATIONS PTY LTD
L51/107	LIVE	6/01/2021	5/01/2042		\$13,752.00	572.41535	BIG BELL GOLD OPERATIONS PTY LTD
M20/12	LIVE	18/04/1984	17/04/2026	\$97,000.00	\$25,220.00	969.8	BIG BELL GOLD
M20/45	LIVE	26/08/1986	25/08/2028	\$98,900.00	\$28,285.40	988.8	BIG BELL GOLD
							OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M20/68	LIVE	18/07/1988	17/07/2030	\$71,800.00	\$20,534.80	717.25	BIG BELL GOLD
M20/69	LIVE	18/07/1988	17/07/2030	\$61,300.00	\$17,531.80	612.3	OPERATIONS PTY LTD BIG BELL GOLD
M20/70	LIVE	18/07/1988	17/07/2030	\$79,000.00	\$22,594.00	789.5	OPERATIONS PTY LTD BIG BELL GOLD
M20/71	LIVE	18/07/1988	17/07/2030	\$99,700.00	\$28,514.20	996.6	OPERATIONS PTY LTD BIG BELL GOLD
M20/73	LIVE	18/07/1988	17/07/2030	\$69,400.00	\$19,848.40	693.45	OPERATIONS PTY LTD BIG BELL GOLD
M20/77	LIVE	8/02/1988	7/02/2030	\$77,100.00	\$20,046.00	770.2	OPERATIONS PTY LTD BIG BELL GOLD
M20/107	LIVE	10/10/1988	9/10/2030	\$71,000.00	\$20,306.00	709.1	OPERATIONS PTY LTD BIG BELL GOLD
M20/212	LIVE	11/07/1991	10/07/2033	\$10,000.00	\$2,717.00	94.96	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD
M20/214	LIVE	2/09/1991	1/09/2033	\$46,900.00	\$13,413.40	468.7	BIG BELL GOLD OPERATIONS PTY LTD
M20/219	LIVE	2/09/1991	1/09/2033	\$10,000.00	\$257.40	8.9425	BIG BELL GOLD OPERATIONS PTY LTD
M20/249	LIVE	2/02/1993	1/02/2035	\$91,600.00	\$23,816.00	916	BIG BELL GOLD OPERATIONS PTY LTD
M20/309	LIVE	31/05/1996	30/05/2038	\$56,200.00	\$14,612.00	561.25	BIG BELL GOLD OPERATIONS PTY LTD
M20/420	LIVE	22/11/2012	21/11/2033	\$47,100.00	\$13,470.60	470.516	BIG BELL GOLD OPERATIONS PTY LTD
M20/421	LIVE	22/11/2012	21/11/2033	\$68,400.00	\$19,562.40	683.726	BIG BELL GOLD OPERATIONS PTY LTD
M20/437	LIVE	5/06/2013	4/06/2034	\$78,600.00	\$20,436.00	785.414	BIG BELL GOLD OPERATIONS PTY LTD
M20/438	LIVE	5/06/2013	4/06/2034	\$15,500.00	\$4,030.00	154.03	BIG BELL GOLD
M20/443	LIVE	21/09/2010	20/09/2031	\$48,700.00	\$13,928.20	486.414	OPERATIONS PTY LTD BIG BELL GOLD
M20/444	LIVE	21/09/2010	20/09/2031	\$60,900.00	\$17,417.40	608.62	OPERATIONS PTY LTD BIG BELL GOLD
M20/476	LIVE	5/06/2013	4/06/2034	\$10,000.00	\$546.00	20.091	OPERATIONS PTY LTD BIG BELL GOLD
M20/496	LIVE	21/09/2010	20/09/2031	\$12,600.00	\$3,603.60	125.093	OPERATIONS PTY LTD BIG BELL GOLD
M51/6	LIVE	29/12/1982	28/12/2024	\$10,000.00	\$1,172.60	40.4	OPERATIONS PTY LTD BIG BELL GOLD
M51/12	LIVE	29/03/1983	28/03/2025	\$10,000.00	\$234.00	8.45	OPERATIONS PTY LTD BIG BELL GOLD
M51/27	LIVE	9/05/1984	8/05/2026	\$19,700.00	\$5,122.00	196.2	OPERATIONS PTY LTD BIG BELL GOLD
			8/05/2026				OPERATIONS PTY LTD
M51/28	LIVE	9/05/1984		\$17,500.00	\$4,550.00	174.55	BIG BELL GOLD OPERATIONS PTY LTD
M51/31	LIVE	26/07/1984	25/07/2026	\$26,300.00	\$7,521.80	262.8	BIG BELL GOLD OPERATIONS PTY LTD
M51/33	LIVE	5/09/1984	4/09/2026	\$10,000.00	\$743.60	25.025	BIG BELL GOLD OPERATIONS PTY LTD
M51/35	LIVE	7/09/1984	6/09/2026	\$10,000.00	\$257.40	8.9035	BIG BELL GOLD OPERATIONS PTY LTD
M51/39	LIVE	23/10/1984	22/10/2026	\$10,000.00	\$457.60	15.81	BIG BELL GOLD OPERATIONS PTY LTD
M51/51	LIVE	3/04/1986	2/04/2028	\$13,300.00	\$3,458.00	132.7	BIG BELL GOLD OPERATIONS PTY LTD
M51/53	LIVE	19/08/1985	18/08/2027	\$19,800.00	\$5,662.80	197.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/62	LIVE	23/09/1985	22/09/2027	\$10,000.00	\$429.00	14.665	BIG BELL GOLD
M51/75	LIVE	18/03/1986	17/03/2028	\$10,000.00	\$1,456.00	55.315	BIG BELL GOLD
M51/91	LIVE	10/12/1986	9/12/2028	\$5,000.00	\$143.00	4.856	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M51/92	LIVE	25/07/1986	24/07/2028	\$34,400.00	\$9,838.40	343.55	BIG BELL GOLD
M51/96	LIVE	19/12/1986	18/12/2028	\$10,000.00	\$286.00	9.7145	OPERATIONS PTY LTD BIG BELL GOLD
M51/132	LIVE	25/09/1987	24/09/2029	\$86,800.00	\$24,824.80	867.55	OPERATIONS PTY LTD BIG BELL GOLD
M51/161	LIVE	8/02/1988	7/02/2030	\$5,000.00	\$130.00	4.861	OPERATIONS PTY LTD BIG BELL GOLD
M51/180	LIVE	29/03/1988	28/03/2030	\$22,900.00	\$5,954.00	228.6	OPERATIONS PTY LTD BIG BELL GOLD
M51/187	LIVE	19/05/1988	18/05/2030	\$10,000.00	\$1,872.00	71.62	OPERATIONS PTY LTD BIG BELL GOLD
				, ,	. ,		OPERATIONS PTY LTD
M51/190	LIVE	6/05/1988	5/05/2030	\$49,200.00	\$12,792.00	491.15	BIG BELL GOLD OPERATIONS PTY LTD
M51/199	LIVE	19/05/1988	18/05/2030	\$20,400.00	\$5,304.00	203.05	BIG BELL GOLD OPERATIONS PTY LTD
M51/200	LIVE	19/05/1988	18/05/2030	\$81,800.00	\$21,268.00	817.7	BIG BELL GOLD OPERATIONS PTY LTD
M51/203	LIVE	12/07/1988	11/07/2030	\$10,000.00	\$2,516.80	87.565	BIG BELL GOLD OPERATIONS PTY LTD
M51/209	LIVE	8/08/1988	7/08/2030	\$11,800.00	\$3,374.80	117.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/211	LIVE	30/08/1988	29/08/2030	\$78,300.00	\$22,393.80	782.05	BIG BELL GOLD
M51/233	LIVE	22/09/1988	21/09/2030	\$84,200.00	\$24,081.20	841.85	OPERATIONS PTY LTD BIG BELL GOLD
M51/235	LIVE	22/09/1988	21/09/2030	\$14,900.00	\$4,261.40	148.65	OPERATIONS PTY LTD BIG BELL GOLD
M51/236	LIVE	22/09/1988	21/09/2030	\$99,200.00	\$28,371.20	991.85	OPERATIONS PTY LTD BIG BELL GOLD
M51/237	LIVE	22/09/1988	21/09/2030	\$99,800.00	\$28,542.80	998	OPERATIONS PTY LTD BIG BELL GOLD
				, ,			OPERATIONS PTY LTD
M51/254	LIVE	17/01/1989	16/01/2031	\$92,500.00	\$24,050.00	924.35	BIG BELL GOLD OPERATIONS PTY LTD
M51/256	LIVE	23/09/1988	22/09/2030	\$74,200.00	\$21,221.20	741.75	BIG BELL GOLD OPERATIONS PTY LTD
M51/257	LIVE	23/09/1988	22/09/2030	\$85,000.00	\$24,310.00	849.5	BIG BELL GOLD OPERATIONS PTY LTD
M51/280	LIVE	14/07/1989	13/07/2031	\$10,000.00	\$2,860.00	99.435	BIG BELL GOLD OPERATIONS PTY LTD
M51/281	LIVE	22/03/1990	21/03/2032	\$48,200.00	\$12,532.00	482	BIG BELL GOLD
M51/320	LIVE	3/08/1989	2/08/2031	\$10,000.00	\$228.80	7.7085	OPERATIONS PTY LTD BIG BELL GOLD
M51/321	LIVE	25/08/1989	24/08/2031	\$5,000.00	\$114.40	3.045	OPERATIONS PTY LTD BIG BELL GOLD
M51/322	LIVE	25/08/1989	24/08/2031	\$12,000.00	\$3,432.00	120	OPERATIONS PTY LTD BIG BELL GOLD
M51/325	LIVE	4/12/1989	3/12/2031	\$63,400.00	\$18,132.40	633.5	OPERATIONS PTY LTD BIG BELL GOLD
			4/10/2031		. ,	104.85	OPERATIONS PTY LTD
M51/334	LIVE	5/10/1989		\$10,500.00	\$3,003.00		BIG BELL GOLD OPERATIONS PTY LTD
M51/374	LIVE	11/09/1990	10/09/2032	\$20,300.00	\$5,805.80	202.6	BIG BELL GOLD OPERATIONS PTY LTD
M51/381	LIVE	20/03/1991	19/03/2033	\$13,100.00	\$3,406.00	130.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/385	LIVE	27/11/1991	26/11/2033	\$10,000.00	\$800.80	27.905	BIG BELL GOLD OPERATIONS PTY LTD
M51/386	LIVE	11/03/1992	10/03/2034	\$11,400.00	\$2,964.00	113.4	BIG BELL GOLD
M51/393	LIVE	4/11/1991	3/11/2033	\$70,400.00	\$20,134.40	703.95	BIG BELL GOLD
M51/409	LIVE	4/11/1991	3/11/2033	\$10,000.00	\$1,573.00	54.84	OPERATIONS PTY LTD BIG BELL GOLD
M51/418	LIVE	2/04/1992	1/04/2034	\$5,000.00	\$130.00	4.8565	OPERATIONS PTY LTD BIG BELL GOLD
-				. ,	,		OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M51/419	LIVE	21/05/1992	20/05/2034	\$5,000.00	\$130.00	4.5025	BIG BELL GOLD OPERATIONS PTY LTD
M51/427	LIVE	8/07/1992	7/07/2034	\$90,400.00	\$25,854.40	903.75	BIG BELL GOLD
M51/433	LIVE	3/09/1992	2/09/2034	\$27,800.00	\$7,950.80	277.55	BIG BELL GOLD
M51/437	LIVE	10/08/1993	9/08/2035	\$93,700.00	\$26,798.20	936.675	BIG BELL GOLD
M51/438	LIVE	10/08/1993	9/08/2035	\$79,500.00	\$22,737.00	794.35	OPERATIONS PTY LTD BIG BELL GOLD
M51/439	LIVE	10/08/1993	9/08/2035	\$75,100.00	\$21,478.60	750.25	OPERATIONS PTY LTD BIG BELL GOLD
M51/440	LIVE	10/08/1993	9/08/2035	\$82,400.00	\$23,566.40	823.3	OPERATIONS PTY LTD BIG BELL GOLD
M51/441	LIVE	6/10/1992	5/10/2034	\$24,400.00	\$6,978.40	243.6	OPERATIONS PTY LTD BIG BELL GOLD
M51/445	LIVE	20/01/1993	19/01/2035	\$91,000.00	\$23,660.00	909.45	OPERATIONS PTY LTD BIG BELL GOLD
M51/446	LIVE	20/01/1993	19/01/2035	\$56,800.00	\$14,768.00	567.55	OPERATIONS PTY LTD BIG BELL GOLD
M51/447	LIVE	14/01/1993	13/01/2035	\$12,600.00	\$3,276.00	125.75	OPERATIONS PTY LTD BIG BELL GOLD
M51/459	LIVE	5/02/1993	4/02/2035	\$93,600.00	\$24,336.00	935.2	OPERATIONS PTY LTD BIG BELL GOLD
M51/471	LIVE	24/05/1993	23/05/2035	\$10,000.00	\$182.00	6.6925	OPERATIONS PTY LTD BIG BELL GOLD
M51/472	LIVE	10/06/1993	9/06/2035	\$10,000.00	\$208.00	7.9245	OPERATIONS PTY LTD BIG BELL GOLD
M51/477	LIVE	12/08/1993	11/08/2035	\$52,400.00	\$14,986.40	523.55	OPERATIONS PTY LTD BIG BELL GOLD
-				. ,	. ,		OPERATIONS PTY LTD
M51/482	LIVE	27/10/1993	26/10/2035	\$10,000.00	\$486.20	16.15	BIG BELL GOLD OPERATIONS PTY LTD
M51/483	LIVE	19/02/2013	18/02/2034	\$87,900.00	\$22,854.00	878.1	BIG BELL GOLD OPERATIONS PTY LTD
M51/484	LIVE	31/07/2007	30/07/2028	\$92,900.00	\$26,569.40	928.6	BIG BELL GOLD OPERATIONS PTY LTD
M51/485	LIVE	3/11/1993	2/11/2035	\$10,000.00	\$286.00	9.7125	BIG BELL GOLD OPERATIONS PTY LTD
M51/486	LIVE	9/11/1993	8/11/2035	\$66,400.00	\$18,990.40	663.3	BIG BELL GOLD OPERATIONS PTY LTD
M51/487	LIVE	11/11/1993	10/11/2035	\$72,700.00	\$20,792.20	726.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/488	LIVE	11/11/1993	10/11/2035	\$36,700.00	\$10,496.20	366.7	BIG BELL GOLD OPERATIONS PTY LTD
M51/489	LIVE	9/11/1993	8/11/2035	\$21,400.00	\$6,120.40	213.25	BIG BELL GOLD OPERATIONS PTY LTD
M51/490	LIVE	13/12/1993	12/12/2035	\$22,200.00	\$6,349.20	221.7	BIG BELL GOLD OPERATIONS PTY LTD
M51/491	LIVE	8/03/1994	7/03/2036	\$75,000.00	\$19,500.00	749.55	BIG BELL GOLD OPERATIONS PTY LTD
M51/492	LIVE	2/02/1994	1/02/2036	\$100,000.00	\$26,000.00	999.05	BIG BELL GOLD OPERATIONS PTY LTD
M51/493	LIVE	2/02/1994	1/02/2036	\$95,200.00	\$24,752.00	951.2	BIG BELL GOLD OPERATIONS PTY LTD
M51/494	LIVE	2/02/1994	1/02/2036	\$99,500.00	\$25,870.00	994.35	BIG BELL GOLD OPERATIONS PTY LTD
M51/495	LIVE	2/02/1994	1/02/2036	\$79,300.00	\$20,618.00	792.2	BIG BELL GOLD OPERATIONS PTY LTD
M51/496	LIVE	11/01/1994	10/01/2036	\$5,000.00	\$78.00	2.5005	BIG BELL GOLD OPERATIONS PTY LTD
M51/500	LIVE	23/05/1994	22/05/2036	\$26,300.00	\$6,838.00	262.35	BIG BELL GOLD
M51/501	LIVE	18/07/1994	17/07/2036	\$15,200.00	\$4,347.20	151.6	OPERATIONS PTY LTD BIG BELL GOLD OPERATIONS PTY LTD
M51/502	LIVE	7/12/1994	6/12/2036	\$10,000.00	\$543.40	18.68	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M51/503	LIVE	2/08/1994	1/08/2036	\$20,800.00	\$5,948.80	207.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/504	LIVE	1/09/1994	31/08/2036	\$18,200.00	\$5,205.20	181.9	BIG BELL GOLD
M51/516	LIVE	8/11/1994	7/11/2036	\$10,000.00	\$1,773.20	61.38	OPERATIONS PTY LTD BIG BELL GOLD
M51/521	LIVE	6/12/1994	5/12/2036	\$5,000.00	\$143.00	4.3595	OPERATIONS PTY LTD BIG BELL GOLD
M51/524	LIVE	23/12/1994	22/12/2036	\$10,000.00	\$2,459.60	85.03	OPERATIONS PTY LTD BIG BELL GOLD
M51/525	LIVE	23/12/1994	22/12/2036	\$38,900.00	\$11,125.40	388.1	OPERATIONS PTY LTD BIG BELL GOLD
M51/526	LIVE	23/12/1994	22/12/2036	\$15,200.00	\$4,347.20	151.15	OPERATIONS PTY LTD BIG BELL GOLD
M51/528	LIVE	21/12/1994	20/12/2036	\$10,000.00	\$1,029.60	35.23	OPERATIONS PTY LTD BIG BELL GOLD
	LIVE						OPERATIONS PTY LTD
M51/539		26/07/1995	25/07/2037	\$5,000.00	\$143.00	4.91	BIG BELL GOLD OPERATIONS PTY LTD
M51/557	LIVE	17/10/2012	16/10/2033	\$24,100.00	\$6,892.60	241	BIG BELL GOLD OPERATIONS PTY LTD
M51/560	LIVE	28/02/1996	27/02/2038	\$10,000.00	\$286.00	10.035	BIG BELL GOLD OPERATIONS PTY LTD
M51/561	LIVE	31/08/2012	30/08/2033	\$10,000.00	\$543.40	18.78	BIG BELL GOLD OPERATIONS PTY LTD
M51/568	LIVE	17/10/2012	16/10/2033	\$5,000.00	\$57.20	1.298	BIG BELL GOLD OPERATIONS PTY LTD
M51/569	LIVE	17/10/2012	16/10/2033	\$10,000.00	\$257.40	8.946	BIG BELL GOLD OPERATIONS PTY LTD
M51/572	LIVE	5/06/2013	4/06/2034	\$83,700.00	\$21,762.00	836.8	BIG BELL GOLD OPERATIONS PTY LTD
M51/573	LIVE	17/10/2012	16/10/2033	\$12,000.00	\$3,432.00	120	BIG BELL GOLD OPERATIONS PTY LTD
M51/575	LIVE	17/10/2012	16/10/2033	\$78,700.00	\$22,508.20	787	BIG BELL GOLD
M51/576	LIVE	17/10/2012	16/10/2033	\$11,700.00	\$3,346.20	117	OPERATIONS PTY LTD BIG BELL GOLD
M51/581	LIVE	17/10/2012	16/10/2033	\$10,000.00	\$171.60	6	OPERATIONS PTY LTD BIG BELL GOLD
M51/582	LIVE	17/10/2012	16/10/2033	\$5,000.00	\$85.80	2.7855	OPERATIONS PTY LTD BIG BELL GOLD
M51/584	LIVE	18/10/2012	17/10/2033	\$97,100.00	\$27,770.60	971	OPERATIONS PTY LTD BIG BELL GOLD
M51/586	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$200.20	7	OPERATIONS PTY LTD BIG BELL GOLD
M51/587	LIVE	18/10/2012	17/10/2033	\$19,800.00	\$5,662.80	198	OPERATIONS PTY LTD BIG BELL GOLD
M51/605	LIVE	30/08/2010	29/08/2031	\$15,700.00	\$4,490.20	156.35	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD
M51/611	LIVE	30/08/2010	29/08/2031	\$83,800.00	\$23,966.80	837.229	BIG BELL GOLD OPERATIONS PTY LTD
M51/613	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$257.40	9	BIG BELL GOLD OPERATIONS PTY LTD
M51/628	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$1,487.20	52	BIG BELL GOLD OPERATIONS PTY LTD
M51/637	LIVE	18/10/2012	17/10/2033	\$98,600.00	\$28,199.60	986	BIG BELL GOLD OPERATIONS PTY LTD
M51/640	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$743.60	25.99	BIG BELL GOLD OPERATIONS PTY LTD
M51/643	LIVE	1/10/1997	30/09/2039	\$10,000.00	\$2,431.00	84.25	BIG BELL GOLD OPERATIONS PTY LTD
M51/644	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$1,944.80	68	BIG BELL GOLD
M51/645	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$2,173.60	76	OPERATIONS PTY LTD BIG BELL GOLD
M51/649	LIVE	28/09/2010	27/09/2031	\$45,900.00	\$13,127.40	458.01	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M51/653	LIVE	5/06/2013	4/06/2034	\$11,500.00	\$2,990.00	115	BIG BELL GOLD OPERATIONS PTY LTD
M51/654	LIVE	5/06/2013	4/06/2034	\$17,200.00	\$4,472.00	172	BIG BELL GOLD
M51/667	LIVE	5/06/2013	4/06/2034	\$60,600.00	\$15,756.00	606	OPERATIONS PTY LTD BIG BELL GOLD
M51/668	LIVE	5/06/2013	4/06/2034	\$69,500.00	\$18,070.00	695	OPERATIONS PTY LTD BIG BELL GOLD
M51/669	LIVE	5/06/2013	4/06/2034	\$86,900.00	\$22,594.00	869	OPERATIONS PTY LTD BIG BELL GOLD
M51/670	LIVE	5/06/2013	4/06/2034	\$86,000.00	\$22,360.00	860	OPERATIONS PTY LTD BIG BELL GOLD
M51/671	LIVE	5/06/2013	4/06/2034	\$79,400.00	\$20,644.00	794	OPERATIONS PTY LTD BIG BELL GOLD
M51/672	LIVE	5/06/2013	4/06/2034	\$82,500.00	\$21,450.00	825	OPERATIONS PTY LTD BIG BELL GOLD
M51/673	LIVE	5/06/2013	4/06/2034	\$10,000.00	\$2,288.00	88	OPERATIONS PTY LTD BIG BELL GOLD
M51/674	LIVE	18/10/2012	17/10/2033	\$10,000.00	\$429.00	14.565	OPERATIONS PTY LTD BIG BELL GOLD
M51/675	LIVE	22/11/2012	21/11/2033	\$20,700.00	\$5,920.20	206.91	OPERATIONS PTY LTD BIG BELL GOLD
M51/677	LIVE	18/10/2012	17/10/2033	\$13,400.00	\$3,832.40	133.03	OPERATIONS PTY LTD BIG BELL GOLD
M51/678	LIVE	19/10/2012	18/10/2033	\$59,700.00	\$17,074.20	596.37	OPERATIONS PTY LTD BIG BELL GOLD
							OPERATIONS PTY LTD
M51/679	LIVE	31/08/2012	30/08/2033	\$11,900.00	\$3,403.40	118.3	BIG BELL GOLD OPERATIONS PTY LTD
M51/680	LIVE	19/10/2012	18/10/2033	\$10,000.00	\$286.00	9.7135	BIG BELL GOLD OPERATIONS PTY LTD
M51/688	LIVE	19/10/2012	18/10/2033	\$10,000.00	\$1,315.60	46	BIG BELL GOLD OPERATIONS PTY LTD
M51/718	LIVE	19/10/2012	18/10/2033	\$10,000.00	\$200.20	6.59	BIG BELL GOLD OPERATIONS PTY LTD
M51/737	LIVE	19/10/2012	18/10/2033	\$5,000.00	\$143.00	4.1815	BIG BELL GOLD OPERATIONS PTY LTD
M51/738	LIVE	3/09/2008	2/09/2029	\$10,000.00	\$257.40	8.2995	BIG BELL GOLD OPERATIONS PTY LTD
M51/741	LIVE	5/06/2013	4/06/2034	\$10,000.00	\$1,404.00	53.46	BIG BELL GOLD OPERATIONS PTY LTD
M51/746	LIVE	22/11/2012	21/11/2033	\$37,800.00	\$10,810.80	377.95	BIG BELL GOLD OPERATIONS PTY LTD
M51/757	LIVE	22/11/2012	21/11/2033	\$60,400.00	\$17,274.40	603.802	BIG BELL GOLD OPERATIONS PTY LTD
M51/762	LIVE	28/09/2010	27/09/2031	\$84,600.00	\$24,195.60	845.1	BIG BELL GOLD OPERATIONS PTY LTD
M51/778	LIVE	5/06/2013	4/06/2034	\$68,700.00	\$17,862.00	686.916	BIG BELL GOLD OPERATIONS PTY LTD
M51/780	LIVE	19/10/2012	18/10/2033	\$10,000.00	\$286.00	10	BIG BELL GOLD OPERATIONS PTY LTD
M51/782	LIVE	19/10/2012	18/10/2033	\$37,600.00	\$10,753.60	376	BIG BELL GOLD OPERATIONS PTY LTD
M51/783	LIVE	19/10/2012	18/10/2033	\$41,400.00	\$11,840.40	414	BIG BELL GOLD
M51/784	LIVE	19/10/2012	18/10/2033	\$23,400.00	\$6,692.40	233.25	BIG BELL GOLD
M51/788	LIVE	5/06/2013	4/06/2034	\$83,000.00	\$21,580.00	829.076	BIG BELL GOLD
M51/793	LIVE	11/12/2000	10/12/2042	\$5,000.00	\$143.00	4.857	OPERATIONS PTY LTD BIG BELL GOLD
M51/794	LIVE	11/12/2000	10/12/2042	\$10,000.00	\$543.40	18.65	OPERATIONS PTY LTD BIG BELL GOLD
M51/795	LIVE	11/12/2000	10/12/2042	\$10,000.00	\$286.00	9.71	OPERATIONS PTY LTD BIG BELL GOLD
M51/796	LIVE	5/06/2013	4/06/2034	\$73,000.00	\$18,980.00	729.45	OPERATIONS PTY LTD BIG BELL GOLD
					-		OPERATIONS PTY LTD

Lease	Status	Commence	Expiry	Commitment	Next Rent	Approx Area ha	Holders
M51/798	LIVE	5/06/2013	4/06/2034	\$91,900.00	\$23,894.00	918.3	BIG BELL GOLD OPERATIONS PTY LTD
M51/803	LIVE	8/02/2001	7/02/2043	\$30,100.00	\$7,826.00	300.5	BIG BELL GOLD OPERATIONS PTY LTD
M51/805	LIVE	3/09/2008	2/09/2029	\$47,400.00	\$13,556.40	473.55	BIG BELL GOLD OPERATIONS PTY LTD
M51/811	LIVE	19/10/2012	18/10/2033	\$29,800.00	\$8,522.80	298	BIG BELL GOLD OPERATIONS PTY LTD
M51/819	LIVE	17/06/2002	16/06/2044	\$5,000.00	\$52.00	1.5005	BIG BELL GOLD OPERATIONS PTY LTD
M51/820	LIVE	17/06/2002	16/06/2044	\$10,000.00	\$260.00	9.707	BIG BELL GOLD OPERATIONS PTY LTD
M51/822	LIVE	5/06/2013	4/06/2034	\$91,600.00	\$23,816.00	915.3	BIG BELL GOLD OPERATIONS PTY LTD
M51/823	LIVE	5/06/2013	4/06/2034	\$90,100.00	\$23,426.00	900.7	BIG BELL GOLD OPERATIONS PTY LTD
M51/824	LIVE	5/06/2013	4/06/2034	\$22,800.00	\$5,928.00	227.297	BIG BELL GOLD OPERATIONS PTY LTD
M51/830	LIVE	5/06/2013	4/06/2034	\$20,500.00	\$5,330.00	204.2	BIG BELL GOLD OPERATIONS PTY LTD
M51/834	LIVE	19/10/2012	18/10/2033	\$10,000.00	\$2,688.40	93.105	BIG BELL GOLD OPERATIONS PTY LTD
M51/849	LIVE	5/06/2013	4/06/2034	\$10,000.00	\$1,404.00	53.865	BIG BELL GOLD OPERATIONS PTY LTD
M51/871	LIVE	24/12/2012	23/12/2033	\$5,000.00	\$85.80	2.4	BIG BELL GOLD OPERATIONS PTY LTD
M51/892	LIVE	5/03/2021	4/03/2042	\$52,800.00	\$13,728.00	527.882	BIG BELL GOLD OPERATIONS PTY LTD
P20/2243	LIVE	27/08/2015	26/08/2023	\$2,000.00	\$38.80	2.425	BIG BELL GOLD OPERATIONS PTY LTD
P51/2997	LIVE	14/03/2018	13/03/2026	\$2,480.00	\$248.00	61.90971	BIG BELL GOLD OPERATIONS PTY LTD
P51/2998	LIVE	14/03/2018	13/03/2026	\$7,840.00	\$784.00	196	BIG BELL GOLD OPERATIONS PTY LTD
P51/2999	LIVE	14/03/2018	13/03/2026	\$4,520.00	\$452.00	112.06081	BIG BELL GOLD OPERATIONS PTY LTD
P51/3000	LIVE	14/03/2018	13/03/2026	\$3,640.00	\$364.00	90.08415	BIG BELL GOLD OPERATIONS PTY LTD
P51/3001	LIVE	14/03/2018	13/03/2026	\$3,520.00	\$352.00	87.86236	BIG BELL GOLD OPERATIONS PTY LTD
P51/3071	LIVE	8/03/2019	7/03/2023	\$2,000.00	\$37.00	0.8354	BIG BELL GOLD OPERATIONS PTY LTD
P51/3354	LIVE	15/04/2024	14/04/2028	\$5,960.00	\$596.00	148.1516	BIG BELL GOLD OPERATIONS PTY LTD
M20/561	PENDING					2.43	BIG BELL GOLD OPERATIONS PTY LTD
M51/910	PENDING					0.8354	BIG BELL GOLD OPERATIONS PTY LTD
Total: 229				\$7,115,760.00	\$1,882,122.20	73288.90	

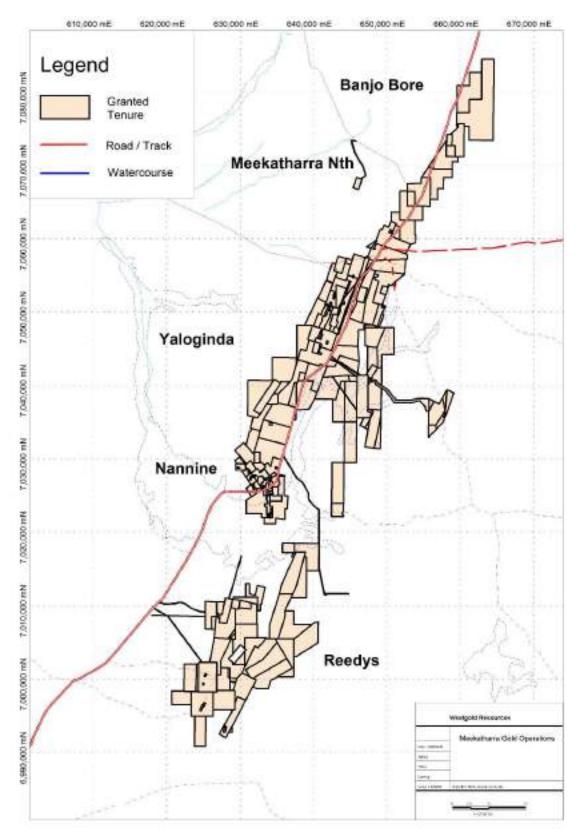


Figure 4-2 Meekatharra Gold Operations map showing location of mineral tenure - Source: Westgold.

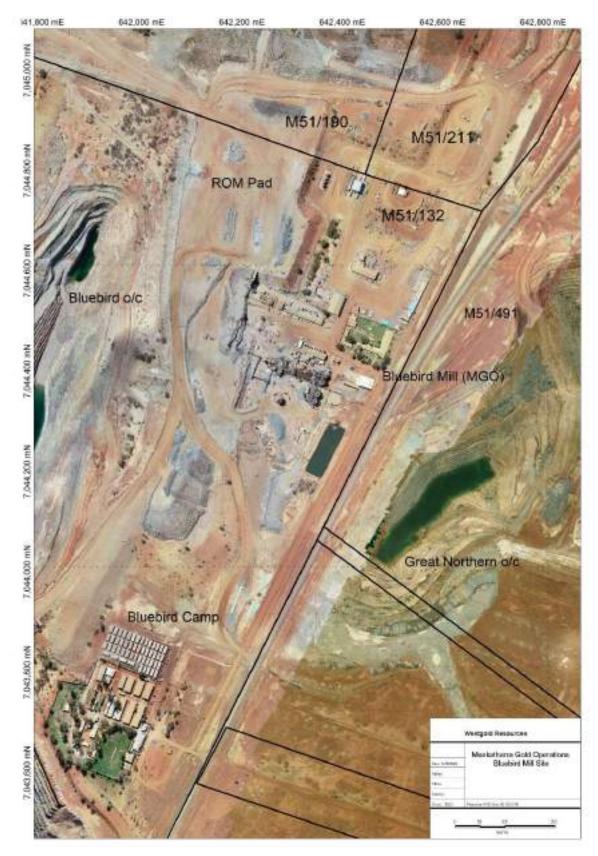


Figure 4-3 Meekatharra Mill tenure map - Source: Westgold.

4.3 UNDERLYING AGREEMENTS

4.3.1 Royalties

Westgold pays the following royalties on gold production:

- Royalty equal to 2.5% of recovered gold to the Government of Western Australia; and;
- Various Native Title holders and other third parties hold rights to receive royalties in respect of gold (and in some cases other minerals or metals) recovered from the tenements.

4.3.2 Joint Ventures

None of the Meekatharra Gold Operations tenements are subject to any Joint Venture arrangements.

4.4 ENVIRONMENTAL CONSIDERATIONS

Westgold is responsible for ensuring all rehabilitation obligations for the MGO project areas are met. As part of this responsibility, Westgold submits an annual report detailing the estimated cost of rehabilitation. Section 20 provides further detail on environmental considerations.

As of June 2024, the estimated rehabilitation liability for MGO was \$31.5 million. This estimate includes the future cost of rehabilitating areas following the completion of ore extraction activities.

4.5 PERMITS AND AUTHORISATION

WGX adheres to the regulatory framework established by Western Australia's Mining Act 1978 (Mining Act). This framework ensures responsible mining practices throughout the entire mine life cycle. A cornerstone of this framework is the Mining Lease, which grants MGO the exclusive right to extract minerals from designated areas.

To ensure comprehensive planning and responsible mine closure, detailed Mining Proposals (MPs) have been developed to meet the conditions of tenure, to permit mining under the Mining Act. These MPs outline the proposed mining methods, environmental management strategies, and social impact assessments. They also incorporate Mine Closure Plans (MCP's) that detail the steps for post-mining rehabilitation, to ensure the long-term stability and safety of the sites. The Department of Energy, Mines, Industry Regulation and Safety (DEMIRS) has approved both MP's and MCP's for all MGO project areas.

DEMIRS issues clearing permits for the removal of native vegetation, adhering to the guidelines set out in the Environmental Protection Act 1986 (EP Act). The Department of Water and Environmental Regulation (DWER) also issues prescribed premises licences for specific industrial facilities. MGO holds such licences for activities such

as mine dewatering, material screening, ore processing, and waste management. Additionally, DWER issues water abstraction licences for MGO's operations. The detail of these permits and licences is further described in Section 6.

The following approvals have been issued by DEMIRS and DWER to support current mining operations:

- Yaloginda Project (Reg ID: 117227): Mining Proposal and Mine Closure Plan.
- Nannine Project (Reg ID: 97574): Mining Proposal and Mine Closure Plan.
- Paddy's Flat Project (Reg ID: 71857): Mine Closure Plan.
- Paddy's Flat Project (Reg ID's: 100222, 83802, 82595, 80513, 71286, 70868, 70420, 57927 and 54830): Mining Proposals.
- Paddy's Flat Project (Reg ID: 71857): Mine Closure Plan.
- Reedy Project (Reg ID 123097): Mining Proposal and Mine Closure Plan.
- Prescribed Premises Licence (Licence No. L4496/1988/11) issued by the Department of Water and Environmental Regulation (DWER) pursuant to Part V of the Environmental Protection Act 1986.
- Water Abstraction Licences (GWL 156252(13), GWL 205844 (1), GWL 207249 (1) and GWL 207576 (1)) issued by DWER under Section 5C of the Rights in Water and Irrigation Act 1914.

Proposals with the potential for significant environmental impact require a separate assessment under Part IV of the EP Act. However, MGO's current activities demonstrably meet the established criteria, and therefore do not trigger the need for such an assessment.

4.6 MINING RIGHTS IN WESTERN AUSTRALIA

4.6.1 Mining Tenements

Under section 9 of the Mining Act, all gold, silver, other precious metals, and other minerals on or below the surface of the land are generally the property of the Crown. In Western Australia, a Mining Lease is the primary approval required for major mineral development projects and mining activities as it authorises the holder to mine for, and dispose of, minerals on the land over which the lease is granted.

The holder of a Mining Lease may work and mine the land, take and remove minerals and do all acts and things necessary to effectually carry out mining operations in, on or under the land, subject to conditions of the Mining Lease and certain other exceptions under the Mining Act.

The term of a Mining Lease is 21 twenty-one years and may be renewed for further terms.

In addition to Mining Leases, other types of mining tenements granted under the Mining Act and held by subsidiaries of Westgold for the purposes of exploration and mining activities include exploration licences, prospecting licences, miscellaneous licences and general purpose leases.

The MGO mining tenements are active and in good standing at the effective date of this Technical Report.

4.6.2 Native Title Act 1993

In 1992, the High Court of Australia determined in Mabo v. Queensland (No. 2) that the common law of Australia recognised certain proprietary rights and interests of Aboriginal and Torres Strait Islander people in relation to their traditional lands and waters. In response to the Mabo decision, the Native Title Act 1993 (Cth) was enacted to codify the implications of the decision and establish a legislative regime under which Australia's Indigenous people could seek to have their native title rights recognised. Native title is recognised where persons claiming to hold that title can establish, they have maintained a continuous connection with the land in accordance with traditional laws and customs since settlement and where those rights have not been lawfully extinguished.

The Native Title Act codifies much of the common law in relation to native title. The doing of acts after January 1 1994 that may affect native title (known as 'future acts'), including the grant of mining tenements, are validated subject to certain procedural rights (including the 'right to negotiate') afforded to persons claiming to hold native title and whose claim has passed a 'registration test' administered by the National Native Title Tribunal (which assesses the claim against certain baseline requirements).

The MGO tenements are subject to native title determinations and claims.

As of the date of this Technical Report, the status of Native Title determinations with respect to the MGO tenements is as follows:

- Wajarri Yamatji Part A (WCD2017/007, WAD6033/1998) and Wajarri Yamatji
 Part B (WCD2018/002, WAD382/2017 and WAD28/2019): the Federal Court of
 Australia has determined that the Wajarri Yamatji people hold native title rights
 and interests in relation to an area of land that includes a large number of the
 MGO tenements.
- Yugunga-Nya People Part A (WCD2021/008, WAD29/2019): the Federal Court of Australia has determined that the Yugunga-Nya people hold native title rights and interests in relation to an area of land that includes a large number of the MGO tenements.

Applicable legislation contains provisions that may make a tenement holder liable for the payment of compensation for the effect of mining and exploration activities on native title rights and interests. While some of Westgold's MGO tenements were granted prior to the commencement of the Native Title Act and therefore were not subject to the Native Title Process, Westgold is party to the following agreements with these Native Title holders in relation to certain tenements:

- 2004 Co-Operation and Mining Agreement with the Yugunga-Nya People dated
 17 March 2004; and,
- 2004 Co-Operation and Mining Agreement with the Ngoonooru Wadjari People dated 2 June 2004.

4.6.3 Aboriginal Heritage Act 1972

The Aboriginal Heritage Act 1972 (WA) (AHA) protects places and objects that are of significance to Aboriginal and Torres Strait Islander people in accordance with their traditional laws and customs (Aboriginal Sites). The AHA provides that it is an offence for a person to damage or in any way alter an Aboriginal Site.

Compliance with the AHA is an express condition of all mining tenements in Western Australia. Accordingly, commission of an offence under the AHA may mean that the mining tenement is vulnerable to an order for forfeiture.

The Department of Planning Lands and Heritage (DPLH) Aboriginal Cultural Heritage Inquiry System (AHIS) provides details about certain registered Aboriginal Sites, and Westgold also maintains a geospatial database containing any confirmed or potential Aboriginal Sites identified during archaeological and ethnographic heritage surveys it has commissioned over the MGO tenements.

A search of the AHIS conducted on May 17 2024 shows there are a number of Aboriginal Sites within the MGO tenements, however no current or planned activities relating to the operation of the existing underground mines and Bluebird Mill require disturbance of these Aboriginal Sites.

Heritage protection obligations under various agreements with the Native Title holders may require Westgold to undertake additional heritage surveys prior to commencing certain activities.

5 ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, CLIMATE AND PHYSIOGRAPHY

5.1 ACCESSIBILITY

5.1.1 Meekatharra North

The Meekatharra North project area is located 24 km northeast of the Bluebird mill along the Great Northern Highway, and 764 km north-northeast of the state capital of Perth, again along the Great Northern Highway. The Bluebird mill is accessed via a combination of private haul roads and the Great Northern Highway.

The site and its immediate surrounds have been subject to moderate historic disturbance from the early 1900's associated with gold mining, processing and pastoral activities, including mine voids, previous processing plant site, tailings storage facilities, waste rock dumps and stockpiles.

The Meekatharra North project area is situated within the Sherwood (N049924) and Yoothapina (N049522) pastoral leases.

5.1.2 Paddy's Flat

The Paddy's Flat project area and Paddy's Flat underground mine are located 15 km north-northeast of the Bluebird mill along the Great Northern Highway, and 755 km north-northeast of the state capital of Perth, again along the Great Northern Highway. The Bluebird mill is accessed via private haul roads.

The site and its immediate surrounds have been subject to extensive historic disturbance from the early 1900's associated with gold mining and urban activities, including mine voids, previous processing plant site, tailings storage facilities, waste rock dumps and stockpiles.

The Paddy's Flat project area is situated within the Sherwood (N049924) and Yoothapina (N049522) pastoral leases.

5.1.3 Yaloginda

The Yaloginda project, Bluebird mill, administration and accommodation complexes and the Bluebird underground mine are located 740 km north-northeast of the state capital of Perth, again along the Great Northern Highway.

The site and its immediate surrounds have been subject to extensive historic disturbance from the early 1900's associated with gold mining and processing including mine voids, processing plant site, tailings storage facilities, waste rock dumps and stockpiles.

The Yaloginda project area is situated within the Polelle (N050535) and Norrie (N050578) pastoral leases.

5.1.4 Nannine

The Nannine project area is located 20 km south-southwest of the Bluebird mill along the Great Northern Highway, and 721 km north-northeast of the state capital of Perth, again along the Great Northern Highway. The Bluebird mill is accessed via private haul roads.

The site and its immediate surrounds have been subject to extensive historic disturbance from the early 1900's associated with gold mining, processing and urban development including a historic battery, a historic town site, a historic railway station mine voids waste rock dumps, and stockpiles.

The Nannine project area is situated within the Polelle (N050535), Annean (N050577) and Norrie (N050578) pastoral leases.

5.1.5 Reedy's

The Reedy's project area is located 60 km south-southwest of the Bluebird mill along the Great Northern Highway, and 702 km north-northeast of the state capital of Perth, again along the Great Northern Highway. The Bluebird mill is accessed via a combination of private haul roads and the Great Northern Highway.

The site and its immediate surrounds have been subject to extensive historic disturbance from the early 1900's associated with gold mining, processing and urban development including a town site, airstrip, mine voids, processing plant site, tailings storage facilities, waste rock dumps and stockpiles.

The Reedy's project area is situated within the Polelle (N050535), Karbar (N050049) and Culculli (N050576) pastoral leases.

5.2 LOCAL RESOURCES AND INFRASTRUCTURE

The Meekatharra region has a substantial history of exploration and mining. Gold has been mined from Paddy's Flat since the late 1800's, with extensive high grade underground mining from the early 1900's until the 1930's. Large-scale mining in the region began again in the late 1970's and has continued until the present with several minor pauses. Westgold has continually mined the MGO project since 2015.

Meekatharra has a population of 849 (2021 Census) and is located 15 km north-northeast of the Bluebird mill. Meekatharra is serviced by several general stores, several service station, several hotels, a caravan park, a hospital, a Mine Warden's office and a Flaying Doctor base. Transport links between Meekatharra and Perth are predominantly via the Great Northern Highway, although charter flights service the Meekatharra airport, and commercial flight options are available in the nearby towns of Wiluna (183 km east) and Mouth Magnet (195 km south-southwest).

Geraldton, the primary regional centre with a population of 38,634 (2021 Census), is located 520 km via road, to the west-southwest of MGO. Geraldton is the regional centre for the Mid-West and is a regional hub for transport, communications, commercial activities and community facilities. Geraldton is also the nearest port.

The current workforce at MGO (Westgold employees and contractors) comprises 265 personnel. All are accommodated on site during their rostered-on periods. Most workers permanently reside in Perth and FIFO from Perth to MGO on either a 4 days-on / 3 days-off, 8 days-on / 6 days-off or 14 days-on / 7 days-off rotation. The FIFO workers are supplemented by workers who reside in regional towns such as Geraldton.

The FIFO workforce arrives at the Meekatharra airport via Westgold chartered flights three days a week, to the state capital of Perth. Perth is a major centre with a population in excess of 2 million and an international airport.

5.3 CLIMATE

The project area is characterised by a semi-arid climate with distinct seasonal variations. Summers are hot, with average daily maximum temperatures ranging from 18.3°C in July to 37.8°C in January (Bureau of Meteorology, 2022). Winters are mild. Precipitation exhibits a bimodal distribution, with peaks occurring in both summer and winter months. Notably, recent data suggests a potential increase in summer rainfall contributions (BoM, 2022).

The mean annual rainfall of 232.6 mm remains significantly lower than the high evaporation rate of 3,750 mm, further reinforcing the semi-arid nature of the region (Bureau of Meteorology, 2022). Wind speeds are highest between September and March, with a southerly or easterly direction prevailing throughout the year (Weatherspark, 2023).

5.4 PHYSIOGRAPHY

5.4.1 Meekatharra Gold Operations

MGO is within the East Murchison subregion (MUR1) of Western Australia's Murchison bioregion. Encompassing 278,360 km², this bioregion represents a critical ecological transition zone. It bridges the divide between the eucalypt-dominated woodlands characteristic of southwest Australia and the mulga-spinifex shrublands prevalent in central Australia (Morton *et. al.*, 1995). Ephemeral wetlands scattered throughout the bioregion offer sanctuaries for waterbird populations.

5.4.2 Landscape

Spanning over 7.8 million hectares, the East Murchison subregion is primarily utilised for mining and pastoral activities. Its geological composition is characterised by extensive red-brown desert sandplains with minimal dune formations. Breakaway complexes, remnants of eroded mesas, are also prominent features. Internally draining systems with associated salt lakes, vestiges of ancient drainage networks, further define the subregion's geomorphology (Cowan, 2001).

The dominant landscape feature is saline stony plains with low rises. These plains support low-growing halophytic shrublands with scattered mulga (Acacia aneura) and snakewood (Acacia victoriae) trees (Schoknecht and Pathan, 2013; Tille, 2006). Notably, climatic factors and historical land use practices (mining and grazing) have likely reduced the overall productivity of these lands.

Soils are derived from sediments that infill the Glengarry Basin, situated between the Pilbara and Yilgarn Cratons. Extensive weathering processes during the Tertiary period resulted in the formation of laterite and silcrete deposits. A defining characteristic of these soils is their well-leached nature, often accompanied by a layer of siliceous hardpan or cemented material.

5.4.3 Vegetation

Vegetation communities within the East Murchison subregion exhibit a strong correlation with underlying geology, soil composition, and climatic conditions. Areas dominated by exposed rock with shallow soils support low mulga woodlands. Calcareous soils foster the growth of hummock grasslands, while saline alluvium provides a habitat for samphire (Halosarcia sp.) shrublands.

Mulga woodlands rich in ephemeral flora flourish in areas with exposed rock and skeletal soils. These regions also harbor hummock grasslands and saltbush shrublands on calcareous soils. Tecticornia and Haloarcia shrublands are present on saline alluvium (Outback Ecology, 2012).

6 HISTORY

6.1 PRE-WESTGOLD

The area that encompasses the Meekatharra Gold Project and its five constituent mineral fields has a long history of gold exploration and mining, with Meekatharra being one of the later Western Australian gold rush sites. Initial interest is reputed to have been sparked in the mid 1890's when J. F. Connolly's horse reputedly stumbled on gold-bearing rock some distance south of the current townsite (Shire of Meekatharra, 2024). The area of Meekatharra was known as Mikadah by the Yamatji inhabitants and means "place of little water" (Shire of Meekatharra, 2024). Situated on the Great Northern Highway, the current township of Meekatharra is the largest centre in the Murchison.

Most early gold prospecting and mining activity took place near to the present town, including Garden Gully and Nannine, which are now a barely visible ghost towns a short distance from Meekatharra. Prospectors Meehan, Porter and Stoich registered their mine, "The Meekatharra" in 1894, and by 1894 a settlement had sprung up (Shire of Meekatharra, 2024).

Gilles McPherson is reputed to be the first to find gold in Nannine, however, J. F. Connely and William Douglas were the first to reach Geraldton and claim the government reward for a new goldfield. In 1891 the Murchison Goldfield was proclaimed, and McPherson formed the Nannine Gold Mining Company. The telegraph line reached Nannine in 1894, and the railway was connected three years later.

Meekatharra did not experience the spectacular growth of other Goldfields towns, but with the railway Meekatharra usurped Nannine's position as a depot for the wool and livestock industries. The town invested heavily in its future and could boast a school, hospital, hotels, churches, and its own newspaper the 'Meekatharra Miner'. The 1920s saw a decline in the price of gold due to the increased cost of mining equipment, and a shortage of skilled labour as workers left to fight in the First World War. These factors had a profound effect on all towns in the Goldfields (Goldfields Key, 2024).

Prior to Westgold's involvement in its current form (via acquisition through its predecessor company Metals X), the gold exploration and production history of MGO is as follows:

The Meekatharra North area historically has been the least developed mineral field within the MGO. The most significant historical producer, Five Mile Well, was previously operated as the 'Gold King', and consisted of a shallow open pit (a result of detonating unwanted army explosives from a cross-cut in the small underground workings) and small shafts on quartz veins. No production figures were reported to the mines Department.

Modern 'discovery' holes were completed in 1984 by Endeavour Resources, drilling under the historic 'Gold King' workings. Further resource definition was completed in 1985 to 1987. Endeavour mined an open pit of dimensions 400 m x 120 m x 60 m in 1989, producing 185,000 t at 1.91 g/t Au for 11,400oz (taken from Witten, 2017f).

The Paddy's Flat area has been mined since the discovery of gold in the area in 1888. Mining has concentrated principally on high-grade structures that cross-cut the central Paddy's Flat shear zone. Based on the available data, it appears likely that Paddy's Flat area has historic production in the order of 14.8 Mt at 3.9 g/t for 1.85 Moz of gold. (Hollingsworth, 2010).

The Paddy's Flat area has undergone three periods of exploration over the last 110 years. Early exploration involved the sinking of exploration and prospecting shafts in the early 1900s and exploration drives along the line of mineralisation from underground mines. Only minor amounts of information survive from this period in the form of a few assay plans of the upper levels of the Fenian and Consols underground mines. Subsequently, near-surface mineralisation at Paddy's Flat was extensively explored via drilling and open pit exploitation from the early 1980s. Attention switched back exploration for underground resources from the 1990's (adapted from Isatelle, 2021).

Table 6-1 Paddy's Flat periods of historical activity.

DATE	COMPANY	ACTIVITY
1891	Prospectors	Gold Discovery
1899-1979		Historic Working Production – underground
		(Commodore 1899; Marmont, Fenian and Ingliston
		Consols Extended between 1905 and 1950) and open
		pit (Queen of the Hills, Prohibition, 1950-1979).
1973-1989	Whim Creek Consolidated NL	Exploration
1989-1995	Dominion Mining Ltd.	Production and extension of open-pit resources
		(1989-1992).
		Underground exploration (1992-1993).
		Late 1994: Donovan decline established from the
		base of Consols open pit.
		Surface exploration
1995-1998	Plutonic Operations Ltd.	Exploration.
1998-2002	Homestake Gold of Australia	
2002-2003	Barrick Resources	
2003-2005	Saint Barbara Mines Ltd	Exploration.
2006-2008	Mercator Gold Australia	Exploration.

Information on past exploration and production in the Yaloginda area is limited until the mid-1990s due primarily to periods of private ownership of the project and as such no requirement for public record keeping. During the mid-1990s Saint Barbara Mines Ltd (SBM) acquired the project and subsequently undertook a significant drilling program to assess the potential for strike and depth extensions to the previously mines deposits of the Yaloginda area.

Yaloginda deposits have been mined at various stages in the past. Recorded production occurred between 1910 and 1911, 1935 and 1936 and intermittently from 1980. Predominantly production has been from large-scale open pits exploiting both oxide and fresh rock resources (Taken from Hunt, 2016a). It was during the period from 1980 that the large-scale infrastructure in the Yaloginda area including the Bluebird mill, administration and accommodation complexes were developed.

Figure 6-1 Bluebird Mill - Source: Westgold.

The Nannine project area was the location of the first gold discovery in the Meekatharra district, leading to the proclamation of the Murchison goldfield in 1891. Small scale open pit and underground mining occurred in the area form this time through to the late 1930's.

Endeavour Resources commenced open pit mining in the area in the mid 1980's with several significant open pts inducing Aladdin, Baily's Island and Caledonian developed by Endeavour and subsequent operators (taken from Witten, 2018a).

The Reedy's area has a history of intermittent gold exploration and production commencing in the 1930's through to the period immediately preceding Westgold's involvement in the project.

Western Mining was the principal operator in the district from the 1930's through to the 1970's during which time they developed the significant Triton underground mine which produced 245,277 oz of gold. Metana Minerals NL and Gold Mines of Australia Limited subsequently developed a series of significant open puts in the Reedy's area, including South Emu, Rand and Boomerang – Kurara (taken from Le Grange, 2017).

6.2 WESTGOLD RESOURCES

Metals X acquired the core of MGO on May 14, 2014, from the administrator of GMK Exploration Pty. Ltd. The assets included in this initial transaction comprised the Bluebird processing, administration and accommodation complexes, and the Meekatharra North, Paddy's Flat, Yaloginda and Reedy's mineral fields from the administrators of GMK Exploration Pty. Ltd. on May 14, 2014. The Nannine project area was subsequently added to the package on December 24, 2014, again from the administrators of GMK Exploration Pty. Ltd.

During the second half of 2014 Metals X undertook a Feasibility Study on returning MGO to operation, this study was handed down in January 2015, leading to open pit mining commencing in the Yaloginda district in late June 2015, and underground mining at Paddy's Flat subsequently commencing in August 2015. The Bluebird proceeding plant was refurbished and recommissioned in parallel, with the first gold bar being poured in October 2105.

In December 2016, Metals X spun off its gold division (including Big Bell Gold Operations Pty. Ltd. – the operating subsidiary of the Meekatharra Gold Operations) into a separate entity called Westgold Resources Limited (WGX).

Since the demerger, MGO has operation continuously under Westgold ownership.

Open pt mining campaigns have been undertaken at Reedy, followed by Yaloginda,

Meekatharra North and Nannine. Underground mining has taken place at Reedy's and

Paddy's Flat and is ongoing at Bluebird.

On May 14, 2014, Metals X published a gold Mineral Resource estimation and Mineral Reserve update (Metals X Limited, 2014) which incorporated its existing Murchison Mineral Resources and Mineral Reserves and those published by Reed Resources (beneficial owner of GMK Exploration Pty. Ltd.) at the time of project acquisition. This historical Mineral Resource is presented in **Table 6-1** and historical Mineral Reserve is presented in Table 6-3.

Table 6-2 Meekatharra Gold Operation Mineral Resources under Reed Resources Limited at May 2014.

	Meekatharra Gold Project														
	Mineral Resource Statement - Rounded for Reporting														
14/05/2014															
Measured Indicated Measured and Indicated Inferred															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
Meekatharra North	0	0.00	0	1,164	1.80	67	1,164	1.80	67	185	1.60	9			
Paddy's Flat	0	0.00	0	25,232	1.60	1,298	25,232	1.60	1,298	13,389	1.60	689			
Reedy's	0	0.00	0	2,740	3.10	273	2,740	3.10	273	3,955	2.70	343			
Yaloginda	0	0.00	0	10,049	1.70	549	10,049	1.70	549	6,291	1.70	344			
Stockpiles	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0			
Total	Total 0 - 0 39,185 1.74 2,188 39,185 1.74 2,188 23,820 1.81 1,385														

Table 6-3 Meekatharra Gold Operation Mineral Reserves under Reed Resources Limited at May 2014.

			Meeka	tharra Gold	Project										
	Mineral Reserve Statement - Rounded for Reporting														
14/05/2014															
Proven Probable Proven and Probable															
Project	kt	kt g/t koz kt g/t koz kt g/t koz													
Meekatharra North	0	0.00	0	192	1.40	9	192	1.40	9						
Paddy's Flat	0	0.00	0	6,384	2.13	437	6,384	2.13	437						
Reedy's	0	0.00	0	1,241	2.87	115	1,241	2.87	115						
Yaloginda	0	0.00	0	2,962	1.75	167	2,962	1.75	167						
Stockpiles	0 0.00 0 0 0.00 0 0 0.00 0														
Total	0 - 0 10,779 2.10 727 10,779 2.10 727														

The evolution of the Mineral Resources and Mineral Reserves under WGX ownership is presented in the tables below.

Table 6-4 Meekatharra Gold Operation Mineral Resources at June 30, 2014.

		N	1ineral F	Meek Resource S		Gold Pro		eporting						
30/06/2014														
Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Meekatharra North	0	0.00	0	1,164	1.80	67	1,164	1.80	67	185	1.60	9		
Paddy's Flat	0	0.00	0	25,232	1.60	1,298	25,232	1.60	1,298	13,389	1.60	689		
Reedy's	0	0.00	0	2,740	3.10	273	2,740	3.10	273	3,955	2.70	343		
Yaloginda	0	0.00	0	10,049	1.70	549	10,049	1.70	549	6,291	1.70	344		
Stockpiles	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0		
Total	0	-	0	39,185	1.74	2,188	39,185	1.74	2,188	23,820	1.81	1,385		

Table 6-5 Meekatharra Gold Operation Mineral Reserves on June 30, 2014.

	Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2014													
Proven Probable Proven and Probable														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz					
Meekatharra North	0	0.00	0	192	1.40	9	192	1.40	9					
Paddy's Flat	0	0.00	0	6,384	2.13	437	6,384	2.13	437					
Reedy's	0	0.00	0	1,241	2.87	115	1,241	2.87	115					
Yaloginda	0	0.00	0	2,962	1.75	167	2,962	1.75	167					
Stockpiles	0	0.00	0	0	0.00	0	0	0.00	0					
Total	0 - 0 10,779 2.10 727 10,779 2.10 727													

Table 6-6 Meekatharra Gold Operation Mineral Resources on December 24, 2014 – Purchase of Nannine tenure.

		M	1ineral F	Meek Resource S		Gold Pro		eporting							
	24/12/2014														
Measured Indicated Measured and Indicated Inferred															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
Meekatharra North	0	0.00	0	1,164	1.80	67	1,164	1.80	67	185	1.60	9			
Nannine	0	0.00	0	611	1.60	31	611	1.60	31	243	1.60	13			
Paddy's Flat	0	0.00	0	25,232	1.60	1,298	25,232	1.60	1,298	13,389	1.60	689			
Reedy's	0	0.00	0	2,740	3.10	273	2,740	3.10	273	3,955	2.70	343			
Yaloginda	0	0.00	0	10,049	1.70	549	10,049	1.70	549	6,291	1.70	344			
Stockpiles	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0			
Total	Total 0 - 0 39,796 1.73 2,219 39,796 1.73 2,219 24,063 1.81 1,398														

Table 6-7 Meekatharra Gold Operation Mineral Reserves on December 24, 2014 – Purchase of Nannine tenure.

	Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 24/12/2014														
Proven Probable Proven and Probable															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz						
Meekatharra North	0	0.00	0	192	1.40	9	192	1.40	9						
Nannine	0	0.00	0	0	0.00	0	0	-	0						
Paddy's Flat	0	0.00	0	6,384	2.13	437	6,384	2.13	437						
Reedy's	0	0.00	0	1,241	2.87	115	1,241	2.87	115						
Yaloginda	0	0.00	0	2,962	1.75	167	2,962	1.75	167						
Stockpiles	0 0.00 0 0 0.00 0 0 0.00 0														
Total	0 - 0 10,779 2.10 727 10,779 2.10 727														

Table 6-8 Meekatharra Gold Operation Mineral Resources on June 30, 2015.

		M	1ineral F	Meek Resource S		Gold Pro		eporting						
30/06/2015														
Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Meekatharra North	0	0.00	0	1,164	1.76	66	1,164	1.76	66	185	1.59	9		
Nannine	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0		
Paddy's Flat	0	0.00	0	25,557	1.59	1,306	25,557	1.59	1,306	13,755	1.58	699		
Reedy's	1	2.21	0	3,064	2.38	234	3,065	2.38	235	4,997	2.16	347		
Yaloginda	218	2.09	15	5,299	1.72	293	5,518	1.73	308	9,640	1.46	453		
Stockpiles	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0		
Total	220	2.09	15	35,084	1.68	1,900	35,303	1.69	1,915	28,576	1.64	1,508		

Table 6-9 Meekatharra Gold Operation Mineral Reserves on June 30, 2015.

	Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2015														
Proven Probable Proven and Probable															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz						
Meekatharra North	0	0.00	0	310	2.38	24	310	2.38	24						
Nannine	0	0.00	0	0	0.00	0	0	-	0						
Paddy's Flat	0	0.00	0	3,322	3.62	387	3,322	3.62	387						
Reedy's	0	0.00	0	827	3.00	80	827	3.00	80						
Yaloginda	0	0.00	0	496	2.03	32	496	2.03	32						
Stockpiles	0 0.00 0 0 0.00 0 - 0														
Total	0 - 0 4,954 3.28 522 4,954 3.28 522														

Table 6-10 Meekatharra Gold Operation Mineral Resources on June 30, 2016.

		M	1ineral F				oject nded for R	eporting						
Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Meekatharra North	0	0.00	0	1,164	1.76	66	1,164	1.76	66	185	1.59	9		
Nannine	0	0.00	0	0	0.00	0	0	-	0	0	0.00	0		
Paddy's Flat	0	0.00	0	19,425	1.83	1,143	19,425	1.83	1,143	13,553	1.64	715		
Reedy's	1	2.21	0	3,366	2.08	225	3,367	2.08	225	5,493	2.44	431		
Yaloginda	21	2.29	2	5,503	1.83	324	5,524	1.83	325	10,181	1.43	468		
Stockpiles	135	1.66	7	0	0.00	0	135	1.66	7	0	0.00	0		
Total	Total 157 1.75 9 29,458 1.86 1,758 29,615 1.86 1,766 29,411 1.72 1,623													

Table 6-11 Meekatharra Gold Operation Mineral Reserves on June 30, 2016.

	Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2016														
Proven Probable Proven and Probable															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz						
Meekatharra North	0	0.00	0	310	2.38	24	310	2.38	24						
Nannine	0	0.00	0	0	0.00	0	0	-	0						
Paddy's Flat	0	0.00	0	3,638	3.45	404	3,638	3.45	404						
Reedy's	0	0.00	0	1,222	2.81	110	1,222	2.81	110						
Yaloginda	6	2.48	1	518	2.43	40	524	2.43	41						
Stockpiles	135	1.66	7	0	0.00	0	135	1.66	7						
Total	141	141 1.70 8 5,688 3.16 578 5,829 3.13 586													

Table 6-12 Meekatharra Gold Operation Mineral Resources on June 30, 2017.

		Μ	1ineral F	Meek Resource S				eporting						
Measured Indicated Measured and Indicated Inferred														
Project	kt g/t koz kt g/t koz kt g/t koz kt g/t koz													
Meekatharra North	0	0.00	0	614	1.65	33	614	1.65	33	955	1.50	46		
Nannine	0	0.00	0	304	1.35	13	304	1.35	13	526	1.85	31		
Paddy's Flat	0	0.00	0	19,053	1.76	1,078	19,053	1.76	1,078	13,429	1.61	695		
Reedy's	239	2.19	17	3,114	2.01	201	3,353	2.02	218	7,175	2.59	597		
Yaloginda	27	2.18	2	7,860	1.72	435	7,887	1.72	437	7,657	1.53	377		
Stockpiles	Stockpiles 211 2.00 14 0 0.00 0 211 2.00 14 0 0.00 0													
Total	otal 477 2.11 32 30,944 1.77 1,760 31,421 1.77 1,792 29,743 1.83 1,747													

Table 6-13 Meekatharra Gold Operation Mineral Reserves on June 30, 2017.

		Mineral I	Reserve Sta	tharra Gold tement - Ro 30/06/2017	ounded for F	Reporting								
Proven Probable Proven and Probable														
Project	kt													
Meekatharra North	0	0 0.00 0 294 1.48 14 294 1.48 14												
Nannine	0	0.00	0	43	1.62	2	43	1.62	2					
Paddy's Flat	0	0.00	0	3,711	3.29	393	3,711	3.29	393					
Reedy's	0	0.00	0	580	3.11	58	580	3.11	58					
Yaloginda	0	0 0.00 0 1,159 2.83 105 1,159 2.83 105												
Stockpiles 211 2.00 14 0 0.00 0 211 2.00 14														
Total	Total 211 2.00 14 5,787 3.08 572 5,998 3.04 586													

Table 6-14 Meekatharra Gold Operation Mineral Resources on June 30, 2018.

		M	1ineral P	Meek Resource S				eporting						
Measured Indicated Measured and Indicated Inferred														
Project	kt	kt g/t koz kt g/t koz kt g/t koz												
Meekatharra North	0	0.00	0	956	1.74	53	956	1.74	53	723	1.38	32		
Nannine	0	0.00	0	717	1.74	40	717	1.74	40	422	1.57	21		
Paddy's Flat	844	4.78	130	15,660	1.59	801	16,504	1.75	930	12,301	1.50	593		
Reedy's	95	1.66	5	3,240	2.27	236	3,336	2.25	242	9,389	2.52	761		
Yaloginda	15	2.26	1	7,918	1.68	428	7,933	1.68	429	7,414	1.55	369		
Stockpiles	Stockpiles 610 1.32 26 0 0.00 0 610 1.32 26 0 0.00 0													
Total	otal 1,565 3.22 162 28,491 1.70 1,558 30,056 1.78 1,720 30,249 1.83 1,777													

Table 6-15 Meekatharra Gold Operation Mineral Reserves on June 30, 2018.

		Mineral I	Meeka Reserve Sta	tharra Gold tement - Ro 30/06/2018	ounded for F	Reporting								
		Proven			Probable		Prov	en and Prob	able					
Project	kt													
Meekatharra North	0	0 0.00 0 421 1.74 24 421 1.74 24												
Nannine	0	0.00	0	244	1.86	15	244	1.86	15					
Paddy's Flat	501	3.61	58	2,613	2.66	223	3,115	2.81	282					
Reedy's	0	0.00	0	713	2.94	67	713	2.94	67					
Yaloginda	0	0.00	0	564	2.52	46	564	2.52	46					
Stockpiles 610 1.32 26 0 0.00 0 610 1.32 26														
Total	Total 1,112 2.35 84 4,555 2.56 375 5,667 2.52 459													

Table 6-16 Meekatharra Gold Operation Mineral Resources on June 30, 2019.

		M	1ineral P			Gold Pro	oject nded for R	eporting						
					30/06	/2019								
Measured Indicated Measured and Indicated Inferred														
Project	kt													
Meekatharra North	0	0.00	0	481	2.01	31	481	2.01	31	172	1.72	10		
Nannine	0	0.00	0	925	2.14	64	925	2.14	64	321	2.26	23		
Paddy's Flat	1,820	3.60	211	12,579	1.59	643	14,399	1.84	854	10,183	1.47	481		
Reedy's	113	1.71	6	3,485	2.66	298	3,598	2.63	304	8,850	2.41	686		
Yaloginda	15	2.26	1	8,324	1.77	474	8,339	1.77	475	6,965	1.44	322		
Stockpiles	Stockpiles 719 1.15 27 0 0.00 0 719 1.15 27 0 0.00 0													
Total	otal 2,666 2.85 244 25,795 1.82 1,510 28,462 1.92 1,754 26,492 1.79 1,522													

Table 6-17 Meekatharra Gold Operation Mineral Reserves on June 30, 2019.

		Mineral I	Meeka Reserve Sta	tharra Gold tement - Ro 30/06/2019	ounded for F	Reporting							
Proven Probable Proven and Probable													
Project	kt	kt g/t koz kt g/t koz kt g/t koz											
Meekatharra North	0	0 0.00 0 346 1.87 21 346 1.87 2											
Nannine	1	3.94	0	388	2.30	29	389	2.30	29				
Paddy's Flat	871	3.11	87	892	3.54	101	1,762	3.33	189				
Reedy's	0	0.00	0	1,170	3.31	124	1,170	3.31	124				
Yaloginda	0	0.00	0	624	3.20	64	624	3.20	64				
Stockpiles	Stockpiles 719 1.19 28 0 0.00 0 719 1.19 28												
Total													

Table 6-18 Meekatharra Gold Operation Mineral Resources on May 8, 2020 – Albury Heath Acquisition.

		M	1ineral P	Meek Resource S	Stateme			eporting					
	N	leasure	d	le.	8/05/ ndicated		Monaur	ed and In	diagtad		nferred		
Project kt g/t koz kt g/t koz kt g/t koz kt g/t koz													
•		_			_						_		
Meekatharra North	0	0 0.00 0 481 2.01 31 481 2.01 31 172 1.72 10											
Nannine	0	0.00	0	925	2.14	64	925	2.14	64	321	2.26	23	
Paddy's Flat	1,820	3.60	211	12,579	1.59	643	14,399	1.84	854	10,183	1.47	481	
Reedy's	113	1.71	6	3,485	2.66	298	3,598	2.63	304	8,850	2.41	686	
Yaloginda	15	2.26	1	8,324	1.77	474	8,339	1.77	475	7,493	1.49	359	
Stockpiles	Stockpiles 719 1.15 27 0 0.00 0 719 1.15 27 0 0.00 0												
Total	Total 2,666 2.85 244 25,795 1.82 1,510 28,462 1.92 1,754 27,020 1.79 1,559												

Table 6-19 Meekatharra Gold Operation Mineral Reserves on May 8, 2020 – Albury Heath Acquisition.

		Mineral I		tharra Gold tement - Ro 8/05/2020		Reporting								
Proven Probable Proven and Probable														
Project	kt													
Meekatharra North	0	0 0.00 0 346 1.87 21 346 1.87 21												
Nannine	1	3.94	0	388	2.30	29	389	2.30	29					
Paddy's Flat	871	3.11	87	892	3.54	101	1,762	3.33	189					
Reedy's	0	0.00	0	1,170	3.31	124	1,170	3.31	124					
Yaloginda	0	0.00	0	624	3.20	64	624	3.20	64					
Stockpiles 719 1.19 28 0 0.00 0 719 1.19 28														
Total	Total 1,590 2.24 115 3,420 3.09 340 5,010 2.82 454													

Table 6-20 Meekatharra Gold Operation Mineral Resources on June 30, 2020.

		M	lineral F		Stateme		oject nded for R	eporting				
	N	leasure	d	le le	30/06 ndicated		Measur	ed and In	dicated	,	nferred	
Project kt g/t koz kt g/t koz kt g/t koz kt g/t koz												
Meekatharra North	0	0.00	0	419	1.78	24	419	1.78	24	154	1.74	9
Nannine	48	3.09	5	906	2.32	68	953	2.36	72	299	2.75	26
Paddy's Flat	1,737	3.79	212	12,749	1.63	668	14,486	1.89	880	10,015	1.43	460
Reedy's	275	4.07	36	3,052	2.54	249	3,327	2.67	285	8,775	2.40	677
Yaloginda	15	2.26	1	8,363	1.79	481	8,378	1.79	482	6,993	1.45	326
Stockpiles 1,029 1.23 41 0 0.00 0 1,029 1.23 41 0 0.00 0												
Total	otal 3,104 2.95 294 25,488 1.82 1,490 28,592 1.94 1,784 26,236 1.78 1,499											

Table 6-21 Meekatharra Gold Operation Mineral Reserves on June 30, 2020.

		Mineral I	Reserve Sta	tharra Gold tement - Ro 30/06/2020	ounded for F	Reporting								
		Proven			Probable		Prov	en and Prob	able					
Project	kt	kt g/t koz kt g/t koz kt g/t koz												
Meekatharra North	0	0 0.00 0 263 1.66 14 263 1.66 14												
Nannine	0	0.00	0	550	1.99	35	550	1.99	35					
Paddy's Flat	426	3.60	49	1,199	3.30	127	1,625	3.38	177					
Reedy's	49	6.92	11	740	3.73	89	789	3.93	100					
Yaloginda	0 0.00 0 718 2.98 69 718 2.98 69													
Stockpiles 1,029 1.23 41 0 0.00 0 1,029 1.23 41														
Total	Total 1,504 2.09 101 3,471 2.99 334 4,975 2.72 435													

Table 6-22 Meekatharra Gold Operation Mineral Resources on June 30, 2021.

		M	1ineral F		Stateme		oject nded for R	eporting					
	N.	laggura	al	I.	30/06		Magaur	ad and In	diantad		nferred		
Project	kt g/t koz kt g/t koz kt g/t koz kt g/t koz												
Meekatharra North	0	0 0.00 0 246 1.57 12 246 1.57 12 76 2.09 5											
Nannine	68	2.55	6	1,298	2.16	90	1,366	2.18	96	488	2.21	35	
Paddy's Flat	991	4.32	138	10,911	1.72	603	11,903	1.94	741	2,505	2.22	179	
Reedy's	425	3.95	54	2,993	2.53	243	3,418	2.71	297	8,957	2.44	703	
Yaloginda	145	3.42	16	8,439	1.82	494	8,584	1.85	510	7,053	1.46	331	
Stockpiles	Stockpiles 814 1.19 31 0 0.00 0 814 1.19 31 0 0.00 0												
Total	otal 2,444 3.11 244 23,887 1.88 1,443 26,331 1.99 1,688 19,079 2.04 1,252												

Table 6-23 Meekatharra Gold Operation Mineral Reserves on June 30, 2021.

			Meeka	tharra Gold	Project									
		Mineral I	Reserve Sta	tement - Ro	unded for F	Reporting								
	30/06/2021													
Proven Probable Proven and Probable														
Project	kt	kt g/t koz kt g/t koz kt g/t koz												
Meekatharra North	0	0 0.00 0 169 1.12 6 169 1.12 6												
Nannine	0	0.00	0	1,074	1.49	51	1,074	1.49	51					
Paddy's Flat	222	4.71	34	868	3.37	94	1,090	3.64	128					
Reedy's	77	4.25	10	845	3.07	83	922	3.17	94					
Yaloginda	65	3.33	7	1,000	3.14	101	1,065	3.15	108					
Stockpiles	Stockpiles 814 1.19 31 0 0.00 0 814 1.19 31													
Total 1,178 2.17 82 3,956 2.64 336 5,134 2.53 418														

Table 6-24 Meekatharra Gold Operation Mineral Resources on June 30, 2022.

Meekatharra Gold Project Mineral Resource Statement - Rounded for Reporting 30/06/2022													
	М	leasure	d	Ir	Indicated Measure			easured and Indicated			Inferred		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Meekatharra North	0	0.00	0	97	1.98	6	97	1.98	6	75	2.11	5	
Nannine	68	2.55	6	1,293	2.17	90	1,361	2.19	96	534	2.15	37	
Paddy's Flat	906	4.29	125	10,618	1.74	594	11,523	1.94	719	2,490	1.90	152	
Reedy's	481	3.82	59	3,062	2.56	252	3,543	2.73	311	8,883	2.44	697	
Yaloginda	552	3.33	59	8,010	1.83	471	8,562	1.93	530	7,110	1.46	334	
Stockpiles	648	1.25	26	0	0.00	0	648	1.25	26	0	0.00	0	
Total	2,655	3.22	275	23,080	1.91	1,414	25,735	2.04	1,688	19,091	2.00	1,225	

Table 6-25 Meekatharra Gold Operation Mineral Reserves on June 30, 2022.

Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2022											
		Proven			Probable		Proven and Probable				
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Meekatharra North	0	0.00	0	0	0.00	0	0	0.00	0		
Nannine	0	0.00	0	718	1.82	42	718	1.82	42		
Paddy's Flat	230	4.84	36	659	4.21	89	889	4.37	125		
Reedy's	55	4.40	8	888	3.27	93	943	3.34	101		
Yaloginda	155	3.97	20	845	3.65	99	1,000	3.70	119		
Stockpiles	648	1.25	26	0	0.00	0	648	1.25	26		
Total	1,089	2.56	89	3,110	3.24	324	4,199	3.06	413		

Table 6-26 Meekatharra Gold Operation Mineral Resources on June 30, 2023.

	Meekatharra Gold Project												
Mineral Resource Statement - Rounded for Reporting													
30/06/2023													
	М	leasure	d	Indicated			Measur	Measured and Indicated			Inferred		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Meekatharra North	0	0.00	0	97	1.98	6	97	1.98	6	75	2.11	5	
Nannine	68	2.55	6	859	2.06	57	927	2.10	63	340	2.26	25	
Paddy's Flat	1,033	4.03	134	10,593	1.70	579	11,626	1.91	713	2,415	1.86	144	
Reedy's	458	3.74	55	3,055	2.55	250	3,513	2.71	306	8,883	2.44	697	
Yaloginda	745	4.30	103	7,737	1.93	480	8,482	2.14	583	6,981	1.48	332	
Stockpiles	656	1.50	32	0	0.00	0	656	1.50	32	0	0.00	0	
Total	2,960	3.46	329	22,342	1.91	1,373	25,302	2.09	1,702	18,695	2.00	1,203	

Table 6-27 Meekatharra Gold Operation Mineral Reserves on June 30, 2023.

Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2023											
		Proven			Probable		Prov	Proven and Probable			
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Meekatharra North	0	0.00	0	0	0.00	0	0	0.00	0		
Nannine	0	0.00	0	262	1.93	16	262	1.93	16		
Paddy's Flat	117	3.54	13	420	3.47	47	538	3.49	60		
Reedy's	57	3.35	6	398	3.42	44	455	3.41	50		
Yaloginda	192	5.10	31	566	4.81	87	757	4.88	119		
Stockpiles	656	1.50	32	0	0.00	0	656	1.50	32		
Total	1,022	2.51	83	1,646	3.67	194	2,668	3.23	277		

The latest (June 2024) MGO Mineral Resource Estimates and Mineral Reserve Estimate are presented in **Table 6-28** and **Table 6-29** respectively.

Table 6-28 Meekatharra Gold Operation Mineral Resources on June 30, 2024.

Meekatharra Gold Project Mineral Resource Statement - Rounded for Reporting 30/06/2024												
	M	easure	t	In	Indicated Measured and Ind			dicated Inferred				
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
Bluebird Group UG	304	4.09	40	4,368	3.03	425	4,672	3.10	465	6,032	2.55	495
Meekatharra North	0	0.00	0	97	1.98	6	97	1.98	6	75	2.11	5
Nannine	68	2.55	6	859	2.06	57	927	2.09	62	340	2.26	25
Paddy's Flat	376	3.67	44	10,641	1.65	564	11,017	1.72	608	2,574	1.93	160
Reedy's	430	3.77	52	3,225	2.58	267	3,656	2.72	319	9,191	2.54	750
Yaloginda District	53	2.59	4	4,128	1.47	195	4,181	1.49	200	5,879	1.40	265
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15	0	0.00	0
Total	1,583	3.18	162	23,318	2.02	1,515	24,901	2.09	1,676	24,090	2.19	1,699

Table 6-29 Meekatharra Gold Operation Mineral Reserves on June 30, 2024.

Meekatharra Gold Project Mineral Reserve Statement - Rounded for Reporting 30/06/2024											
	Proven Probable Proven a								and Probable		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Bluebird Group UG	75	3.91	9	2,967	2.81	268	3,041	2.83	277		
Meekatharra North	0	0.00	0	0	0.00	0	0	0.00	0		
Nannine	0	0.00	0	262	1.93	16	262	1.93	16		
Paddy's Flat	48	4.10	6	435	3.86	54	483	3.88	60		
Reedy's	57	3.35	6	398	3.42	44	455	3.41	50		
Yaloginda District	0	0.00	0	0	0.00	0	0	0.00	0		
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15		
Total	530	2.17	37	4,061	2.92	381	4,591	2.83	418		

7 GEOLOGICAL SETTING AND MINERALISATION

7.1 REGIONAL GEOLOGY

The following geological descriptions are summarised from the Westgold Annual Mineral Resource Commentary (Westgold, 2023). The Meekatharra Gold Operations is in the Achaean Murchison Province, the granite-greenstone Youanmi Terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts. The greenstone belts comprise tholeiitic and high-Mg basalts, komatiites and other ultramafic volcanics, mafic and ultramafic intrusives (dolerites, gabbros, dunites), felsic and intermediate volcanics and metasediments including banded iron formations.

A definitive stratigraphic succession cannot be established for the greenstone belts as outcrop mapping and geochronological studies have shown inconsistencies in previous stratigraphic schemes. Watkins and Hickman (1990) included these lithologies within a lithostratigraphic scheme made of two groups, the Luke Creek Group and the overlying Mount Farmer Group, which together formed the Murchinson Supergroup. More recently Pidgeon and Hallberg (2000) argued that it was difficult to correlate units across the Murchinson Domain because of structural complexity and separation by granitic intrusions. They instead divided the greenstone sequence into five informal assemblages.

As detailed in Spaggiari (2006). The Luke Creek Group consisted of four formations comprising two volcanic sequences: one dominated by tholeiitic and komatiitic basalt, banded iron-formation (BIF) and interlayered mafic rocks, and the second by an ultramafic intrusive–volcanic complex, interlayered tholeiitic and komatiitic basalt, mafic and felsic volcanic rocks and associated sedimentary rocks, and jaspilitic BIF. The Mount Farmer Group was interpreted as a series of formations with limited lateral extent that differ in character between greenstone belts. It consisted of metamorphosed tholeiitic and komatiitic basalt, ultramafic rocks, gabbroic and doleritic sills, felsic volcanic rocks, and associated sedimentary rocks, BIF, and minor pelitic and psammitic schists, metashale, metasandstone and metaconglomerate.

Pidgeon and Hallberg (2000) divided the greenstone sequences of the northern Murchison Domain into five informal assemblages consisting of ultramafic, mafic, and felsic volcanic rocks including komatiite, komatiitic basalt, andesite, BIF, black shale, chert, and volcanic sandstone (Assemblages 1–3); felsic volcanic rocks of mostly rhyolitic to dacitic composition and associated sedimentary rocks (Assemblage 4); and graphitic clastic rocks and various sedimentary rocks spatially related to major faults (Assemblage 5). They argued that it was difficult to correlate units across greenstone belts because of structural complexity and separation by granitic intrusions. Their assemblages are defined in terms of rock associations and are not necessarily time equivalents.

The available geochronological data indicate that most felsic volcanic rocks formed between c. 2,750 Ma and 2,700 Ma, but some older volcanic rocks are present at least locally. Whether these ages also represent typical ages of the mafic components of the greenstone belts is unknown because mafic rocks are difficult to date directly, and field relationships with the felsic rocks are uncertain.

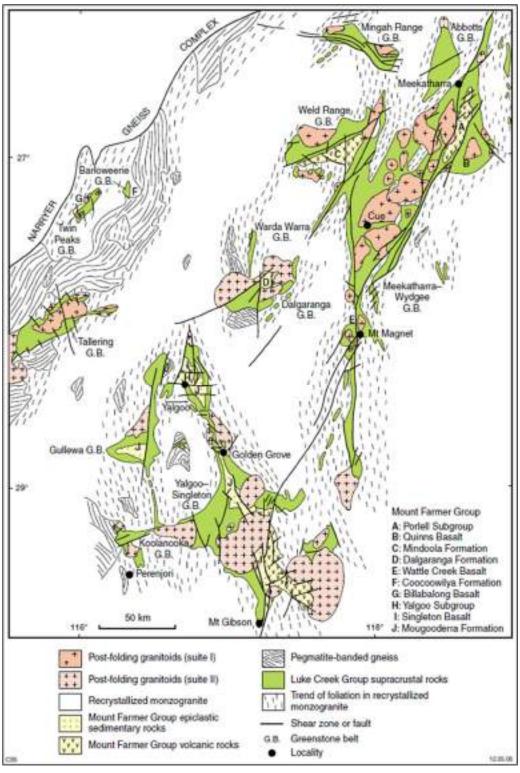


Figure 7-1 Simplified geology of the Murchison Domain of Watkins and Hickman (1990) showing greenstone belts, major structures, and stratigraphy - Source: Westgold.

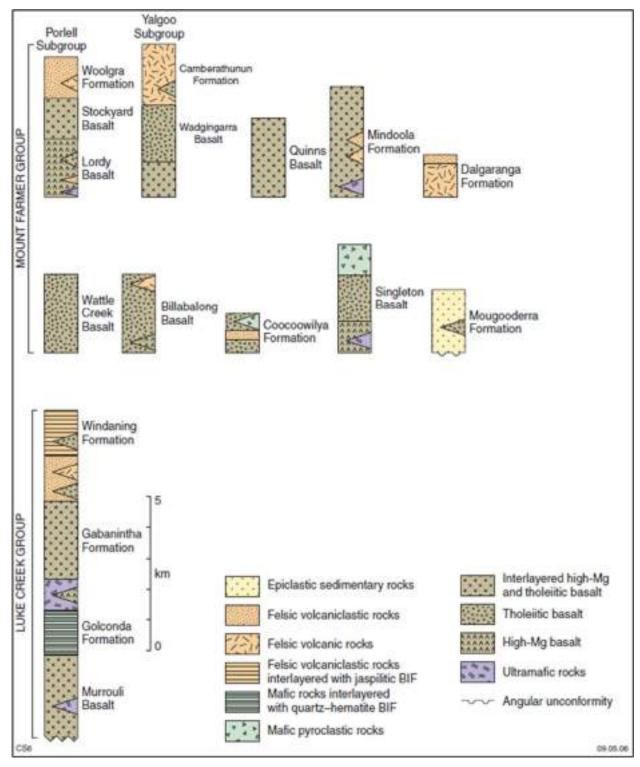


Figure 7-2 Murchison Supergroup stratigraphy of Watkins and Hickman (1990) showing groups, subgroups, formations, and rock types. Stratigraphic thicknesses are approximate and variable along strike - Source:

Westgold.

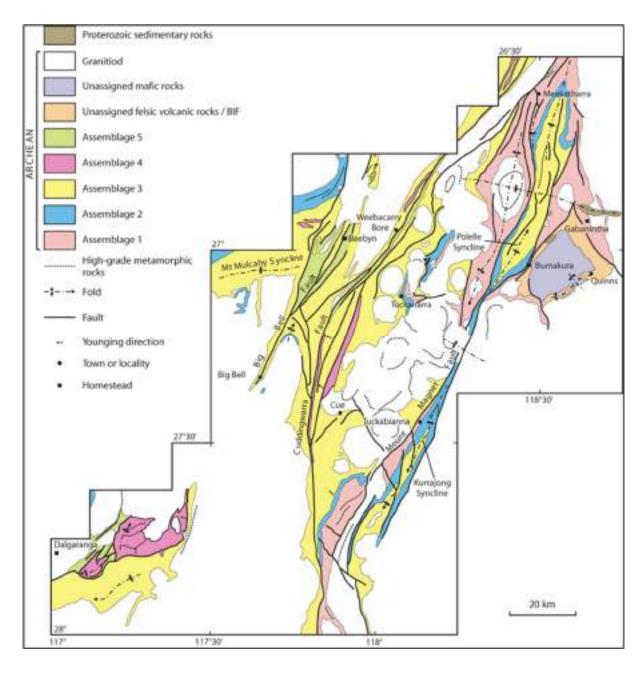


Figure 7-3 Simplified geology of the Murchison Domain of Hallberg (2000) showing belts, major structures, and lithological assemblages - Source: Westgold.

7.2 MINERALISATION (BY GEOLOGICAL DOMAIN)

Meekatharra Gold Operations can be subdivided into five major geological domains:

- Meekatharra North;
- Paddy's Flat;
- Yaloginda;
- Nannine;
- Reedy's.

7.2.1 Meekatharra North

The Meekatharra North area is located to the north of the Haveluck open pit, extending to the northern limit of the Westgold tenement package, approximately 15 km to the northeast. The area includes the eastern contact of the Chunderloo shear zone, running along the western side of the tenement group. To the east is a sequence of chlorite schists, interflow sediments, chlorite-talc schists, with small granitic intrusions and felsic porphyry dykes. Within and at the contact of the Chunderloo shear zone, rocks have undergone amphibolite facies metamorphism, but elsewhere are mid-to upper-greenschist facies.

Three existing deposits are known at Meekatharra North and have seen open pit mining by Westgold; Five Mile Well, Maid Marion and Sabbath. Five Mile Well is a quartz veined fault / shear zone that trends 20 degrees east of the regional foliation trend. Maid Marion is related to near-surface enrichment and silicification of a possible sulphide facies BIF, with intersections at depth within banded silica-chlorite-pyrite rock of unknown origin.

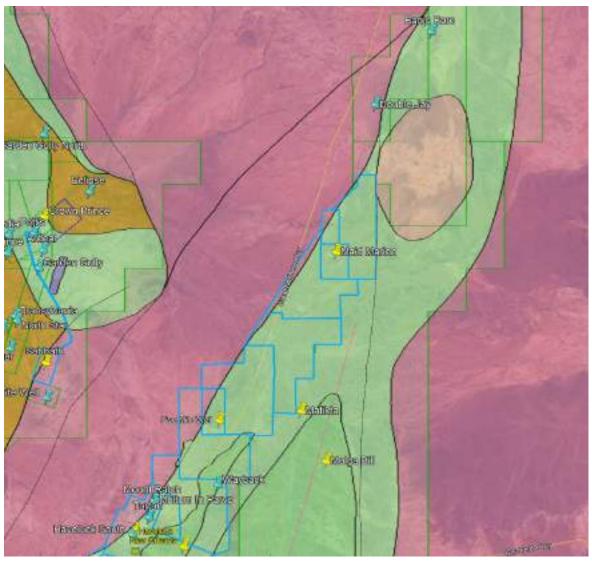


Figure 7-4 Deposits of the Meekatharra North project area - Source: Westgold.

7.2.2 Paddy's Flat

The geology of the Paddy's Flat area is a simple sediment - mafic, ultramafic and intermediate volcanic succession. The mafic volcanic - sedimentary succession is present in the western parts of Paddy's Flat and consists of tholeiitic basalt flows with thin bands of interflow sediment. A thick (>50 m) package of volcaniclastic sediment and banded iron-formation (BIF) is present near the top of the sequence. Tholeiitic basalt is variably deformed and contains abundant vesicles that are now filled with chlorite and chalcedony. Rare channel-like structures, possibly related to de-gassing of the lava and the presence of rare pillow structures suggest a submarine environment. Drill core shows that the basal contacts with sediments are often diffuse and suggest minor melting of the underlying sediment. In contrast, the upper contacts of flows are well defined and show sediment infilling of surface features. The volcaniclastic sediments are intermediate in composition and grain size ranges from fine ash to lapilli and graded bedding is evident in fresh exposures. The fine nature of the bedding laminations and the small-scale graded bedding suggest deposition in a water column. The BIF varies from an iron carbonate +/- magnetite BIF, to a chert magnetite BIF. Individual BIF units range from less than 2 m to 40 m in width and are generally strongly magnetic.

The ultramafic volcanic succession and schistose equivalents represent the dominant lithotype of the eastern part of Paddy's Flat. Undeformed ultramafics are mostly grey to dark blue massive aphyric high-Mg basalt. Rare relicts of pillows and spinifex texture can be seen in low strained domains. The ultramafic rocks display a wide range of strain from undeformed to highly schistose and the schists typically exhibit talc-chlorite +/- carbonate assemblages. In areas of moderate strain, this lithotype develops a brecciated texture with fragments of darker, less altered high-Mg basalt surrounded by quartz-chlorite- talc veins.

Within the eastern parts of the ultramafic sequence, cumulate textured peridotite is evident within some drill holes. The peridotite now consists of a talc-carbonate-serpentine-rutile rock with primary textures well preserved. It is believed that these peridotite pods reflect the basal parts of thick ultramafic lava flows.

The intermediate volcanic succession is located along the eastern margin of the Paddy's Flat area and consists of andesite and intermediate volcaniclastic. The intermediate volcanic succession is best exposed in the Macquarie pit in the northeast of the Paddy's flat area where andesite and volcaniclastic rocks are present along the east wall of the pit. Andesitic volcanic rocks are also evident in outcrop immediately to the east of Paddy's Flat and have been encountered in the upper parts of drill holes located along the eastern margin of Paddy's Flat.

Felsic porphyries (porphyritic microgranite) are present along the length of the Paddy's Flat area and are most prevalent within and along the western contact of the sheared ultramafic succession. The porphyries commonly contain quartz and plagioclase phenocrysts (altered to albite), with rare muscovite phenocrysts also present. The intrusives form dyke-like bodies that vary from 2 to 20 m in thickness,

and pinch and swell along strike. In some areas, the porphyries pinch out for several to tens of metres. The 3D geometry of the porphyry bodies is complicated by the pinch and swell, but the host structure is somewhat consistent in orientation and geometry. In the northern part of Paddy's Flat, the quartz - plagioclase porphyry appears to be unmineralised. Within the Halcyon open pit, a plagioclase-rich porphyry hosts mineralisation.

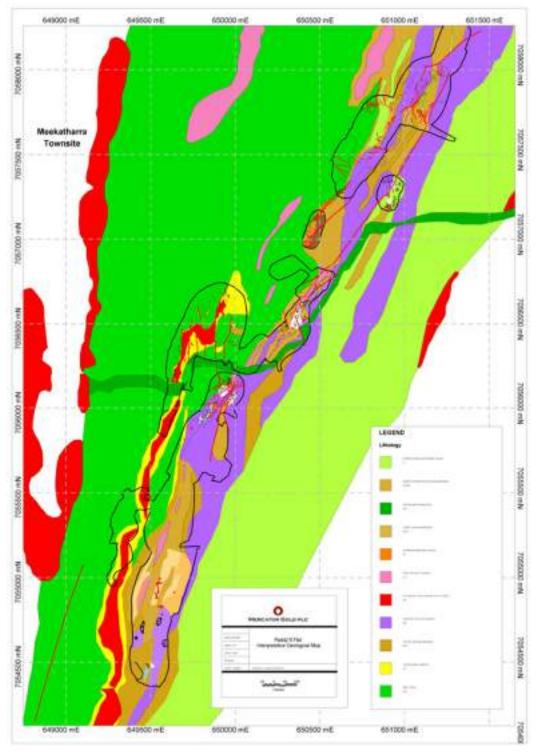


Figure 7-5 Paddy's Flat Geological map deduced from field mapping and aeromagnetic image interpretation (Thébaud, 2007) - Source: Westgold.

The structure of the Paddy's Flat mining area is primarily controlled by a significant structural corridor referred to as the Paddy's Flat Shear Zone. At the local-scale, the Paddy's Flat Shear Zone is resolved into several sub-parallel ductile shear zones with associated brittle-ductile faulting. The central part of the shear system has developed on, or close to the boundary between the mafic volcanic succession and the ultramafic succession and has been intruded by a line of semi-continuous felsic porphyry dykes. At least two subsidiary shear zones are developed immediately to the east of the central shear zone.

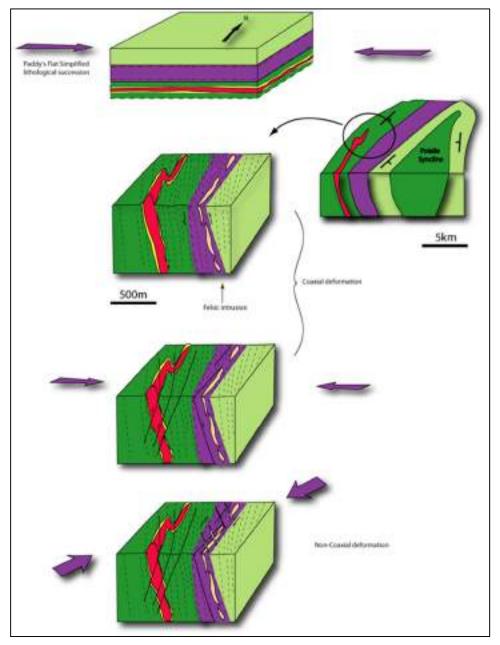


Figure 7-6 Schematic evolution of the Paddy's Flat shear zone (Thébaud, 2007) - Source: Westgold.

Folding of the sequence has occurred prior to, or early in the development of, the Paddy's Flat Shear Zone, and numerous brittle faults are developed late in the formation of the shear zone. Folding of the stratigraphy at Paddy's Flat is best preserved within the sediments of the mafic volcanic succession. The folds show an open tight rounded geometry within the banded iron-formation and vary from rounded to chevron within the volcaniclastic sediments. Fold axes plunge moderately toward the south-southeast, with variability in plunge related to non-cylindrical fold development. An axial planar foliation is well developed throughout the mafic and ultramafic rocks at Paddy's Flat, with lesser development of the foliation in the sediments. The orientation and style of folding observed locally at Paddy's Flat is consistent with the regional Polelle Syncline located to the northeast.

The largest fold structures in the Paddy's Flat area are evident at the Grant's pit and at the Prohibition pit. At Grant's, a sequence of BIF is evident in the form of a large-scale fold closure that has undergone extensive ductile deformation. At Prohibition, a large parasitic fold closure is evident in the southwest corner of the pit. Other large-scale fold closures are also evident in the aeromagnetic images of the area. Within the ultramafic sequence there is little evidence of folding, however a strong axial planar foliation is developed.

The central Paddy's Flat shear zone is host to most of the high-grade gold mineralisation at Paddy's Flat and is likely the controlling structure for mineralisation at a regional scale. The shear zone displays a complex array of ductile and brittle-ductile structures that both focus and offset mineralisation indicating a long-lived movement history. The porphyry emplaced along the shear zone, and extensive alteration related to fluid migration along the shear, have been instrumental in developing a rheological contrast across the shear zone that has resulted in a change from ductile deformation to brittle deformation. The margins of the porphyry have also channelled early gold bearing fluids that have formed lodes along one or both contacts of the porphyry.

The mineralisation at Paddy's Flat can be classified into three groups which, in part, relate to the host lithology and style of veining. The three styles of mineralisation are summarised as:

- (1) Sulphide replacement BIF hosted gold.
- (2) Quartz vein-hosted shear-related gold.
- (3) Quartz-carbonate-sulphide stockwork vein and alteration related gold.

The three styles of mineralisation represent a general progression from west to east across the Paddy's Flat area.

Sulphide Replacement BIF-hosted Gold

The Prohibition mineralisation is the best developed example of the BIF-hosted gold deposits in the Meekatharra area. Mineralisation is present at the intersection of westerly-dipping reverse faults of the Prohibition Fault set and the BIF unit. Apart from the Prohibition and Red Spider faults, a further nine parallel faults are also known to be mineralised. The mineralisation plunges to the south-southeast along the line of intersection and is up to 20 m wide adjacent to the Prohibition Fault. The mineralisation is characterised by sulphidation of the wall rocks and quartz-carbonate-sulphide±chlorite breccias veins. Pyrite and arsenopyrite are the common sulphide species and are directly associated with fine grained gold as inclusions and at the boundary of the sulphides. Small-scale samples suggest that arsenopyrite forms within the veins or at the margins of the veins, whilst the pyrite is present within the veins and replaces iron-rich minerals along the bedding adjacent to veins. The best mineralisation appears to occur in areas where the dominant iron-rich mineral is siderite, and mineralisation decreases in grade and intensity in areas where magnetite becomes dominant.

Quartz vein-hosted shear related gold

The quartz vein-hosted shear related style of mineralisation at Paddy's Flat accounts for more than 1 Moz of historic production from the area. The Fenian and Ingliston Consol's Extended underground mines were developed to a depth of more than 400 m by the early 1920's due to the high-grade ore available from this style of mineralisation. The deposits of this type contain a mixture of high-grade fault related narrow-vein mineralisation (Spur Veins) at an angle to the shear zone, porphyry and alteration system, as well as shear-related mineralisation and vein systems parallel to the margins of the porphyry. Within the main shear zone, alteration of the mafic and ultramafic rocks is evident along one or both margins of the porphyry, and in areas where the porphyry is absent. The alteration assemblage ranges from talc-carbonate-chlorite in the distal parts of the system to carbonate-chlorite in the intermediate parts of the alteration package. The proximal alteration assemblage is typically quartz-carbonate-fuchsite±sulphide.

Quartz-Carbonate-Sulphide stockwork vein and alteration related mineralisation

The Quartz-Carbonate-Sulphide stockwork vein and alteration related mineralisation is the dominant style of mineralisation evident within the ultramafic sequence to the east of the central Paddy's Flat shear zone. Mineralisation of this type extends from Phar Lap pit in the south, to Macquarie pit in the north of Paddy's Flat, and possibly as far as the New Orleans pit to the north of Paddy's Flat and the Globe pit to the south of Paddy's Flat. Although the location of the mineralisation relative to the Paddy's Flat shear zone is consistent, there is significant variation in the alteration assemblages observed, the grade of gold and the metallurgical recovery from the deposits that make up this style of mineralisation. This style of mineralisation is characterised by 5 – 50 m wide alteration zones within ultramafic rocks and moderate to high sulphide content.

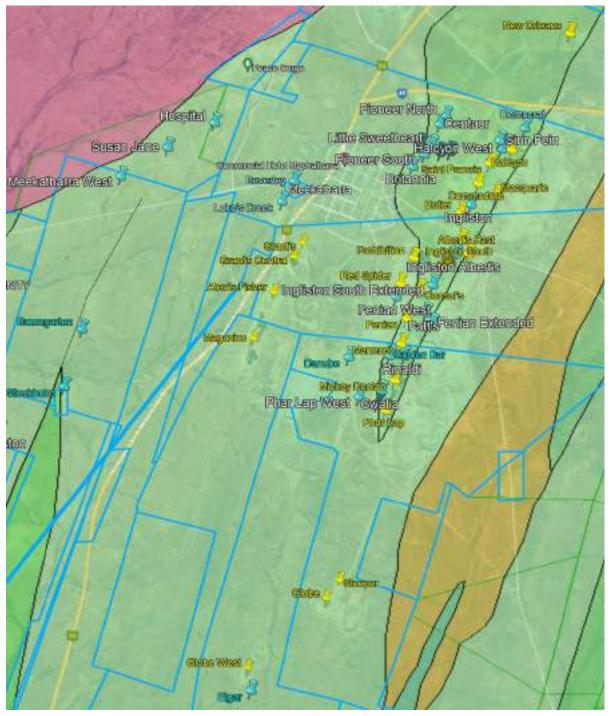


Figure 7-7 Deposits of the Paddy's Flat project area - Source: Westgold.

7.2.3 Yaloginda

The Yaloginda area is a gold-bearing Archaean greenstone belt situated 15 km south of Meekatharra and encompasses the Bluebird Mill adjacent to the Great Northern Highway. The deposits in the area are hosted in a strained and metamorphosed volcanic sequence that consists primarily of ultramafic and high-magnesium basalt with minor komatiite, peridotite, gabbro, tholeiitic basalt and interflow sediments. The sequence was intruded by a variety of felsic porphyry and intermediate sills and dykes.

Deformation in the area is complex and heterogeneously distributed, rocks are strongly foliated to completely undeformed. Early regional-scale recumbent, isoclinal folding was followed by variably developed, upright north-northeast to north-northwest trending folding that dominates the structural trends in the area. Some of the felsic porphyry intruded into the hinge zones during the development of these folds. Differential and progressive deformation during this episode led to the development of similar trending, steeply-dipping, mainly reverse dextral fault and shear systems that nucleated on fold limbs and hinge zones. Rheological differences resulted in the focussing of strain at contacts between different lithotypes.

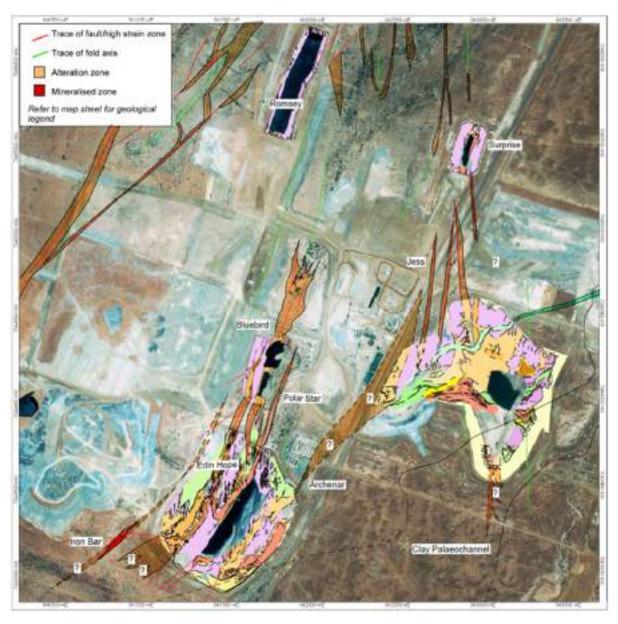


Figure 7-8 geology mapping superimposed on IKONOS satellite image of the southern Yaloginda area (Timms, 2011).

Gold mineralisation is not limited to a particular rock type at Yaloginda. Instead, the location of mineralisation is structurally and rheologically controlled. Mineralisation styles fit into two main categories, shear zone and vein related style. In shear zone style mineralisation, pervasive zones of metasomatism and associated low-grade mineralisation have resulted from gold-bearing fluid that has exploited the vertically connective fault and shear systems and high-strain domains that developed late during north-northeast to north-northwest trending folding. Alteration assemblages proximal to gold typically include quartz, iron carbonate, pyrite, +/- fuchsite, +/- chlorite +/- sericite, with distal halos of weak iron-carbonate +/- mica alteration.

Vein related gold is associated with zones of intense, variably orientated quartz +/-carbonate +/- chlorite veining, commonly with sulphides within veins or their selvedges. Veins tend to overprint rocks with coarse textures at structurally complex sites, such as at the contact of rheologically contrasting units, or the intersection of stronger rocks and fault or shear zone structures. Favourable vein orientations for gold mineralisation include moderate to shallow dipping east-west striking veins, horizontal veins, and arrays of sigmoidal (tension gash) veins. Tension gash kinematics are generally top-to-the west, consistent with the reverse dextral kinematics on the fault-shear zone systems. Gold is locally enriched in the vicinity of brittle to semi-brittle cross structures that include late steep northeast-southwest to east-west trending faults that displace mineralisation.

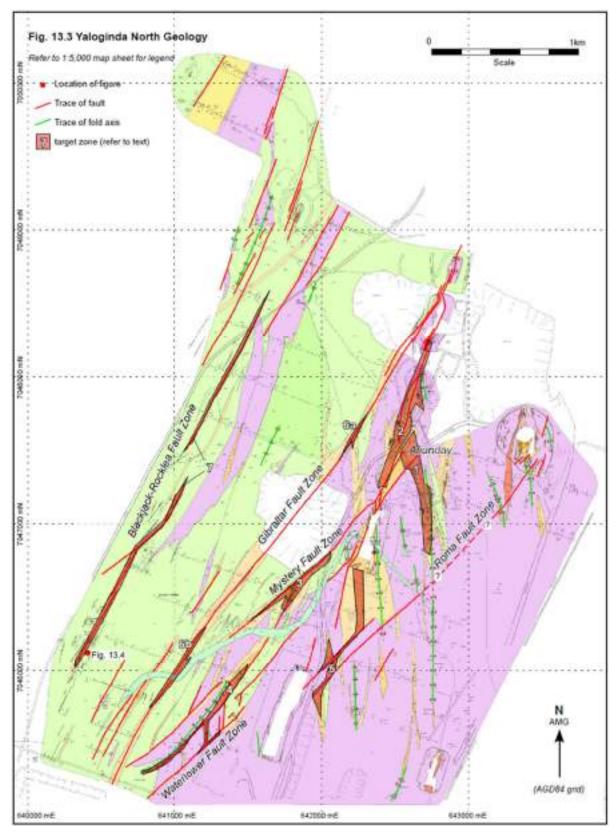


Figure 7-9 Northern Yaloginda area factual and interpreted geology map (Timms, 2011).

Figure 7-10 Deposits of the Yaloginda project area - Source: Westgold.

7.2.4 Nannine

In the Nannine area, the Meekatharra-Mount Magnet Archaean greenstone belt is dominated by a sequence of intercalated tholeiitic mafic volcanic rocks and silicified, ferruginous sedimentary rocks locally referred to as BIF. It is stratigraphically overlain by massive ultramafic intrusive and extrusive rocks, high-Mg tholeiitic basalt, and minor felsic volcanic rocks, which have been intruded by post-kinematic granodiorite-tonalite plutons to the west and east.

The Meekatharra-Mount Magnet greenstone belt wraps around the western margin of the syn-kinematic Norie pluton. There are significant changes in the orientation of the greenstone belt in the Nannine area. Volcanic-sedimentary rocks are transected by two major, sinuous north-northeast trending faults; the Gabanintha-Bluebird-Reedy and Reedy-Kurara shears.

In the Nannine area, there are two major changes in the orientation of the greenstone belt. North of Aladdin, the volcanic-sedimentary package trends north. Between Aladdin and Caledonian, the rocks trend north-northwest. South of Caledonian there is a return to north-trending stratigraphy. This kink matches the convex western margin of the Norie Pluton and appears to reflect broadly east-west compression and competency contrast between the granite and adjacent volcanic-sedimentary rocks.

At Bailey's Island, there is a sharp bend in orientation from north to west-northwest. A wedge-shaped segment of the greenstone belt extends three kilometres into the adjacent Western Nannine granitoid, south of the Bailey's Island open pits. Here two moderately magnetic units of mafic and ultramafic volcanic rocks appear to abut the granite pluton. This structural discontinuity is interpreted to reflect dextral displacement along a major east trending crustal scale structure, prior to emplacement of the post-kinematic granite.

There are two dominant structures. Layer-parallel shears occur at different stratigraphic positions within the volcanic-sedimentary succession. Many of these appear to ramp up through stratigraphy, locally truncating individual units. East of Caledonian, these layer-parallel structures converge into a single shear separating the Golconda and Gabanintha formations, forming a v-shaped structural trend. North-northeast to northeast trending sinuous shears are associated with dextral offset of volcano-sedimentary units. Some of these can be traced into the adjacent granitoids. They appear to have been active during and after the layer-parallel shears.

Aladdin and Caledonian lie on a major north-northeast trending dextral fault, the Caledonian-Aladdin shear zone, previously referred to as Caledonian shear. This structure cuts across the volcanic-sedimentary rocks and extends north into the Norie Pluton and south into the Western Nannine granitoid. In the Caledonian pit, this structure separates a unit of intercalated mafic volcanic and sedimentary rocks from the Western Nannine granitoid. However, north of the pit, the tonalite-mafic volcanic contact swings around to the west. In the Aladdin pit, the Caledonian-Aladdin shear cuts across the top of the intercalated volcanic-sedimentary unit obliquely, at a high angle to the bedding trend. Within the Aladdin pit, there is a change in orientation of the Caledonian-Aladdin shear from northeast to east-northeast.

The eastern margin of the Western Nannine granitoid extends up to 1.5 km east of the Caledonian-Aladdin shear zone, at depth beneath the unit of intercalated mafic volcanic and sedimentary rocks. This has important implications for fluid flow along structures in the overlying volcanic-sedimentary unit.

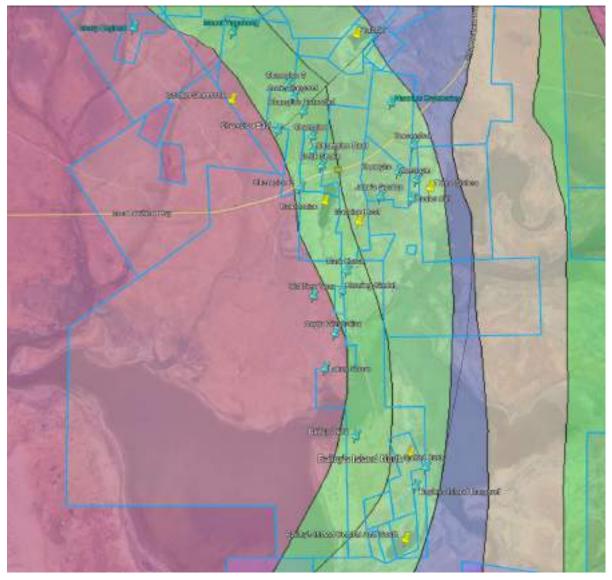


Figure 7-11 Deposits of the Nannine project area - Source: Westgold.

7.2.5 Reedy's

The Reedy gold deposits occur within a north-south trending part of the Meekatharra - Wydgee Greenstone belt composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled gold mineralisation occurs at the sheared contacts of dolerite, basalt, ultramafic schist, quartz-feldspar porphyry, and shale.

The Reedy gold deposits occur within two lineaments or structural corridors. The western lineament corresponds to the Reedy Shear Zone along which gold mineralisation extends over 15 kilometres. The second lineament to the east sits on a structural corridor called the Turn of the Tide Shear Zone. It corresponds to the northern extension of the Mount Magnet Shear Zone. Both shear zones are located on either side of the Culculli Granitoid complex.

The Reedy Shear Zone

Two main mining centres are located along the Reedy Shear Zone (RSZ). A northern centre including the Phoenix-Kurara and the Boomerang deposits, and a southern centre hosting mineralisation at Jack Ryan, Missing Link, Rand, and South Emu - Triton.

The RSZ is flanked by a steeply dipping, folded, west facing Archaean sequence of tuffaceous pelitic sediments, mafic and ultramafic volcanics and dolerites from east to west. Black shale horizons occur in the vicinity of the sediment and mafic contact, and a series of banded iron units occur at higher levels in the mafic sequence. Syndeformation to late quartz-feldspar porphyritic microgranites intruded the greenstone sequence within the broad vicinity of the RSZ. The RSZ is generally developed layer parallel to the greenstone sequence. It is marked by strong flattening, mylonite development and occasional breccia zone. A combination of separate dip-slip and strike-slip displacement has been documented.

Gold is controlled in the first instance by the RSZ and deposited within this structure which is parallel to the axial plane cleavage of regional folds such as the Polelle syncline to the east of Meekatharra. Locally, gold is systematically concentrated in small volumes or shoots. Two main shoot orientations have been documented in the RSZ. One is shallowly plunging, probably overall horizontal, whilst the other corresponds to a steep to vertical southern plunge.

Deformation and mineralisation occur within a zoned alteration envelope characterised by biotite, carbonate, albite, and silica replacement and sulphidation of wall rocks. The common occurrence of black shale against the lode may account for a chemical control on the gold mineralisation. Quartz stockwork veining occurs in some areas.

The Turn of the Tide Shear Zone

The Turn of the Tide Shear Zone is located 6 km east of the Reedy Shear Zone and is host to the mineralisation at Turn of the Tide, Culculli Group and Thompson's Bore. The shear zone is trending toward the north-northeast and constitutes a portion of the strongly mineralised Mount Magnet shear zone. Mineralisation at Turn of the Tide and Culculli dips steeply toward the east and is hosted in highly foliated to mylonitic intermediate meta-volcanic rocks bound to the west by meta-basalt, and to the east by a volcano-sedimentary sequence including banded iron-formation, volcanic derived sediment, and meta-basalt. Quartz +/- tourmaline veins are common and are locally associated with disseminated pyrite in the wall rock. In the fresh rock the mineralised zone appears to be associated with strong sericite-carbonate alteration. The Thompson's Bore mineralisation is located within the banded iron-formation sequence 5 km north of Turn of the Tide and Culculli. Mineralisation at Thompson's Bore is evident as quartz veining and minor sulphidation along the contacts of the banded iron-formation.

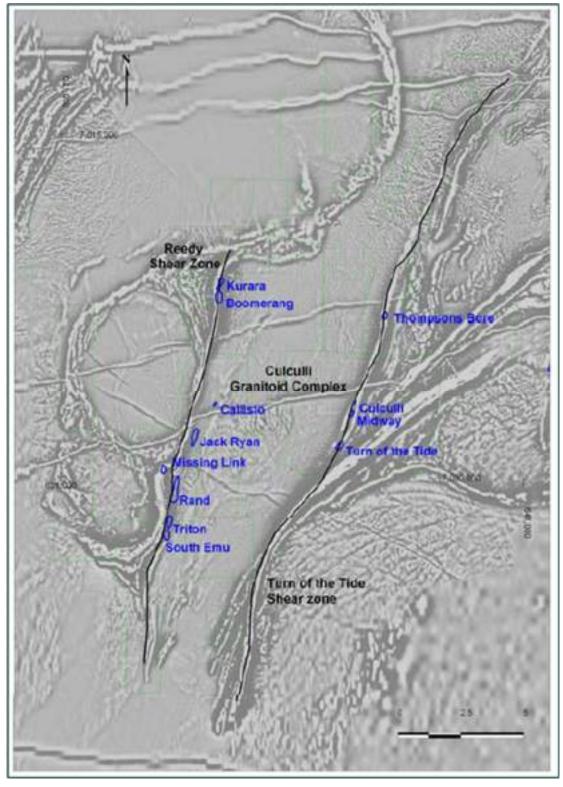


Figure 7-12 Reedy deposits open pit mine outlines and interpreted Reedy and Turn of the Tide Shear Zones overlain on 1VD magnetic intensity geophysical data (Thébaud, 2007).

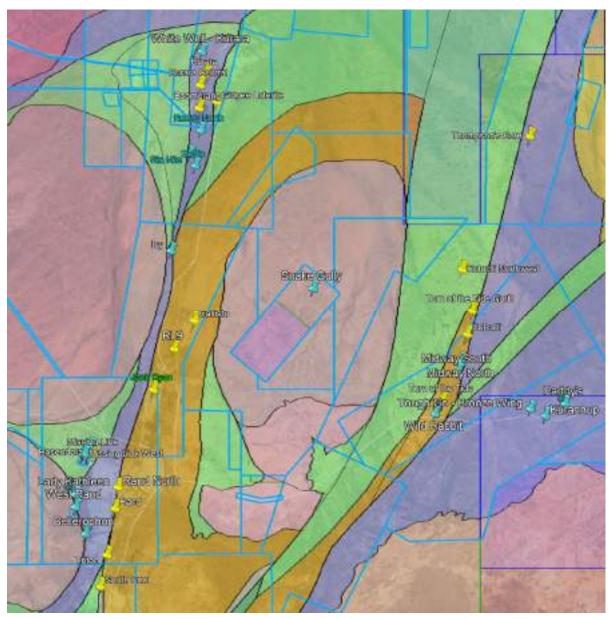


Figure 7-13 Deposits of the Reedy's project area - Source: Westgold.

8 DEPOSIT TYPES

The gold deposits at Meekatharra are consistent with the greenstone-hosted quartz-carbonate vein (mesothermal) gold deposit model. Exploration for extensions of these deposits and new deposits are therefore based on these models as described below.

- Banded Iron Formation sulphide replacement (Prohibition).
- Shear-related (Bluebird, Caledonian, South Emu Triton, Vivian Consols).
- Fault-related (Vivian's thrust lodes).
- Stockwork vein and alteration-related (Fatts, Hendrix, Euro).
- Secondary deposits (Gidgee Laterite in Boomerang Kurara group).

8.1 BANDED IRON FORMATION SULPHIDE REPLACEMENT GOLD DEPOSITS

The Prohibition ore body is the best developed example of a BIF-hosted gold deposits in the Meekatharra area. Mineralisation is present at the intersection of westerly dipping reverse faults of the Prohibition Fault set and the BIF unit (Hollingsworth, 2010).

BIF-related mineralisation also occurs at Aladdin in the Nannine area, and at Thompson's Bore in the Reedy area.

8.1.1 Diagnostic Features

Adapted from Hollingsworth, 2010 - The Prohibition BIF mineralisation plunges to the south-southeast along the line of intersection and is up to 20 m wide adjacent to the Prohibition Fault. The mineralisation is characterized by sulphidation of the wall rocks and quartz-carbonate- sulphide±chlorite breccia veins. Pyrite and Arsenopyrite are the common sulphide species and are directly associated with fine grained gold as inclusions and at the boundary of the sulphides. Small-scale samples suggest that arsenopyrite forms within the veins or at the margins of the veins, whilst the pyrite is present within the veins and also replaces iron-rich minerals along the bedding adjacent to veins. The best mineralisation appears to occur in areas where the dominant iron-rich mineral is siderite, and mineralisation decreases in grade and intensity in areas where magnetite becomes dominant.

8.1.2 Grade and Tonnage Characteristics

For the type deposit of this category at MGO, underground mining from stopes only at Prohibition by Westgold to the end of June 2024 has produced 218 koz of gold from 2.32 Mt of ore at an average grade of 2.93 g/t. Development grade averaged 3.21 g/t.

8.2 SHEAR RELATED GOLD DEPOSITS

Throughout the Murchinson region, gold mineralisation is almost entirely epigenetic and is intimately associated with major faults and shear zones throughout the greenstone belts of the area. As is the case throughout the MGO region, many deposits occur within 3 km of post-folding granitoid contacts, suggesting either a genetic relationship to granitic intrusion or common source regions and structural controls. Adapted from Watkins and Hickman, 1990.

8.2.1 Diagnostic Features

Adapted from Hollingsworth, 2010 - At Paddy's Flat, the shear-related deposits contain a mixture of high-grade fault related narrow-vein mineralisation (Spur Veins) at an angle to the shear zone, porphyry, and alteration system, as well as shear related mineralisation and vein systems parallel to the margins of the porphyry. Within the main shear zone, alteration of the mafic and ultramafic rocks is evident along one or both margins of the porphyry, and in areas where the porphyry is absent. The alteration assemblage ranges from talc-carbonate-chlorite in the distal parts of the system to carbonate-chlorite in the intermediate parts of the alteration package. The proximal alteration assemblage is typically quartz-carbonate-fuchsite±sulphide.

Mineralisation associated with the Spur veins is in the form of coarse gold in quartz. The veins have developed late in the evolution of the shear zone and crosscut both the porphyry and the surrounding alteration system. The veins are commonly $5-30\,\mathrm{cm}$ in width, with some historic spurs up to 2 m in width. The extend from between 2 and 30 m along strike and larger structures have very good down dip continuity.

The Spur veins are developed along faults that have two orientations, northwest striking, and northeast striking. The northwest striking faults and associated spur veins show a sinistral offset with regard to displacement of the porphyry margins and dip moderately to steeply toward the northeast. The resultant intersection with the porphyry and bounding alteration plunges toward the north. The northeast striking spur faults show a dextral displacement with respect to the porphyry margins and dip toward the southeast. The resultant intersection with the porphyry and bounding alteration plunges moderately toward the south. Historically the northwest trending spurs were the dominant structures mined, with the north-easterly striking, southeast plunge spurs not recognised until the lower levels of the mine were developed.

From Le Grange (2017) - At Reedy's, the shear-related gold mineralisation at South Emu - Triton is hosted by the Reedy Shear Zone, which is flanked by ultramafics on the west and mafic volcanics and associated fine grained sediments on the east. An Archaean dolerite unit is found to the east of the mafic volcanics. Porphyry intrusives occur within the mineralised zones and along the margins of some of the mineralisation. The stratigraphy and dominant foliation at South Emu strikes 190 degrees and dips steeply east at 85 degrees. Two main lodes of mineralisation (Main / East and West lodes) occur either side of a felsic porphyry intrusion. Numerous narrower (1-2 m) zones of mineralisation are also noted. The Reedy Shear Zone shows

retrograde alteration including chlorite-carbonate +/- biotite schist in the metamorphosed basalt and dolerite, and talc-carbonate schist in ultramafic rocks. Silica-pyrite altered mylonites occur over narrow widths on the margins of the porphyry.

From Hunt (2016a). In the Yaloginda area at Bluebird, quartz – carbonate alteration is evident throughout much of the deposit and is distal to the mineralisation. Low grade mineralisation within the Bluebird deposit coincides with a pale green / yellow quartz – carbonate – chlorite ± fuchsite alteration, with fine disseminated pyrite. High grade mineralisation is associated with a pale brown quartz – siderite – pyrite ± biotite alteration surrounding quartz ± carbonate tension gashes. The pyrite within these high-grade zones forms coarse-grained aggregates within the alteration and immediately adjacent to the tension gashes.

8.2.2 Grade and Tonnage Characteristics

The grade and tonnage characteristics for the shear hosted gold deposits vary depending on area.

At Paddy's Flat, underground mining from stopes only at Consols by Westgold until mining ceased at the end of March 2024 produced 14,422 oz of gold from 143,300 t of ore at an average grade of 3.13 g/t.

At Reedy's, underground mining from South Emu - Triton by Westgold until the mine was put on care and maintenance the end of June 2023 produced 88,500 oz of gold from 892 kt of ore at an average grade of 3.09 g/t.

At Yaloginda, underground mining at Bluebird by Westgold to the end of June 2024 produced 149 koz of gold from 1.37Mt of ore at an average grade of 3.38 g/t.

8.3 FAULT RELATED GOLD DEPOSITS

Fault-related gold deposits refer to the "Thrust" style lodes predominantly in the Vivan's area at Paddy's Flat, formed by shallow north-plunging, shallowly east-dipping thrust faults hosting several stages of quartz infill carrying significant nuggetty gold.

8.3.1 Diagnostic Features

At Paddy's Flat, mineralisation seems closely linked to steep, roughly north-south-striking, brittle-ductile shear zones that cut across the stratigraphy. These shear zones are likely linked to the formation of high-grade lodes like the Avon thrust. Kinematics of these shear zones are not well understood but might have been dominantly sinistral at the beginning with a reverse component towards the end of their activity. Kinematic indicators on brittle faults like the Avon fault suggest that these brittle faults and breccia veins could all be closely linked to movements along the shear zones (Augenstein, 2018).

From CSA Global (2016). Low-angle faults with a reverse sense of displacement have recently been recognised within the mine environment. The thrusts appear to possess a ramp-flat geometry with some steeper and other flatter areas. This geometry is interpreted as a pinch and swell fault fill, both down dip and possibly along strike. The thrusts can contain thick, up to 0.8 m, of laminar banded quartz with internal host rock clasts indicating high fluid pressure. The immediate hangingwall of the thrust, particularly when in contact with schists, has well developed kinematic indicators supporting a reverse sense of displacement. The displacement measured to date across the thrusts is less than 5 metres. The displacement surfaces have very well-developed slickensides striae indicating a predominant northeast over southwest directed sense of movement. However, mapping indicates that thrusts might form conjugate structures and dip northeast or northwest.

The thrust structures have high-grade but nuggety gold. Morphologically, the lode fill has a banded internal texture parallel to the wall rock. Coarse gold was observed near the margins of the veins in grey-white murky amorphous quartz and within the chlorite selvage. The lodes are typically quartz ± sulphide ± gold and +/-chlorite dominated, with pyrite and arsenopyrite being the two sulphide minerals present. Remnants of the wall rock are carbonate-fuchsite altered. The lode is internally brecciated in places with angular wall rock clasts in a quartz matrix indicative of high fluid pressure during formation. The thrust lodes are offset, albeit by only minor amounts, by late brittle structures with orientations similar to cross faults

8.3.2 Grade and Tonnage Characteristics

In the periods when the Avon Thrust mineralisation was being mined at Vivian's, average monthly production grade from airleg stopes varied from 5.7 g/t from 20.3 g/t.

8.4 STOCKWORK VEIN AND ALTERATION RELATED GOLD DEPOSITS

Adapted from Hollingsworth (2010) - The Quartz-Carbonate-Sulphide stockwork vein and alteration related mineralisation is the dominant style of mineralisation evident within the ultramafic sequence to the east of the central Paddy's Flat shear zone. Mineralisation of this type in the Paddy's flat area extends from Phar Lap and Mickey Doolan open pit in the south, Fatts in the Paddy's Flat underground mining area, to Macquarie open pit in the Paddy's North mineral resource. There is significant variation in the alteration assemblages observed, the grade of gold and the metallurgical recovery from the deposits that make up this style of mineralisation.

8.4.1 Diagnostic Features

Throughout the Paddy's Flat area, this style of mineralisation is characterised by 5 – 50 m wide alteration zones within ultramafic rocks and moderate to high sulphide content. In the southern part of Paddy's Flat, the Mickey Doolan deposit is the best exposed area of this mineralisation style. A wide quartz-carbonate-fuchsite-sulphide alteration zone is extensively veined by a quartz-carbonate stockwork system. To the east, the alteration is bounded by a steep westerly dipping fault, and to the west the alteration gradually changes to quartz-carbonate and then carbonate-chlorite alteration.

The Fatts alteration appears to be controlled by primary lithology with a cumulate textured peridotite controlling the formation of the talc-magnesite alteration, with later development of quartz-carbonate-sulphide stockwork veining. The Fatts ore body is approximately 25 m wide.

At Macquarie, the alteration and veining are present as two distinct lodes referred to as the Main Lode which trends northeast, and the Oblique Lode which has a north-south trend. These two zones of alteration merge into a single zone in the central part of the pit. The alteration is dominantly quartz-carbonate-arsenopyrite in the areas of mineralisation, with strong development of quartz-carbonate veining.

8.4.2 Grade and Tonnage Characteristics

At Mickey Doolan, the quartz-carbonate-fuchsite-sulphide alteration contains low grade gold mineralisation between 0.2-2.0 g/t. Toward the southern end of the Mickey Doolan pit, a number of narrow high-grade veins crosscut the alteration system and range in grade from 2.0 g/t to >30 g/t, but this this style of vein is thought to be fault or brittle fracturing related.

At Fatts, the total production by Westgold from stoping was 209 kt at an average grade of 2.85 g/t. The grade of the undepleted resource domains range between 1.3-3.7 g/t.

8.5 SECONDARY GOLD DEPOSITS

Secondary gold mineralisation is commonly found in weathered profiles developed over bedrock mineralisation. Laterally more continuous and higher gold grades are typically found within iron-rich, pisolitic horizons near the base of the laterite profile.

8.5.1 Diagnostic Features

Taken from Butt, 1998.

Lateritic supergene deposits are predominantly flat-lying enrichment zones contiguous with the ferruginous and mottled zones of the lateritic profile. They are characterised by fine-grained gold of high fineness (Ag <0.5%) and some residual primary gold. Particles of coarse gold may be present as primary nuggets and inclusions in vein quartz and pisoliths, and as secondary crystals developed with iron oxide segregations.

Saprolitic supergene deposits exhibit relative enrichment of gold, with minor secondary accumulation, is common as the result of weathering of gold -bearing lodes and shear zones. Where the regolith is thick, this may result in exploitable reserves, amenable to low-cost open-cut mining. Marked absolute enrichment in saprolite also occurs, commonly deep in the regolith, either mostly confined to the source unit or laterally dispersed into the weathered wall rocks, as one or more subhorizontal zones. The gold is dominantly secondary and of high fineness, even in the weathered source unit, but residual primary grains become more abundant close to the base of the profile.

Numerous, secondary deposits associated with palaeochannels ('deep leads') are known, mainly in Victoria (Ballarat-Bendigo-Ararat area) and in the Kalgoorlie-Norseman area of the Yilgarn Craton. In the southern Yilgarn, gold occurs either in the sediments or in the saprolite immediately beneath the channel. Most of these deposits are individually small (e.g. Baseline, 0.25 Mt at 3 g/t Au), but they may occur in clusters along a particular palaeodrainage system, thereby forming a significant resource, such as at Kanowna (Gibb Maitland 1919), Lady Bountiful Extended (Devlin & Crimeen 1990), and Challenge- Swordsman at Higginsville. In some deposits, the Au in the sediments may be alluvial. However, it commonly occurs as secondary silver-poor particles and the enrichment zones themselves may transgress sedimentary features, including the unconformity. Accordingly, it is considered that, in most deposits, the gold is probably a chemical precipitate, derived from a source up-drainage or, possibly, from immediately beneath the channel.

This subdivision of supergene Au deposits is part descriptive and part genetic. There are other enrichments, some of economic grade, that do not fit easily into this classification.

8.5.2 Grade and Tonnage Characteristics

Australian laterite gold deposits are typically small; <1.5 Mt, with grades 1.5-5.0 g/t Au. In some cases they represent the only mineable reserves over otherwise uneconomic primary mineralisation. Commonly laterite mineralisation is a minor proportion of total reserves of major deposits but may offer the opportunity for early commercialisation.

The type deposit of this category at MGO is the Gidgee Laterite in the Boomerang – Kurara mineral resource. The laterite mineralisation saw significant production in historic open pit mining. For the total remaining in-situ mineral resource (no cut-off grade) there is 352 kt at an average grade of 0.86 g/t of Indicated Mineral Resource, and a further 443 kt of Inferred Mineral Resource at an average grade of 0.64 g/t. Other deposits of this type at MGO are significantly smaller components of the total Mineral Resource.

9 EXPLORATION

9.1 SUMMARY

Westgold non-drilling regional exploration activities for gold mineralisation within the MGO tenements has been limited to the collection of aeromagnetic and gravity data within the Reedy's, Norie, Yaloginda and Meekatharra North regions. These new datasets, along with the compilation of extensive historic exploration datasets, has been used to generate exploration targets for subsequent drill testing (refer section 10).

9.2 GEOPHYSICAL SURVEYS

While Westgold has access to extensive historic geophysical datasets, the renewed exploration initiative that commenced in 2021 identified that the existing aeromagnetic coverage within the Reedy region lacked appropriate data. The Company subsequently completed a high-resolution aeromagnetic survey within this region on 25 m line spacing and flying height.

In addition to the aeromagnetic survey, during 2022 and 2023 the company undertook high-resolution gravity surveys over the Norie, Yaloginda and Meekatharra North regions. Westgold are considering extension of the gravity Norie survey across the remainder of the Nannine area.

These new datasets, in conjunction with the historic aeromagnetics, were used to select priority drill targets for FY25 within these areas.

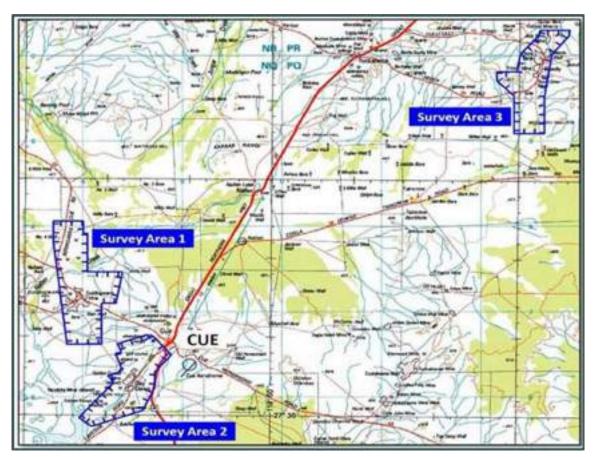


Figure 9-1 Location Of 2021 Reedy's High Resolution Aeromagnetic Survey (Survey Area 3) - Source: Westgold.

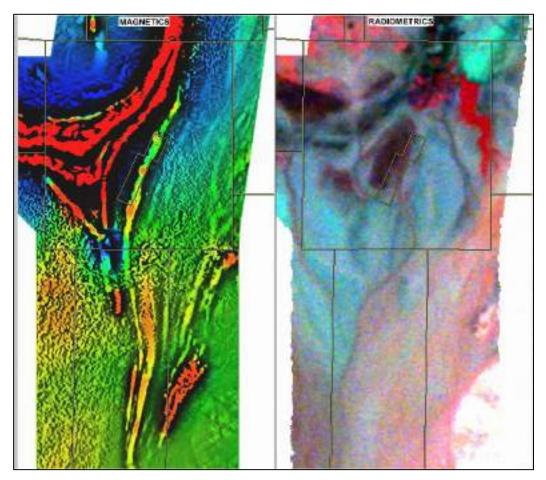


Figure 9-2 2021 Reedy's High Resolution Aeromagnetic Survey – Overview Results – TMI Magnetics (left) and Radiometrics (right) - Source: Westgold.

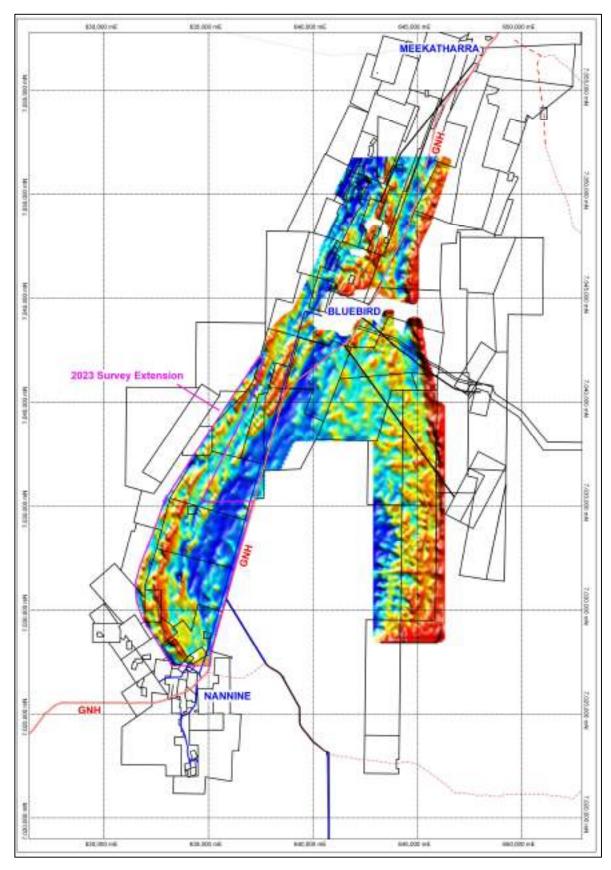


Figure 9-3 Map Showing the Completed Gravity Survey for The Norie to Nannine Gravity Survey - Source: Westgold.

9.3 GEOCHEMICAL SURVEYS

As Westgold has access to extensive historic geochemical datasets, including soil and rock chip geochemistry, additional datapoints have been limited to sporadic rock chip sampling.

9.4 TARGET SELECTION FOR DRILL TESTING

The majority of drilling completed by Westgold to date, as detailed in section 10 of this report, has been focussed on resource extension and definition type works. However, new "greenfields targeting" using all available datasets has resulted in the selection of a series of targets outside of historic resource areas. These are mostly located in the Nannine area, where drilling has commenced, and in the Yaloginda and Norie regions where drilling is planned for FY2025.

10 DRILLING

10.1 DRILLING SUMMARY

Since taking ownership of the project, Westgold drilled has drilled 11,752 Exploration, Resource Development and Grade Control holes for 819,762 m (May 14 2014, to June 30 2024). Drilling was completed for the purpose of development of gold resources as well as exploration for new gold deposits. The total drill holes and metres by type are shown in **Table 10-1** with total drill holes and metres by prospect shown in **Table 10-2**.

Table 10-1 MGO drill hole database– number of holes and metres drilled between May 14, 2014 and June 30, 2024.

Drill Type	Number of Holes	Metres
AC	1,398	67,418
DDH	3,459	543,477
RC	6,895	208,867
Grand Total	11,752	819,762

Table 10-2 MGO drilling by prospect and hole type from between May 14, 2014 and June 30, 2024.

Prospect	Hole Type	Number of Holes	Metres
Aladdin	AC	22	415
	DDH	6	1,146
	RC	279	9,550
Albury Heath	DDH	2	175
	RC	87	4,042
Bailey's Island	DDH	13	2,191
	RC	6	888
Bailey's North	RC	32	1,137
Banjo Bore	AC	163	10,256
	DDH	1	205
	RC	62	3,572
Batavia	RC	191	6,243
Blue Bell	DDH	1	123
Bluebird	DDH	661	140,373
	RC	95	1,874
Boomerang	DDH	3	1,486
	RC	242	4,237
Caledonian	DDH	6	1,527
	RC	31	1,845
Caledonian South	RC	127	3,362
Calisto	RC	218	8,058
Chunderloo	RC	7	577
Consols	DDH	426	57,929
	RC	3	171
Culculli	RC	162	4,860

Prospect	Hole Type	Number of Holes	Metres
Culculli North	RC	66	2,038
Easter Gift	RC	43	1,799
Emerald Bore	AC	254	14,493
Euro	AC	26	1,468
Fatts	DDH	59	6,441
Five Mile Well	RC	151	6,241
GIBRALTAR	DDH	3	1,971
Gibraltar South	RC	169	4,901
Golden Shamrock	RC	925	18,849
Great Northern Highway	RC	4	340
Haveluck	RC	18	1,467
Hendrix	DDH	131	24,435
Hippogriff	AC	41	714
Ingliston	DDH	6	1,648
Jack Ryan	DDH	40	2,105
-	RC	611	22,236
Jess	RC	2	53
Karangahaki	RC	6	507
Lady Kathleen	RC	7	492
Little Mary	RC	46	1,860
Lugg's Reward	RC	13	650
Luke's Junction	RC	30	1,864
Magazine	RC	1	160
Maid Marion	RC	415	12,645
McCaskill West	AC	12	155
Mickey Doolan	RC	957	21,493
Midway	RC	208	6,770
Missing Link	RC	11	595
Mudlode	DDH	377	46,859
Mystery	RC	7	473
Nannine	RC	9	386
Nannine Reef	RC	330	8,452
Norie	AC	147	5,018
Nottingham	RC	8	1,327
Paddy's Flat	DDH	21	3,144
Pegasus	AC	38	1,780
	RC	44	5,137
Pegasus North	RC	6	768
Pegasus South	AC	38	807
Phar Lap	RC	51	2,180
Prohibition	DDH	620	95,939
Rand	DDH	5	1,390
	RC	34	2,103
Rand West	RC	17	1,573

Prospect	Hole Type	Number of Holes	Metres
Reedy Creek	AC	42	1,767
Reedy's	AC	164	5,360
	RC	26	1,852
Rhen's	RC	1	78
RL9	RC	6	816
Romsey	RC	52	1,794
Sabbath	RC	314	10,264
Sherwood	AC	109	8,204
South Junction	DDH	40	26,651
South Emu	DDH	231	28,357
	RC	40	1,779
Surprise	AC	24	1,399
	RC	349	5,877
Surprise West	RC	69	1,317
Three Sisters	RC	163	4,857
Turn of the Tide	AC	113	7,462
	RC	29	2,101
Tough Go	AC	33	1,895
Triton	DDH	114	20,929
	RC	2	234
Tulpar	AC	19	486
Unicorn	AC	13	632
Vivian's	DDH	693	78,453
	RC	1	255
West Rand	RC	6	238
Whangamata	RC	147	4,529
Yaloginda	AC	1	44
Yaloginda West	AC	139	5,063
Total		11,752	819,762
างเลเ		11,/52	019,702

10.2 DRILLING MAPS

Figure 10-1 shows the drilling distribution for MGO.

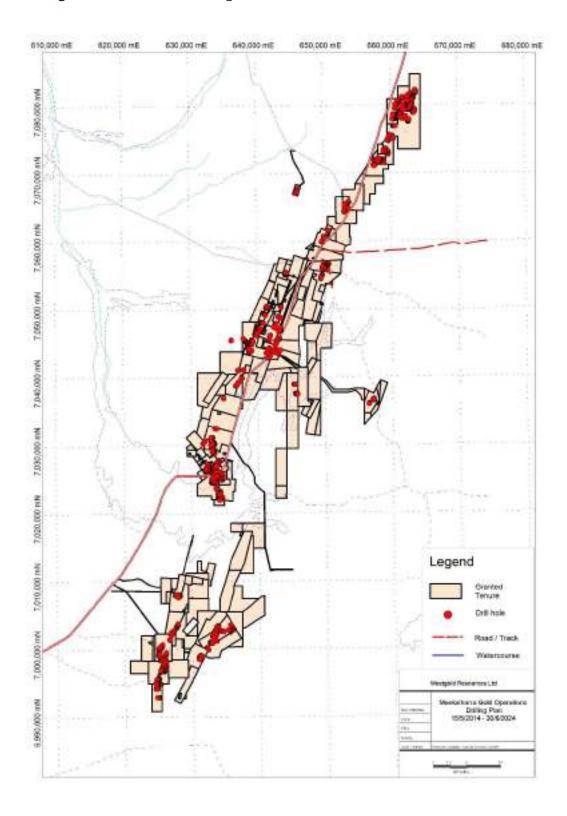


Figure 10-1 Distribution of drilling between May 14 2014, and June 30 2024 within the MGO tenements - Source: Westgold.

Drill hole collars are originally set out by surveyors once the coordinates have been given by the geologists. They are later picked up once they are drilled. The surveyor uploads the coordinates given to them onto the Trimble GPS controller which also includes the hole IDs. This is then used to stake out the holes again and ensure the correct ID is used when picking up the hole and that it matches the hole ID on the stake. The holes are picked up in MGA 94 (Zone 51) coordinates using RTK. Once picked up, the survey team exports this to a CSV file which includes the hole ID, method of survey (RTK), MGA 94 eastings, MGA 94 northings, MGA RL, surveyors name, coordinate system and survey instrument (R12).

Downhole surveys are undertaken on each hole by drilling contractors using digital true north seeking gyro instruments. During first pass exploration RC and AC drill holes, single shot downhole survey measurements are taken at 4 m depth then at 30 m depth, followed by 30 m intervals before the final reading taken at end of hole. During resource development RC drilling programs, single shot surveys are taken every 30 m downhole to monitor hole deviation during active drilling. Results are actively monitored by the supervising geologist as the hole progresses. This is then followed up by a multi-shot survey at every 5 m or 10 m interval throughout the length of the hole on completion of each hole. For all DDH holes, multi-shot surveys are conducted as described above, with hole deviation being monitored by single shot surveys at 50 m intervals downhole as drilling progresses.

10.3 RESULTS

10.3.1 Meekatharra North

Exploration drilling in the Meekatharra North region has related to the testing of geophysical targets in the Bajo Bore region. This has involved both aircore (AC) and reverse circulation (RC) drilling programs.

Banjo Bore regional AC drilling programs have been completed throughout 2022 and 2023 with a total of 417 holes drilled for 24,569 m. The depth of cover varied considerably over the area and ranged from as little as 2 m in the south of the drill area to a maximum of 30 m in the central north of the drill area. The basement was logged as volcanogenic sediments, ultramafic, granitoids and intermediate rocks. In the southern areas, talc and to a lesser extent talc-chlorite schist dominates along with granitoids. To the north of Banjo Bore variable amounts of talc-chlorite and chlorite schist were present as well as less foliated equivalents and minor shale.

While drill lines to the north of Banjo Bore showed very little evidence of favourable carbonate alteration, drill lines to the south and southeast of Banjo Bore show significantly more carbonate alteration and variable quartz veining along with minor pyrite. Quartz veining was noted to be most intense adjacent to granite.

Assay results received indicate that areas of lower carbonate alteration and away from granite contacts showed significantly less anomalism. Across the extended drill program, three anomalous trends have been defined or extended in association with regional shears and one trend in association with intrusions. The Nottingham trend is

the most extensive and associated with shearing adjacent to the western margin of the greenstone belt. The Nottingham trend had previously been identified over 11 km from the Five Mile Well deposit to west of the Maid Marion deposit. Recent aircore drilling has shown the trend continues a further 9 – 11 km north with drill sections spaced 800 m apart.

The Banjo Bore trend extends southward from the Banjo Bore prospect and was tested on 400 m - 800 m spaced sections over a strike of 3.2 km. Anomalism at the 50 ppb level was evident along the trend with significant results including 3 m at 5.91 g/t in 22MNAC225, 7 m at 0.28 g/t in 22MNAC048 and 1 m at 5.05 g/t in 22MNAC039.

The Emerald Bore trend was tested in the first phase of aircore drilling in 2022 intersecting 10m at 0.18 g/t. During a latter phase of aircore along the trend significant results of 3 m at 0.79 g/t from 22MNAC136, 4 m at 0.37 g/t in 22MNAC137 and 4 m at 0.25 in 22MNAC165 were encountered along the trend. Recent results combined with previous drilling in the area show anomalism along the Emerald Bore trend now extending over 1.9 km and remaining open to the southeast. The nominal spacing of effective drilling along the Emerald Bore trend remains at $200-300 \, \text{m}$ spacing.

Government Well is a significant drilling and surface geochemical anomaly located 1.3 km northeast of the Maid Marion deposit mined in 2020. Government Bore was first picked up in shallow RAB drilling in 1994. Four RC holes tested the anomaly in 1998 and returned significant anomalism including 51 m at 0.54 g/t in 98SHRC0003. Drilling by Westgold between 2015 and 2023 has extended the anomaly to the north and west, with the current dimensions of approximately 600 x 20 0m. Recent intersections include 10 m at 1.28 g/t in 22MNAC266 and 5 m at 2.05 g/t in 22MNAC264, following on from drilling completed in 2015. Drilling is completed on 120 m spaced drill sections across Government Well, with anomalism open for up to 300m to the north

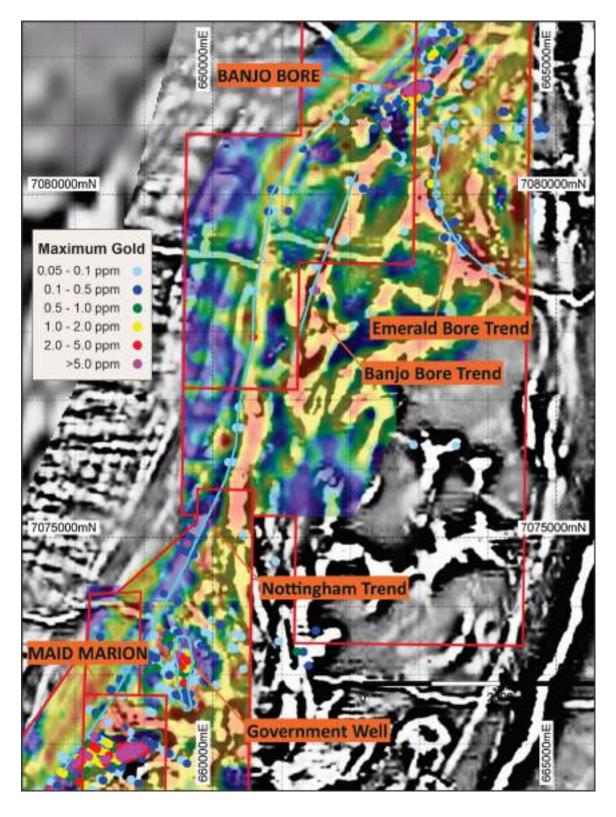


Figure 10-2 Meekatharra North – Banjo Bore AC Anomalies On Gravity (RGB) Over Aeromagnetics (Greyscale)-Source: Westgold.

Table 10-3 Meekatharra North Regional AC Drillin – Significant Results

Prospect	Hole ID	North	East	RL	Intersection	From	Dip	Azi	GxM
Banjo Bore	22MNAC039	7081013	662510	510	1m at 5.05 g/t	9	-60	139	5.1
	22MNAC048	7080526	662684	517	7m at 0.28 g/t	41	-60	139	2.0
	22MNAC225	7078600	661488	518	3m at 5.91 g/t	29	-60	90	17.7
Emerald Bore	22MNAC055	7079858	663215	521	5m at 0.18 g/t	52	-60	90	0.9
	22MNAC136	7080153	663171	513	3m at 0.79 g/t	12	-60	90	2.4
	22MNAC137	7080153	663131	514	4m at 0.37 g/t	68	-60	90	1.5
	22MNAC165	7079362	663519	514	4m at 0.26 g/t	55	-60	90	1.0
Government	22MNAC259	7073588	659327	510	8m at 0.19 g/t	29	-60	119	1.5
Well	22MNAC262	7073335	659412	504	9m at 0.29 g/t	61	-60	119	2.6
	22MNAC263	7073318	659443	505	4m at 0.48 g/t	47	-60	119	1.9
	22MNAC264	7073298	659478	505	5m at 2.05 g/t	28	-60	119	10.3
					10m at 0.38 g/t	57			3.8
					6m at 0.36 g/t	10			2.2
					2m at 0.69 g/t	79			1.4
					7m at 0.15 g/t	2			1.0
	22MNAC265	7073277	659511	505	3m at 1.15 g/t	48	-60	119	3.4
					2m at 1.6 g/t	30			3.2
					1m at 2.08 g/t	58			2.1
					2m at 0.94 g/t	40			1.9
					7m at 0.25 g/t	13			1.8
	22MNAC266	7073262	659546	506	10m at 1.28 g/t	20	-60	119	12.8
					11m at 0.26 g/t	31			2.8
					11m at 0.2 g/t	76			2.2
					8m at 0.14 g/t	64			1.1
	23MNAC028	7073111	659158	511	4m at 0.39 g/t	28	-60	304	1.5
	23MNAC032	7073058	659047	510	2m at 0.53 g/t	88	-60	296	1.1
Nottingham	22MNAC109	7081129	661830	509	6m at 0.2 g/t	45	-60	125	1.2
	23MNAC025	7073352	658990	510	2m at 2.32 g/t	32	-60	296	4.6
	23MNAC083	7077922	660624	523	5m at 0.56 g/t	50	-60	274	2.8
	23MNAC084	7077923	660586	524	6m at 0.48 g/t	15	-60	272	2.9

Figure 10-3 Meekatharra North – Banjo Bore AC Drilling - Source: Westgold.

Follow-up RC drilling of actual Banjo Bore prospect was completed in April 2022 defined mineralisation over a strike length of 210 m and to a depth of 60 m vertical. The width of mineralisation varies from 4 m up to 20 m true width. Significant intersections returned from the program are presented in Table 10 4.

Holes 22MNRC001 – 022 were designed to infill mineralisation near surface and also extend to depth. 22MNRC001 was drilled to confirm the location of a fault that terminates mineralisation at the eastern end of Banjo Bore and has assisted in further constraining the location of that fault. 22MNRC002 – 008 were designed to infill near-surface drilling, with all except holes 22MNRC005 and 22MNRC006 returning good intersections with a best result of 7 m at 6.42 g/t Au from 11 m, immediately beneath transported cover.

Holes 22MNRC009 – 022 were designed to test for deeper mineralization and infill 40 m spaced sections in the western part of the prospect. Of these, holes 22MNRC013 – 015, 22MNRC019 and 22MNRC022 failed to intersect mineralisation. Holes 22MNRC013 and 22MNRC014 are located at the currently known western end of mineralization while 22MNRC015 is located in the middle of the known mineralisation and both 22MNRC019 and 022 were targeting mineralisation below 80 m vertical depth and encountered anomalism including 6 m at 0.7g/t Au.

The remaining holes encountered mineralisation generally as expected with several +30g.m intersections in the oxide zone and two +20g.m intersections in transitional to fresh rock. Two drill holes returned unexpected mineralisation located to the northwest of the known lodes. 22MNRC010 and 22MNRC011 intersected a lode in the hanging wall to the known mineralisation. The lode was evident as 4 m at 1.7 g/t Au from 23 m in 22MNRC010 and two close intersections in 22MNRC011 which give a combined lode intersection of 11 m at 1.96 g/t Au from 36 m including 5 m at 2.2 g/t Au and 5 m at 2.0 g/t. Currently adjacent sections are drilled on 40 m spacing in the strike of the hanging wall lode with adjacent holes showing only weak anomalism. The extent and orientation of the new lode remains unknown.

Nine holes were drilled on three 80 m spaced sections to the southwest of Banjo Bore in an attempt to trace mineralisation further west adjacent to granite. While only three of the holes intersected granite, the remainder of the holes adjacent to the contact failed to encounter significant mineralisation.

Holes 22MNRC023 – 025 were drilled to the southeast of Banjo Bore to test anomalism in a 1996 RAB hole completed by WMC. The RC holes encountered 8 m of weakly mineralised laterite beneath transported cover. Observations and available geochemical data suggest it is likely that the laterite is insitu. In order to test the extent of the anomaly and the possibility of mineralisation at depth beneath the laterite, a program of aircore holes has been designed to target the area on a 40 m x 40 m pattern testing the laterite with holes at 80 m x 80 m testing for mineralisation at depth.

Table 10-4 Banjo Bore Prospect RC Drilling – Significant Results

Hole	Collar N	Collar E	Collar RL	Intercept (Downhole Width)	From (m)	Dip	Azi	G.M
22MNRC001	7081591.0	663017.0	509.2	NSI		-60.2	137.1	0.00
22MNRC002	7081581.9	663001.8	509.2	7m @ 6.42 ppm	11	-60.2	137.1	44.97
22MNRC003	7081571.0	662985.0	509.2	13m @ 1.37 ppm	15	-60.4	137.9	17.81
22MNRC004	7081525.0	662949.0	509.3	17m @ 1.19 ppm	9	-61.0	139.4	20.26
22MNRC005	7081507.4	662937.7	510.0	NSI		-60.0	139.3	1.98
22MNRC006	7081482.3	662907.0	510.0	4m @ 0.56 ppm	8	-60.5	134.7	2.22
				5m @ 1.1 ppm	15			5.48
22MNRC007	7081483.9	662878.1	510.0	6m @ 0.62 ppm	6	-60.8	137.2	3.69
				13m @ 2.32 ppm	13			30.11
22MNRC008	7081498.4	662864.2	510.0	9m @ 1.87 ppm	35	-60.8	137.2	16.84
22MNRC009	7081488.1	662847.3	510.0	5m @ 1.5 ppm	29	-51.7	138.1	7.50
22MNRC010	7081498.7	662838.8	510.0	4m @ 1.7 ppm	23	-55.6	136.4	6.80
				2m @ 2.57 ppm	51			5.14
22MNRC011	7081509.8	662826.6	510.0	5m @ 2.24 ppm	36	-61.7	139.9	11.18
				5m @ 2.01 ppm	42			10.03
				7m @ 0.86 ppm	68			6.04
22MNRC012	7081467.7	662812.9	510.0	6m @ 1.51 ppm	43	-50.6	137.6	9.07
22MNRC013	7081482.5	662800.8	510.0	NSI		-60.6	137.4	0.00
22MNRC014	7081498.4	662786.4	510.0	NSI		-60.6	137.8	0.00
22MNRC015	7081577.0	662957.0	510.0	NSI		-60.8	139.6	0.00
22MNRC016	7081559.2	662918.8	510.0	4m @ 0.71 ppm	42	-55.8	141.8	2.82
				5m @ 0.92 ppm	68			4.60
				1m @ 21.8 ppm	106			21.80
22MNRC017	7081534.2	662914.7	510.0	10m @ 1.65 ppm	30	-55.6	138.9	16.51
				8m @ 1.98 ppm	41			15.85
22MNRC018	7081544.0	662904.0	510.0	14m @ 1.61 ppm	54	-60.6	137.7	22.51
22MNRC019	7081558.8	662890.6	510.0	NSI				0.00
22MNRC020	7081540.7	662882.3	510.0	9m @ 1.43 ppm	73	-60.9	139.4	12.88
22MNRC021	7081516.2	662877.0	510.0	13m @ 1.94 ppm	42	-55.8	139.1	25.25
22MNRC022	7081537.5	662855.9	510.0	NSI		-61.0	137.5	0.00
22MNRC023	7081344.7	662926.0	510.0	NSI		-60.8	137.9	0.00
22MNRC024	7081359.5	662912.5	510.0	NSI		-61.3	136.0	1.64
22MNRC025	7081374.4	662899.3	510.0	NSI		-60.9	137.6	0.00
22MNRC026	7081256.1	662627.0	510.0	NSI		-60.8	135.7	0.00
22MNRC027	7081271.5	662613.2	510.0	NSI		-61.1	137.5	0.00
22MNRC028	7081286.5	662599.9	510.0	NSI		-60.6	138.6	0.00
22MNRC029	7081325.9	662672.0	510.0	NSI		-60.5	137.5	0.00
22MNRC030	7081340.7	662658.6	510.0	NSI		-61.5	137.1	0.00
22MNRC031	7081355.4	662645.2	510.0	NSI		-60.4	137.3	0.00
22MNRC032	7081385.3	662725.0	510.0	NSI		-59.3	141.4	0.00
22MNRC033	7081400.1	662711.7	510.0	NSI		-60.2	140.5	0.00
22MNRC034	7081415.1	662698.4	510.0	NSI		-60.2	139.3	0.00
22MNRD035	7081574.2	662905.0	510.0	NSI		-60.0	136.7	1.90

10.3.2 Paddy's Flat

The majority of the drilling completed within the Paddy's Flat region pertained to resource definition or resource extension drilling with results detailed in Section 14.

10.3.3 Yaloginda

The majority of the drilling completed within the Yaloginda region pertained to resource definition or resource extension drilling with results detailed in Section 14.

10.3.4 Nannine

The majority of the drilling completed within the Nannine region pertained to resource definition or resource extension drilling with results detailed in Section 14.

10.3.5 Reedy's

The majority of the drilling completed within the Reedy's region pertained to resource definition or resource extension drilling with results detailed in Section 14.

During the FY2024 year, several targets were tested along the Reedy West trend located approximately 1 km west of the Reedy line of open pits and underground workings. Reedy West is a 1.8 km anomalous trend adjacent to the contact between the greenstone sequence and the Cullculli Tonalite. Previous RAB and minor RC drilling defined an anomalous trend of 800 m, with the trend taking in the historic workings at Rand West and Lady Kathleen. RC drilling had also been completed at Rosandora to the north of the trend. During the period, 32 RC holes were completed from Rand West to Lady Kathleen, covering a strike length of approximately 600 m. Results of the RC drilling included several high grade intersections including 5m at 6.83 g/t in 23MLRC023, 4 m at 13.05 g/t in 23MLRC007, 3m at 5.55 g/t in 23MLRC005 and 2m at 4.94 g/t in 23MLRC013 over 250m strike with drilling completed on a nominal 40m section spacing.

Following the successful RC drilling, aircore drilling was completed in three areas to infill gaps in drilling along the trend. Aircore drill spacing was completed at 80 m sections for two of the target zones and 160 m spacing for the southern target. Of those areas tested, the northern and central areas returned significant intersections, with the northern area defining a >100 ppb anomaly of approximately 160 x 100 m including intersections of 8 m at 0.75 g/t in 24MLAC038, 2 m at 1.53 g/t in 24MLAC039, 4 m at 0.49 g/t in 24MLAC043 and 1 m at 1.07 g/t at end of hole in 24MLAC037. The central area returned a best result of 8 m at 2.52 g/t including 2 m at 9.10 g/t in 24MLAC030. It is believed the hole intersected a southern extension of the Rand West mineralisation 200 m further to the south. Other intersections included 6 m at 0.46 g/t in 24MLAC027 and 3 m at 0.66 g/t in 24MLAC029.

11 SAMPLE PREPARATION, ANALYSIS AND SECURITY

11.1 SAMPLE COLLECTION AND SECURITY

The following sections summarise the drill sample collection processes employed by Westgold at MGO for exploration and resource definition drilling:

11.1.1 Aircore (AC)

For aircore (AC) samples, drill cuttings are extracted from the rig return via cyclone. The underflow from each 1 m interval is transferred via bucket to a four-tiered riffle splitter, delivering approximately 3 kg of the recovered material into calico bags for analysis and the residual material into a large green bag. The residual is placed on the ground in 1 m piles. Depending on the program, the samples may be taken in 4 m composites, and if any anomalous assays are received, the 1 m interval sample is then submitted for analysis.

QA/QC Standards are placed in calicos and are inserted within the composite sequence in the field. A register is recorded within the field at the time of drilling of every sample's unique sample ID number and corresponding metre, as well as the Standard ID when it is first placed into the sequence.

The composite samples are then collected in poly-weave bags (five at a time) which are then loaded into bulka bags. The bulka bags are collected by a dedicated Westgold sample transport team and delivered to the Bureau Veritas Bluebird laboratory, or in the case of low-level analysis samples delivered via third-party contractor to the Bureau Veritas Canning Vale laboratory. The 1 m splits are stored in plastic field bags close to the corresponding drilled hole.

The composite samples are analysed for gold and multi-elements. Samples are analysed via multi-element aqua regia analysis (The upper gold limitation for aqua regia is 4.00 g/t Au; when this occurs; the sample is also fire assayed). Upon return of results, intersections of 0.1 g/t and above require their corresponding 1 m splits for further assays. These are taken from the secondary sequence and full QA/QC applied before sending to the laboratory for fire assay.

11.1.2 Reverse Circulation Drilling (RC)

RC is a form of percussion drilling designed to eliminate downhole contamination utilising a (nominally) 5¼" face-sampling hammer. Drill cuttings are extracted from the RC return via cyclone. The residual material is retained on the ground near the hole. A cone splitter has typically been used which is located directly below the cyclone, delivering approximately 3 kg of the recovered material into pre-numbered calico bags for analysis. Samples too wet to be split through a splitter are taken as grabs and are recorded as such. The use of a cone splitter is more suitable for wet samples.

Depending on the program, the samples may be taken in 4 m composites, and if any anomalous assays are received, the 1 m interval sample is then submitted for analysis. Ordinarily the 1 m interval sample is submitted in the first instance.

QA/QC Standards are placed in calicos and are inserted within the composite sequence in the field. A register is recorded within the field at the time of drilling of every sample's unique sample ID number and corresponding metre, as well as the Standard ID when it is first placed into the sequence.

The samples are then collected in poly-weave bags (five at a time) which are then loaded into bulka bags. The bulka bags are collected by a dedicated Westgold sample transport team and delivered to the Bureau Veritas Bluebird laboratory.

11.1.3 Diamond Drilling (DD)

Diamond drilling carried out by Westgold at MGO is logged, sampled and analysed in line with Westgold procedures. Diamond drill core is cleaned, laid out, measured and logged on site by geologists for lithology, alteration, mineralisation and structures. Structural measurements, alpha and beta angles, are taken using a kenometer core orientation tool or a Reflex IQ Logger on major lithological contacts, foliations, veins and major fault zones, and are recorded based on orientation lines scribed onto the core by the drillers. Multiple specific gravity (SG) measurements are taken per hole in both ore and waste zones. SGs are taken at a specific gravity weighing station. Technicians, or geologists, when necessary, record the Rock Quality Designation (RQD). Logging is entered into LogChief drill hole logging software on field laptop computers and checked into Westgold's geological database.

Depending on the project requirements, the diamond core will be drilled to PQ, HQ3, and NQ2 core diameter and either be whole core, half core or quarter core sampled. Sample intervals are based on geology, with a minimum 0.2 m to maximum 1.0 m sample size. Before sampling, diamond core is photographed wet and dry, and the generated files stored electronically on the Imago platform. Sampling is performed by a technician in line with sample intervals marked up on the core by a geologist. Core is cut at the sample line and either full, half or quarter core is taken according to the geologist's instructions and placed into numerically marked calico sample bags ready for dispatch to the laboratory, and QA/QC standards and blanks inserted into the series. The half core that is not sent for assaying is stored in the core farm for reference.

11.1.4 Sample Security

Sample security protocols in place aim to maintain the chain of custody of samples to prevent inadvertent contamination or mixing of samples, and to render active tampering as difficult as possible. Sampling is conducted by Westgold staff or contract employees under the supervision of site geologists.

Samples are placed in calico bags, then placed into poly-weave bags (five at a time) which are then loaded into bulka bags. The bulka bags are collected by a dedicated Westgold sample transport team and delivered to the Bureau Veritas Bluebird laboratory, or in the case of low-level analysis samples delivered via third-party contractor to the Bureau Veritas Canning Vale laboratory.

All samples received by the laboratory are physically checked against the dispatch order and Westgold personnel are notified of any discrepancies prior to sample preparation commencing. No Westgold personnel are involved in the preparation or analysis process.

11.1.5 Prospect Sample Summary

A summary of the prospect, sample type, laboratory and assay method for Meekatharra exploration and resource definition drilling can be found in **Table 11-1**. The majority of samples were processed at the Bureau Veritas Bluebird site laboratory, with the remainder sent to Bureau Veritas in Canning Vale. Samples were sent for fire assay atomic absorption spectroscopy (FA_AAS).

Table 11-1 Sample count for each Meekatharra prospect by sample type, laboratory and method

Prospect	Sample Type	Laboratory Code	Assay Method	Sample Count
Aladdin	CHIPS	BV_MLX	FA_AAS	5,597
	CHIPS	BV_PTH	FA_AAS	3,292
	CHIPS	MINAN	FA50_AAS	368
	HALF CORE	BV_MLX	FA_AAS	326
	HALF CORE	BV_PTH	FA_AAS	382
Albury Heath	CHIPS	BV_MLX	FA_AAS	1,548
	CHIPS	BV_PTH	FA_AAS	2,573
Bailey's Island	CHIPS	BV_MLX	FA_AAS	64
	CHIPS	BV_PTH	FA_AAS	426
	HALF CORE	BV_MLX	FA_AAS	1,564
Bailey's North	CHIPS	BV_PTH	FA_AAS	1,076
Banjo Bore	CHIPS	BV_MLX	FA_AAS	1,968
	CHIPS	BV_PTH	FA_AAS	5,218
	HALF CORE	BV_MLX	FA_AAS	144
Batavia	CHIPS	ALS_PTH	FAOG_AAS	1,185
	CHIPS	BV_PTH	FA_AAS	1,720
	CHIPS	MINAN	FA_AAS_50	1
	CHIPS	MINAN	FA50_AAS	2,896
Bluebird	WHOLE CORE	BV_MLX	FA_AAS	108,228
	CHIPS	BV_MLX	FA_AAS	1,146
	CHIPS	BV_PTH	FA_AAS	725
	HALF CORE	BV_MLX	FA_AAS	38,125
	HALF CORE	BV_PTH	FA_AAS	572
Boomerang	CHIPS	BV_PTH	FA_AAS	4,242
	HALF CORE	BV_PTH	FA_AAS	1,069
Caledonian	CHIPS	BV_PTH	FA_AAS	646

Prospect	Sample Type	Laboratory Code	Assay Method	Sample Count
	CHIPS	MINAN	FA50_AAS	135
	CORE	BV_PTH	FA_AAS	249
	HALF CORE	BV_PTH	FA_AAS	168
	HALF CORE	MINAN	FA50_AAS	302
Caledonian South	CHIPS	BV_MLX	FA_AAS	1,610
	CHIPS	BV_PTH	FA_AAS	1,014
Caledonian South Splay	CHIPS	BV_MLX	FA_AAS	34
	CHIPS	BV_PTH	FA_AAS	7,124
Calisto	CHIPS	MINAN	FA50_AAS	902
Chunderloo	CHIPS	MINAN	FA50_AAS	196
Consols	CHIPS	MINAN	FA50_AAS	469
	CORE	BV_PTH	FA_AAS	67
	HALF CORE	BV_MLX	FA_AAS	10,111
	HALF CORE	BV_PTH	FA_AAS	1,466
	HALF CORE	MINAN	FA50_AAS	253
	WHOLE CORE	BV_MLX	FA_AAS	40,286
	WHOLE CORE	BV_PTH	FA_AAS	6,781
Culculli	CHIPS	BV_MLX	FA_AAS	1,591
	CHIPS	BV_PTH	FA_AAS	3,185
	CHIPS	MINAN	FA50_AAS	31
Culculli North	CHIPS	BV_PTH	FA_AAS	1,846
	CHIPS	MINAN	FA50_AAS	125
Easter Gift	CHIPS	BV_MLX	FA_AAS	146
	CHIPS	BV_PTH	FA_AAS	1,417
Emerald Bore	CHIPS	BV_MLX	FA_AAS	202
	CHIPS	BV_PTH	FA_AAS	4,530
Euro	CHIPS	BV_PTH	FA_AAS	401
Fatts	HALF CORE	BV_MLX	FA_AAS	1,458
	WHOLE CORE	BV_MLX	FA_AAS	5,856
	WHOLE CORE	BV_PTH	FA_AAS	180
Five Mile Well	CHIPS	BV_MLX	FA_AAS	2,385
	CHIPS	BV_PTH	FA_AAS	1,890
	CHIPS	MINAN	FA50_AAS	156
Gibraltar South	CHIPS	BV_PTH	FA_AAS	4,406
	HALF CORE	BV_MLX	FA_AAS	541
Golden Shamrock	CHIPS	BV_MLX	FA_AAS	11,304
	CHIPS	BV_PTH	FA_AAS	5,325
Great Northern Highway	CHIPS	BV_PTH	FA_AAS	85
Haveluck	CHIPS	BV_PTH	FA_AAS	886
	CHIPS	BV_PTH	SFA_AAS	18
Hendrix	HALF CORE	BV_MLX	FA_AAS	6,065
	HALF CORE	BV_PTH	FA_AAS	755
	WHOLE CORE	BV_MLX	FA_AAS	14,820
	WHOLE CORE	BV_PTH	FA_AAS	1,675
Hippogriff	CHIPS	BV_PTH	FA_AAS	256

Prospect	Sample Type	Laboratory Code	Assay Method	Sample Count
Ingliston	CHIPS	BV_PTH	FA_AAS	430
	HALF CORE	BV_PTH	FA_AAS	812
Jack Ryan	CHIPS	BV_MLX	FA_AAS	2,595
	CHIPS	BV_PTH	FA_AAS	15,777
	CHIPS	MINAN	FA50_AAS	1,136
	HALF CORE	BV_MLX	FA AAS	21
	WHOLE CORE	BV MLX	FA_AAS	1,350
Jess	CHIPS	BV_PTH	FA_AAS	53
Karangahaki	CHIPS	BV_PTH	FA_AAS	224
Lady Kathleen	CHIPS	BV_MLX	FA_AAS	492
Little Mary	CHIPS	BV_MLX	FA_AAS	1,860
Lugg's Reward	CHIPS	BV_MLX	FA_AAS	3
	CHIPS	BV_PTH	FA_AAS	649
Luke's Junction	CHIPS	MINAN	FA50_AAS	1,237
Magazine	CHIPS	BV_MLX	FA_AAS	160
Maid Marion	CHIPS	BV_MLX	FA_AAS	9,562
	CHIPS	BV_PTH	FA_AAS	2,792
McCaskill West	CHIPS	BV_PTH	FA_AAS	68
Mickey Doolan	CHIPS	BV_MLX	FA_AAS	16,007
	CHIPS	BV_PTH	FA_AAS	5,093
Midway	CHIPS	BV_MLX	FA_AAS	1,723
	CHIPS	BV_PTH	FA_AAS	4,276
	CHIPS	MINAN	FA50_AAS	412
Missing Link	CHIPS	MINAN	FA50_AAS	595
Mudlode	HALF CORE	BV_MLX	FA_AAS	8,369
	HALF CORE	BV_PTH	FA_AAS	1,203
	WHOLE CORE	BV_MLX	FA_AAS	36,239
	WHOLE CORE	BV_PTH	FA_AAS	3,031
Mystery	CHIPS	BV_MLX	FA_AAS	66
	CHIPS	BV_PTH	FA_AAS	117
Nannine	CHIPS	BV_PTH	FA_AAS	386
Nannine Reef	CHIPS	BV_MLX	FA_AAS	5,174
	CHIPS	BV_PTH	FA_AAS	2,432
	CHIPS	BV_PTH	SFA_AAS	17
Norie	CHIPS	BV_PTH	FA_AAS	1,831
Nottingham	CHIPS	BV_PTH	FA_AAS	568
Paddy's Flat	HALF CORE	BV_MLX	FA_AAS	253
	WHOLE CORE	BV_MLX	FA_AAS	3,754
Pegasus	CHIPS	BV_PTH	FA_AAS	820
Pegasus North	CHIPS	BV_MLX	FA_AAS	550
Pegasus South	CHIPS	BV_PTH	FA_AAS	309
Phar Lap	CHIPS	BV_MLX	FA_AAS	213
	CHIPS	BV_PTH	FA_AAS	1,944
Prohibition	HALF CORE	BV_MLX	FA_AAS	8,999
	HALF CORE	BV_PTH	FA_AAS	1,194

Prospect	Sample Type	Laboratory Code	Assay Method	Sample Count
	WHOLE CORE	BV_MLX	FA_AAS	44,692
	WHOLE CORE	BV_PTH	FA_AAS	19,144
Rand	CHIPS	BV_PTH	FA_AAS	335
	CHIPS	MINAN	FA50_AAS	1,356
	HALF CORE	MINAN	FA50_AAS	351
Rand West	CHIPS	BV_MLX	FA_AAS	1,573
Reedy Creek	CHIPS	BV_PTH	FA_AAS	623
Reedy's	CHIPS	BV_MLX	FA_AAS	1,852
	CHIPS	BV_PTH	SFA_AAS	2,062
Rhen's	CHIPS	BV_PTH	FA_AAS	54
RL9	CHIPS	BV_MLX	FA_AAS	2
	CHIPS	BV_PTH	FA_AAS	460
Rosey	CHIPS	BV_PTH	FA_AAS	1,602
Sabbath	CHIPS	BV_MLX	FA_AAS	6,920
	CHIPS	BV_PTH	FA_AAS	2,209
Sherwood	CHIPS	BV_PTH	FA_AAS	3,186
South Emu	CHIPS	BV_MLX	FA_AAS	1,161
	CHIPS	BV_PTH	FA_AAS	532
	HALF CORE	BV_PTH	FA_AAS	864
	HALF CORE	BV_MLX	FA_AAS	12,438
	QUARTER CORE	BV_MLX	FA_AAS	11
	WHOLE CORE	BV_MLX	FA_AAS	3,834
	WHOLE CORE	BV_PTH	FA_AAS	134
South Junction	HALF CORE	BV_MLX	FA_AAS	12,401
	WHOLE CORE	BV_MLX	FA_AAS	129
Surprise	CHIPS	BV_MLX	FA_AAS	1,712
	CHIPS	BV_PTH	FA_AAS	4,449
Surprise West	CHIPS	BV_PTH	FA_AAS	1,317
Three Sisters	CHIPS	BV_MLX	FA_AAS	166
	CHIPS	BV_PTH	FA_AAS	3,985
Turn of the Tide	CHIPS	BV_MLX	FA_AAS	453
	CHIPS	BV_PTH	FA_AAS	2,287
	CHIPS	MINAN	FA50_AAS	1,616
Tough Go	CHIPS	BV_PTH	FA_AAS	78
	CHIPS	MINAN	FA50_AAS	490
Triton	CHIPS	BV_MLX	FA_AAS	334
	CHIPS	BV_PTH	FA_AAS	59
	CHIPS	MINAN	FA50_AAS	692
	HALF CORE	BV_PTH	FA_AAS	685
	HALF CORE	BV_MLX	FA_AAS	6,964
	HALF CORE	MINAN	FA50_AAS	790
	WHOLE CORE	BV_MLX	FA_AAS	2,947
	WHOLE CORE	BV_PTH	FA_AAS	351
	WHOLE CORE	MINAN	FA50_AAS	54
Tulpar	CHIPS	BV_PTH	FA_AAS	161

Prospect	Sample Type	Laboratory Code	Assay Method	Sample Count
Unicorn	CHIPS	BV_PTH	FA_AAS	196
Vivian's	CHIPS	MINAN	FA50_AAS	431
	CORE	BV_PTH	FA_AAS	174
	HALF CORE	BV_MLX	FA_AAS	8,664
	HALF CORE	BV_PTH	FA_AAS	2,103
	HALF CORE	MINAN	FA50_AAS	252
	WHOLE CORE	BV_MLX	FA_AAS	36,442
	WHOLE CORE	BV_PTH	FA_AAS	32,901
West Rand	CHIPS	BV_MLX	FA_AAS	16
	CHIPS	BV_PTH	FA_AAS	162
Whangamata	CHIPS	ALS_PTH	FAOG_AAS	796
	CHIPS	BV_PTH	FA_AAS	3,422
	CHIPS	MINAN	FA50_AAS	81
Yaloginda	CHIPS	MINAN	FA50_AAS	11
Yaloginda West	CHIPS	MINAN	FA50_AAS	1,313

11.2 LABORATORY SAMPLE PREPARATION, ASSAYING AND ANALYTICAL PROCEDURES

Samples are processed at the independent commercial laboratories listed in **Table 11-2**.

Table 11-2 Independent commercial laboratories.

Laboratory	Address	Comment
ALS	31 Denninup Way	Accreditation Status: ISO/IEC 17025
(ALS_PTH)	Malaga WA 6090	Accrediting Body: NATA
(MINAN - Minanalytical)		Corporate Accreditation No: 825
		Corporate Site No: 23001
Bureau Veritas	Bluebird Mine Site	Accreditation Status: ISO 9001.2015
(BV_MLX)	Great Northern Highway	Accrediting Body: TUV NORD
	Meekatharra WA 6642	
Bureau Veritas	6 Gauge Circuit,	Accreditation Status: ISO/IEC 17025
(BV_PTH)	Canning Vale	(2005)
	Perth WA 6155	Accrediting Body: NATA
		Corporate Accreditation No: 626
		Corporate Site No: 18466

A summary of the laboratory and assay methods are shown in **Table 11-3**. The majority of samples were sent to Bureau Veritas Bluebird for fire assay atomic absorption spectroscopy (FA_AAS).

Table 11-3 Summary of laboratories used and assay method.

Assay Type	Assay Code	Assay Description	Laboratory	Sample Count
Fire Assay	FA_AAS	Fire Assay, AAS finish.	Bureau Veritas Bluebird	496,516
	FA_AAS	Fire Assay, AAS finish.	Bureau Veritas Perth	192,015
	FA_AAS_50	Fire Assay(50g), AAS finish. Designed to distinguish priority from FA25/AAS	Minanayltical Labs Perth	1
	FA50_AAS	Fire Assay 50g, AAS finish.	Minanayltical Labs Perth	16,644
	FAOG_AAS	Ore Grade Fire Assay, AAS finish.	ALS (Perth) - Analytical Laboratory Services - Perth, WA	1,981
	SFA_AAS	Screen Fire Assay. AAS finish	Bureau Veritas Perth	63
	SFA_AAS	Screen Fire Assay. AAS finish	Minanayltical Labs Perth	6
Grand Total				706,434

11.2.1 Fire Assay

All geological samples requiring Au fire assaying are sent to Bureau Veritas at either Bluebird or Canning Vale for analysis (**Figure 11-1**).

Sample preparation process consists of;

- Crushing using a vibrating jaw crusher to achieve a maximum sample size of 4 mm.
- The sample is then weighed, and if the sample weight is greater than 3.2 kg, the sample is split into two using a Jones-type riffle splitter.
- The crushed sample is then pulverised in a Labtech LM5 Ring Mill for six minutes. For samples weighing greater than 3.2 kg the first portion is removed and second portion is homogenised in the same machine. Once complete the first portion is put back in the LM5 and both portions are homogenised.
- For every 20th sample, an approximately 25 g sample is screened to 75 microns to check that homogenising has achieved 80% passing 75 microns. The sample is dry screened with sample rubbing aiding the screening process. If the screening does not achieve the criteria of 80% passing 75 microns, then the sample is re-homogenised and on manager's discretion three or four samples from both sides of the defective sample are screened.

Analysis is carried out in the following manner;

- A (nominally) 40 g charge of prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents and then cupelled to yield a precious metal bead.
- The bead is then dissolved in acid and analysed by atomic absorption spectroscopy against matrix-matched standards.
- Samples returning assay values in excess of 100g/t Au are repeated using a gravimetric finish.

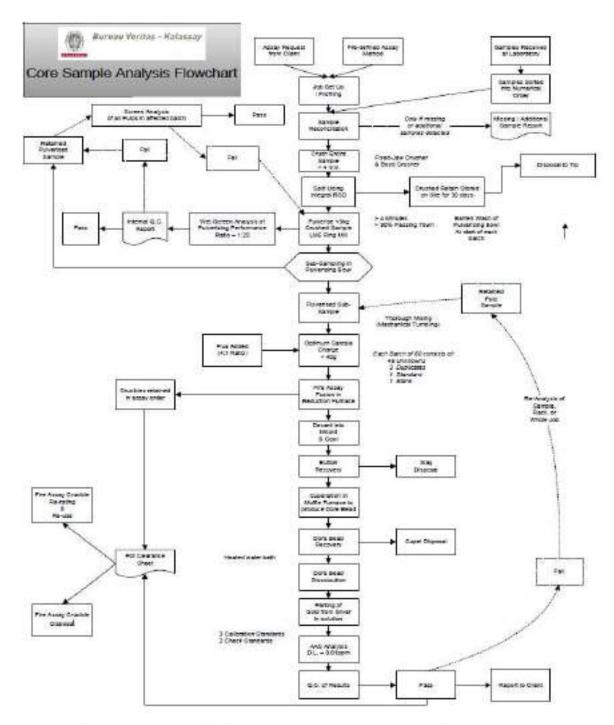


Figure 11-1 Representative fire assay sample flow chart Bureau Veritas. Source: Westgold.

11.2.2 Screen Fire Assay

A screen fire assay uses the same analysis technique as traditional fire assaying, although screen fire assays use a larger volume of sample (typically 1 kg) which is screened (usually to -75 micron or -106 micron) to separate coarse gold particles from fine material. To aid in distinguishing the proportion of coarse and fine gold within the sample the following results are included in a screen fire assay report:

The results of duplicate fine fraction assays, plus the mean of the results.

- The coarse fraction gold assay.
- Weights of both the fine and coarse fractions.
- A "total" gold calculation for the 1 kg sample based on the weighted average of the coarse and fine fractions.

11.3 QUALITY CONTROL PROCEDURES AND QUALITY ASSURANCE

11.3.1 Quality Control Procedures

QA/QC consists of regular insertion and submission of blanks, field duplicates and certified standard material (CRMs), as well as regular repeat analysis of the course reject material. As a minimum standard, at least one blank is inserted every one hundred samples and at least one CRM is inserted every twenty-five samples. Extra blanks / CRMs are inserted for diamond core and in the case of known instances of coarse gold. In addition, internal laboratory standard reference material is also regularly analysed at a rate of one in every twenty samples. In addition, internal laboratory standard reference material is also regularly analysed at a rate of one in every twenty samples.

QA/QC assay results are reviewed by the geologist in charge of each prospect as the assays are delivered to site. In addition, monthly reports are generated by the geology team with the assistance of database administrator, including control charts for assays returned for standards and blanks, and comparison plots of duplicate assays. Exploration and Resource Development programs have a QA/QC reports generated at the end of each drilling program.

When assays are imported into Westgold's geological database, the standards and blanks are automatically checked, and pass/fail criteria applied. If a batch fails, it is assessed for possible reasons and the procedure specifies the following appropriate actions:

- The sample cutsheet is checked for errors or misallocation of standard.
 - A single failure with no apparent cause, in a length of waste, may be accepted by the Authorised Person (Senior Geologist).
 - A failure near or in a length of mineralisation, will result in a request to the laboratory for re-assay of relevant samples by the Authorised Person (Senior Geologist). The re-assayed results will be re-loaded and checked against QA/QC again.
 - The actions taken are recorded against the standard sample in the database.

All assays are loaded into the live database. Those assays with outstanding QA/QC queries, after the above procedures, are assessed and can be excluded from the resource estimation process.

Table 11-4 Westgold-inserted CRM and blank standards for gold for the reporting period to July 2024.

Standard	Element	Unit	Method	Expected Value	Standard Deviation	Au -3SD	Au +3SD
BLANK	Au	ppm	UN_UN	0.00	0.10	0.00	0.30
G300-8	Au	PPM	FA_AAS	1.07	0.06	0.89	1.25
G300-9	Au	PPM	FA_AAS	1.53	0.06	1.35	1.71
G308-3	Au	PPM	FA_AAS	2.50	0.11	2.15	2.84
G310-3	Au	PPM	FA_AAS	0.07	0.02	0.01	0.13
G310-6	Au	PPM	FA_UN	0.65	0.04	0.53	0.77
G310-9	Au	PPM	FA_AAS	3.29	0.14	2.87	3.71
G311-6	Au	ppm	FA_UN	0.22	0.02	0.16	0.28
G312-1	Au	ppm	FA_UN	0.88	0.09	0.61	1.15
G312-2	Au	ppm	FA_UN	1.51	0.13	1.12	1.90
G313-5	Au	ppm	FA_UN	7.07	0.29	6.20	7.94
G314-6	Au	ppm	FA_UN	1.98	0.07	1.77	2.19
G314-7	Au	ppm	FA_UN	2.45	0.10	2.15	2.75
G315-9	Au	PPM	FA_UN	1.02	0.04	0.90	1.14
G319-5	Au	ppm	FA_UN	3.92	0.12	3.56	4.28
G398-2	Au	PPM	FA_AAS	0.50	0.04	0.38	0.62
G398-4	Au	PPM	FA_AAS	0.66	0.05	0.51	0.81
G900-2	Au	PPM	FA_AAS	1.48	0.06	1.30	1.66
G900-5	Au	PPM	FA_AAS	3.21	0.13	2.82	3.59
G901-5	Au	PPM	FA_UN	1.65	0.07	1.44	1.86
G901-7	Au	PPM	FA_AAS	1.52	0.06	1.34	1.70
G904-8	Au	PPM	FA_AAS	5.53	0.18	4.99	6.07
G906-3	Au	PPM	FA_AAS	3.33	0.14	2.92	3.74
G906-8	Au	PPM	FA_AAS	7.24	0.27	6.43	8.05
G911-6	Au	ppm	FA_AAS	0.17	0.01	0.14	0.20
G913-10	Au	ppm	FA_AAS	7.09	0.25	6.34	7.84
G913-7	Au	ppm	FA_UN	2.31	0.10	2.01	2.61
G914-2	Au	ppm	FA_UN	2.48	0.07	2.27	2.69
G914-6	Au	ppm	FA_UN	3.21	0.12	2.85	3.57
G914-7	Au	ppm	FA_UN	9.81	0.30	8.91	10.71
G915-6	Au	ppm	FA_UN	0.67	0.04	0.55	0.79
G915-9	Au	ppm	FA_UN	9.82	0.32	8.86	10.78
G916-3	Au	ppm	FA_UN	1.01	0.04	0.89	1.13
G916-9	Au	PPM	FA_UN	3.13	0.19	2.56	3.70
G917-10	Au	ppm	FA_UN	3.33	0.13	2.94	3.72
G918-10	Au	ppm	FA_UN	1.46	0.05	1.31	1.61
G919-3	Au	ppm	FA_UN	0.87	0.04	0.75	0.99
G998-3	Au	PPM	FA_AAS	0.81	0.05	0.66	0.96
GLG302-3	Au	PPB	FA_AAS	30.79	5.73	13.59	48.00
GLG314-2	Au	ppm	UN_UN	0.00	0.00	0.00	0.01

11.3.2 Quality Control Analysis

11.3.2.1 Laboratory Summary

During the reporting period from July 15, 2015 to July 2024, a total of 5,552 sample batches were submitted for gold fire assay to Bureau Veritas and ALS laboratories as summarised in **Table 11-5**. These represented 706,434 drill hole samples, 12,832 field duplicates and 45,696 Company certified standards and blanks. Results are summarised in the following tables and charts. No significant issues were noted other than the occasional outliers which were individually investigated and resolved.

Table 11-5 Laboratory summary for Au fire assay July 15, 2015 to June 30, 2024

Laboratories	ALS_PTH	BV_MLX	BV_PTH	MinAn
No. of Batches	9	4,098	1,343	102
No. of DH Samples	1,981	495,768	192,057	16,628
No. of QC Samples	122	1,991	9,674	1,036
No. of Standard Samples	100	32,895	11,414	1287

11.3.2.2 Westgold Submitted QA/QC samples.

Table 11-6 QC category ratios July 15, 2015 to June 30, 2024

QC_Category	DH Sample Count	QC Sample Count	Ratio of QC Samples to DH Samples
Field duplicate	706,434	4146	1:170
Lab Pulp Checks	706,434	8433	1:84
Original Field sample	706,434	225	1:3140
Lab Pulp Split	706,434	18	1:39246

Table 11-7 Standard type ratios July 15, 2015 to June 30, 2024

Standard Type	DH Sample Count	Standard Type Count	Standard Sample Count	Ratio of QC Standard to DH Samples	
CLIENT	706,434	47	45,696	1:15	

Table 11-8 Standards submitted July 15, 2015 to June 30, 2024

Au Standard(s)					No. of		Calculate	ed Values	
Std Code	Method	Exp	Exp Value	Exp SD	No. of Samples	Mean Au	SD	cv	Mean
BLANK	FA_AAS	Method FA_AAS	0	0.1	15087	0.01	0.04	4.8513	Bias 0.00%
BLANK	FA50_AAS	FA50_AAS	0	0.1	553	0.01	0.01	0.9919	0.00%
BLANK	FAOG_AAS	FAOG_AAS	0	0.1	52	0.01	0	0.3727	0.00%
G300-8	FA_AAS	FA_AAS	1.07	0.06	12	1.05	0.03	0.0302	-1.99%
G300-8	FA50_AAS	FA50_AAS	1.07	0.06	17	1.06	0.04	0.0332	-0.60%
G300-9	FA AAS	FA AAS	1.53	0.06	20	1.47	0.03	0.0207	-3.75%
G300-9	FA50_AAS	FA50_AAS	1.53	0.06	16	1.51	0.05	0.031	-1.54%
G308-3	FA_AAS	FA_AAS	2.5	0.1145	588	2.43	0.25	0.1021	-2.76%
G310-3	FA AAS	FA AAS	0.07	0.02	64	0.06	0.01	0.1108	-12.50%
G310-3	FA50_AAS	FA50_AAS	0.07	0.02	25	0.06	0	0.0669	-11.83%
G310-6	FA50_AAS	FA50_AAS	0.65	0.04	21	0.63	0.02	0.0318	-2.64%
G310-9	FA AAS	FA AAS	3.29	0.14	741	3.24	0.27	0.0845	-1.45%
G310-9	FA50_AAS	FA50_AAS	3.29	0.14	138	3.21	0.4	0.1242	-2.36%
G310-9	FAOG_AAS	FAOG_AAS	3.29	0.14	15	3.29	0.11	0.0327	0.12%
G311-6	FA_AAS	FA_AAS	0.22	0.02	170	0.21	0.01	0.0556	-2.51%
G312-1	FA_AAS	FA_AAS	0.88	0.09	4509	0.89	0.06	0.0698	1.16%
G312-2	FA_AAS	FA_AAS	1.51	0.13	459	1.53	0.18	0.1181	1.00%
G313-5	FA_AAS	FA_AAS	7.07	0.29	236	7.03	0.12	0.0168	-0.58%
G313-7	FA_AAS	FA_AAS	6.93	0.23	211	6.9	0.86	0.1248	-0.46%
G314-6	FA_AAS	FA_AAS	1.98	0.07	5397	1.98	0.15	0.0747	-0.21%
G314-7	FA_AAS	FA_AAS	2.45	0.1	144	2.46	0.1	0.0389	0.26%
G315-9	FA_AAS	FA_AAS	1.02	0.04	35	1	0.17	0.1659	-2.05%
G316-6	FA_AAS	FA_AAS	1.4	0.05	207	1.54	0.86	0.5587	10.27%
G319-4	FA_AAS	FA_AAS	0.5	0.03	127	0.49	0.02	0.0438	-2.00%
G319-5	FA_AAS	FA_AAS	3.92	0.12	1524	3.92	0.3	0.0759	-0.08%
G398-2	FA_AAS	FA_AAS	0.5	0.04	985	0.5	0.04	0.0788	-0.40%
G398-2	FA50_AAS	FA50_AAS	0.5	0.04	137	0.49	0.02	0.0427	-2.79%
G398-4	FAOG_AAS	FAOG_AAS	0.66	0.05	18	0.65	0.02	0.0312	-1.52%
G900-2	FA_AAS	FA_AAS	1.48	0.06	631	1.47	0.11	0.0776	-0.70%
G900-2	FA50_AAS	FA50_AAS	1.48	0.06	136	1.45	0.04	0.0308	-1.86%
G901-5	FAOG_AAS	FAOG_AAS	1.65	0.07	15	1.65	0.1	0.0626	-0.20%
G901-7	FA_AAS	FA_AAS	1.52	0.06	62	1.47	0.09	0.0604	-3.58%
G904-8	FA_AAS	FA_AAS	5.53	0.1799	139	5.39	0.7	0.1297	-2.48%
G906-3	FA_AAS	FA_AAS	3.33	0.1362	12	3.27	0.05	0.0156	-1.71%
G906-3	FA50_AAS	FA50_AAS	3.33	0.1362	17	3.28	0.1	0.031	-1.61%
G906-8	FA_AAS	FA_AAS	7.24	0.2704	10	7.29	0.1	0.0131	0.73%
G906-8	FA50_AAS	FA50_AAS	7.24	0.2704	12	7.13	0.28	0.04	-1.56%
G911-10	FA_AAS	FA_AAS	1.3	0.05	21	1.36	0.08	0.0594	4.25%

Au Standard(s)					No. of		Calculate	ed Values	
Std Code	Method	Exp Method	Exp Value	Exp SD	Samples	Mean Au	SD	CV	Mean Bias
G911-6	FA_AAS	FA_AAS	0.17	0.01	52	0.16	0.01	0.0521	-3.72%
G911-6	FA50_AAS	FA50_AAS	0.17	0.01	18	0.16	0.01	0.0326	-5.00%
G913-10	FA_AAS	FA_AAS	7.09	0.25	605	7	0.58	0.083	-1.27%
G913-10	FA50_AAS	FA50_AAS	7.09	0.25	82	6.79	1.16	0.1716	-4.28%
G913-7	FA_AAS	FA_AAS	2.31	0.1	64	2.31	0.11	0.0472	0.13%
G914-2	FA_AAS	FA_AAS	2.48	0.07	3286	2.48	0.17	0.069	0.01%
G914-6	FA_AAS	FA_AAS	3.21	0.12	287	3.19	0.33	0.1042	-0.62%
G914-7	FA_AAS	FA_AAS	9.81	0.3	64	9.72	1.49	0.1538	-0.95%
G915-6	FA_AAS	FA_AAS	0.67	0.04	968	0.68	0.3	0.4457	0.96%
G915-9	FA_AAS	FA_AAS	9.82	0.32	3201	9.88	0.24	0.0247	0.59%
G916-3	FA_AAS	FA_AAS	1.01	0.04	92	0.99	0.03	0.0285	-1.79%
G916-7	FA_AAS	FA_AAS	4.51	0.14	64	4.37	0.45	0.1034	-3.05%
G916-9	FA_AAS	FA_AAS	3.13	0.19	230	3.15	0.1	0.0303	0.52%
G917-10	FA_AAS	FA_AAS	3.33	0.13	145	3.31	0.3	0.091	-0.54%
G918-10	FA_AAS	FA_AAS	1.46	0.05	230	1.47	0.02	0.0148	0.87%
G918-6	FA_AAS	FA_AAS	3.38	0.11	109	3.3	0.06	0.0184	-2.30%
G919-3	FA_AAS	FA_AAS	0.87	0.04	1791	0.87	0.17	0.192	0.53%
G921-8	FA_AAS	FA_AAS	3	0.09	85	3.03	0.15	0.0512	0.84%
G922-3	FA_AAS	FA_AAS	1	0.04	15	0.95	0.07	0.0714	-4.73%
G922-6	FA_AAS	FA_AAS	1.94	0.07	20	1.97	0.02	0.011	1.42%
G998-3	FA_AAS	FA_AAS	0.81	0.05	1416	0.81	0.07	0.081	0.13%
G998-3	FA50_AAS	FA50_AAS	0.81	0.05	115	0.81	0.07	0.0853	-0.58%
GLG314-2	FA_AAS	FA_AAS	0	0.0018	24	0	0	0.1909	60.42%

11.3.2.3 Westgold Submitted QA/QC Samples Outputs for Period July 15, 215 to June 30, 2024.

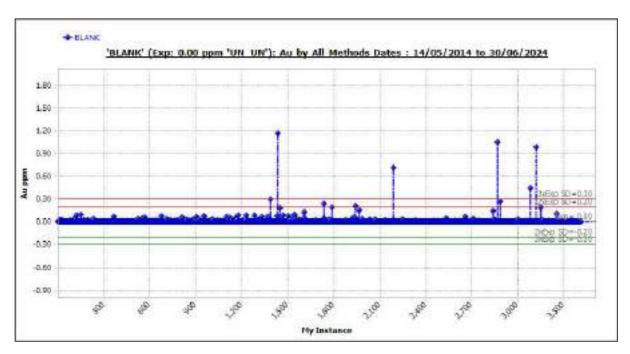


Figure 11-2 Standard BLANK: Outliers Included.

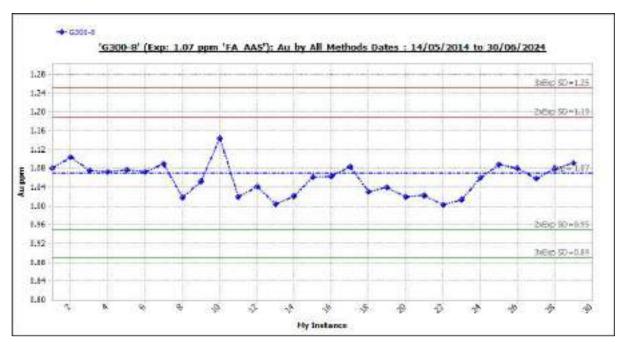


Figure 11-3 Standard G300-8: Outliers Included.

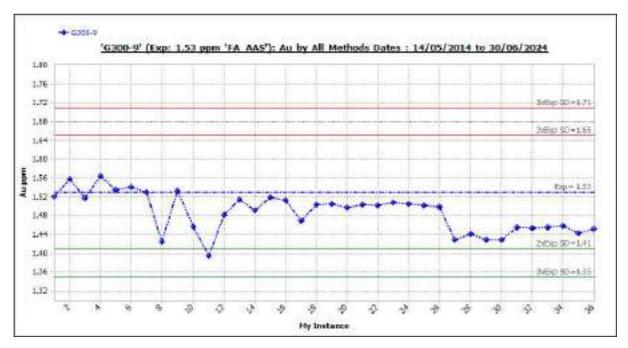


Figure 11-4 Standard G300-9: Outliers Included.

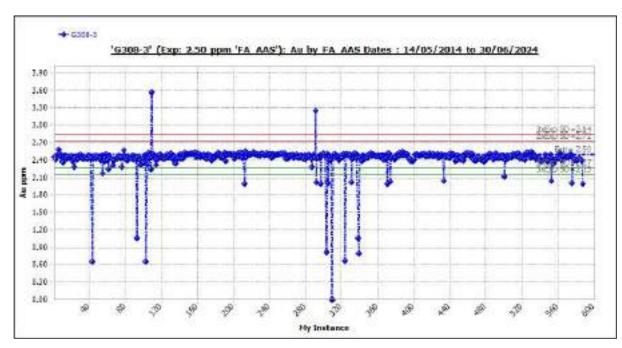


Figure 11-5 Standard G308-3: Outliers Included.

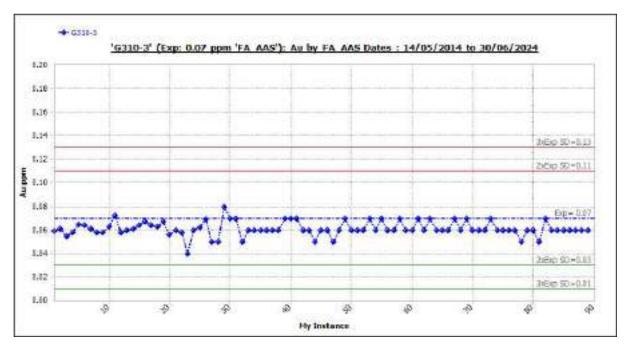


Figure 11-6 Standard G310-3: Outliers Included.

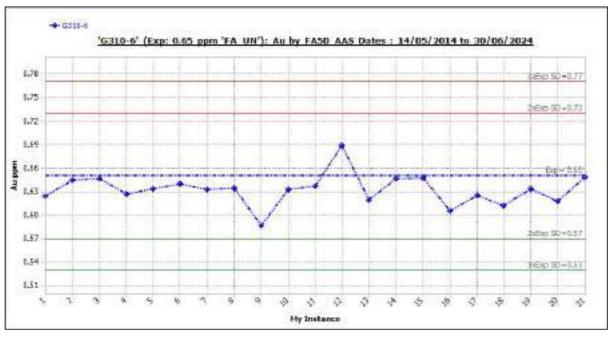


Figure 11-7 Standard G310-6: Outliers Included.

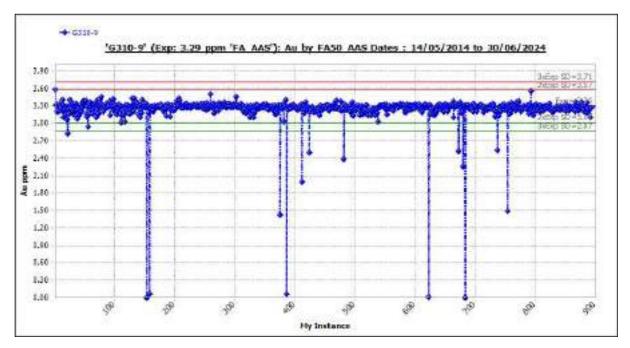


Figure 11-8 Standard G310-9: Outliers Included.

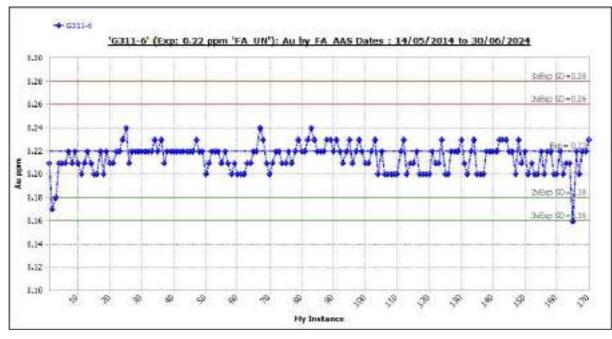


Figure 11-9 Standard G311-6: Outliers Included.

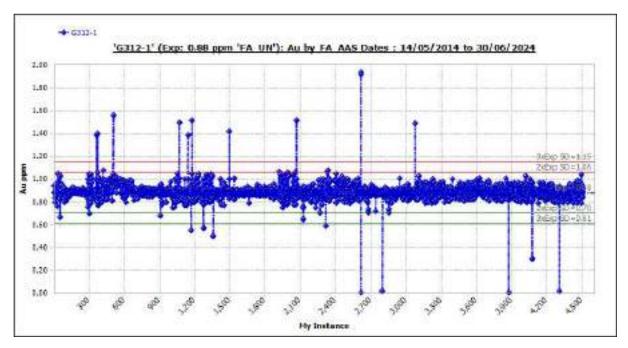


Figure 11-10 Standard G312-1: Outliers Included.

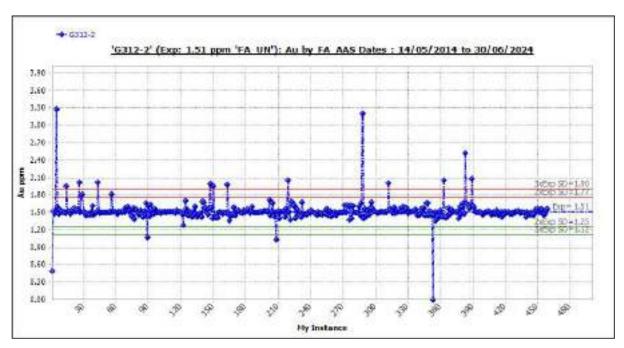


Figure 11-11 Standard G312-2: Outliers Included.

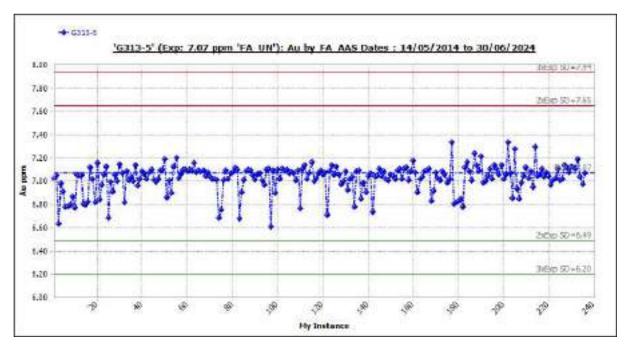


Figure 11-12 Standard G313-5: Outliers Included.

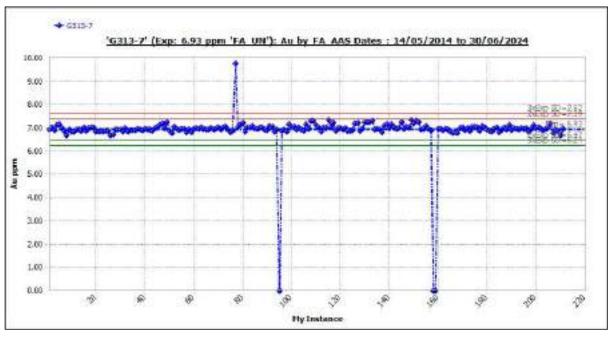


Figure 11-13 Standard G313-7: Outliers Included.

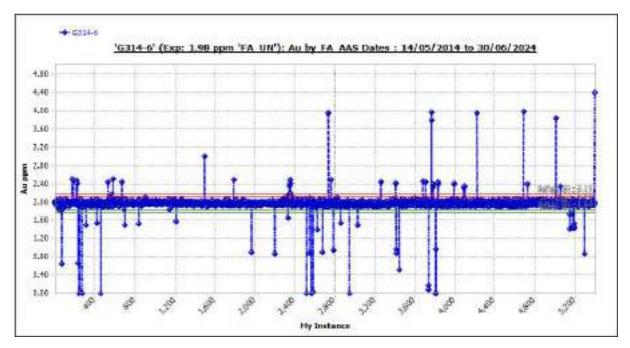


Figure 11-14 Standard G314-6: Outliers Included.

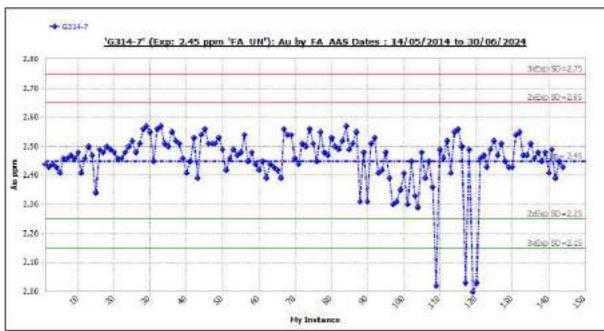


Figure 11-15 Standard G314-7: Outliers Included

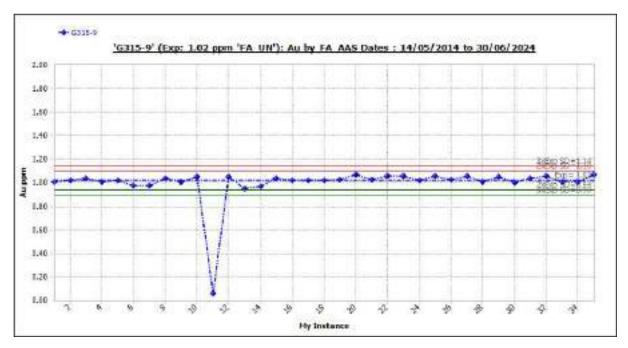


Figure 11-16 Standard G315-9: Outliers Included.

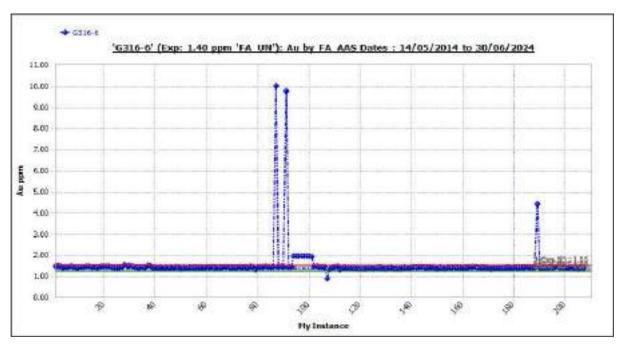


Figure 11-17 Standard G316-6: Outliers Included.

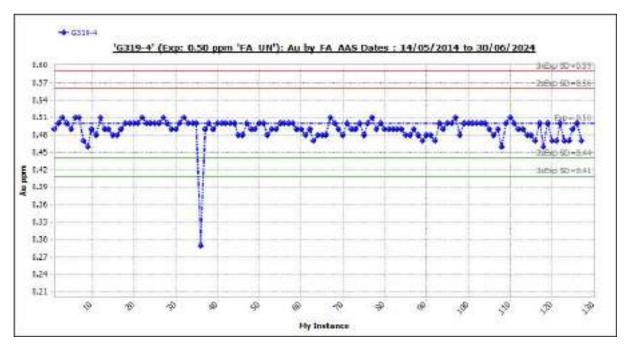


Figure 11-18 Standard G319-4: Outliers Included.

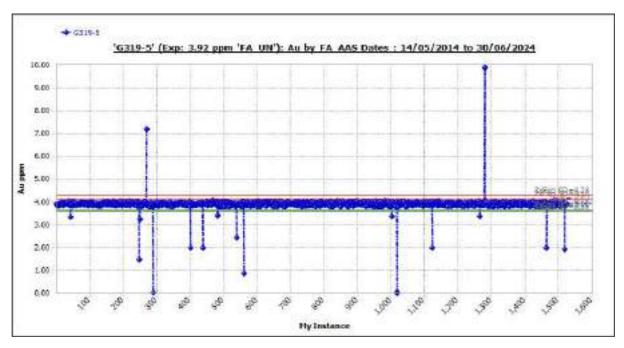


Figure 11-19 Standard G319-5: Outliers Included.

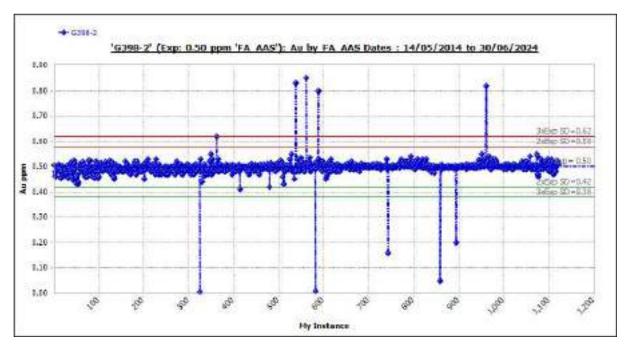


Figure 11-20 Standard G398-2: Outliers Included.

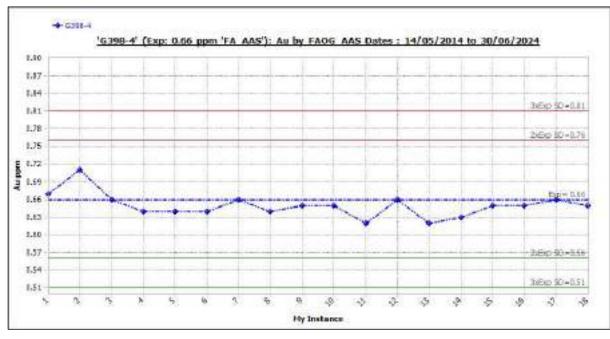


Figure 11-21 Standard G398-4: Outliers Included.

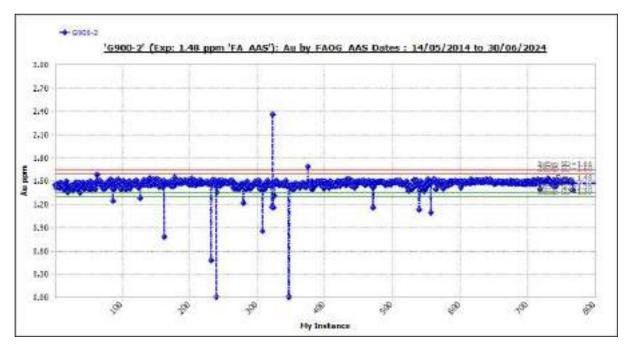


Figure 11-22 Standard G900-2: Outliers Included.

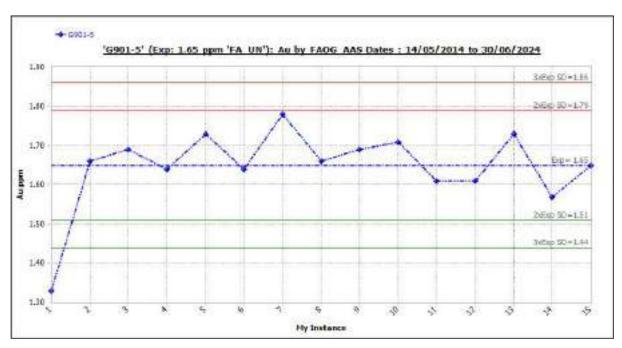


Figure 11-23 Standard G901-5: Outliers Included.

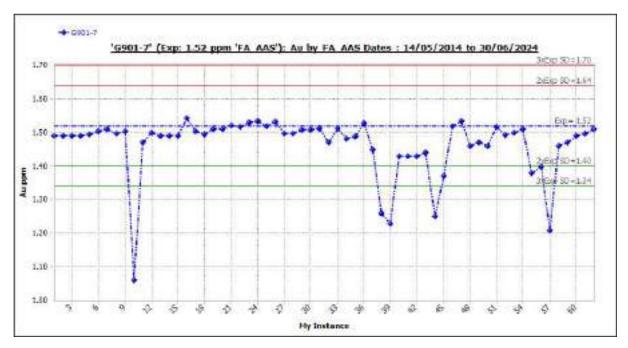


Figure 11-24 Standard G901-7: Outliers Included.

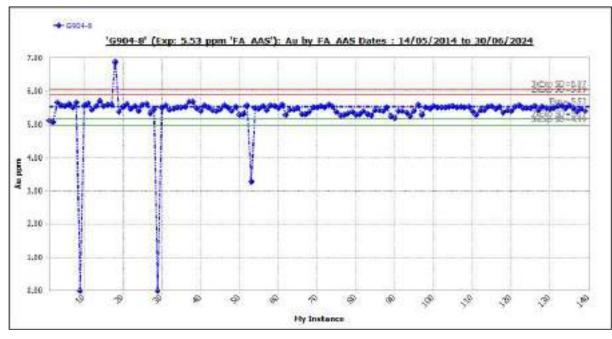


Figure 11-25 Standard G904-8: Outliers Included.

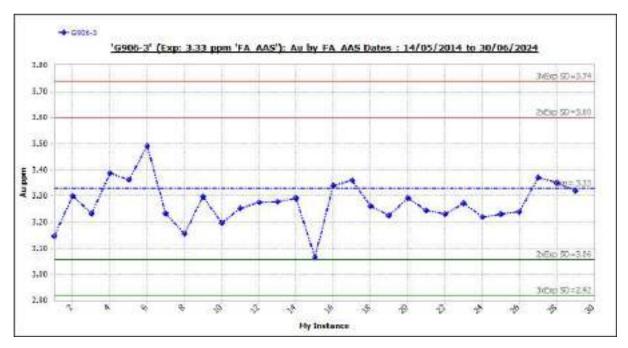


Figure 11-26 Standard G906-3: Outliers Included.

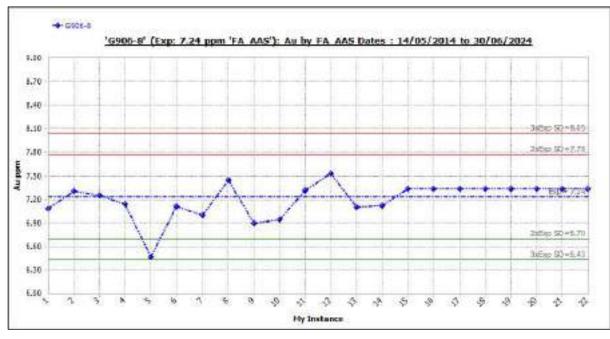


Figure 11-27 Standard G906-8: Outliers Included.

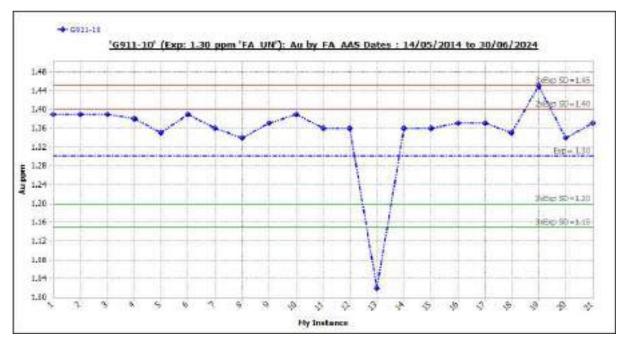


Figure 11-28 Standard G911-10: Outliers Included

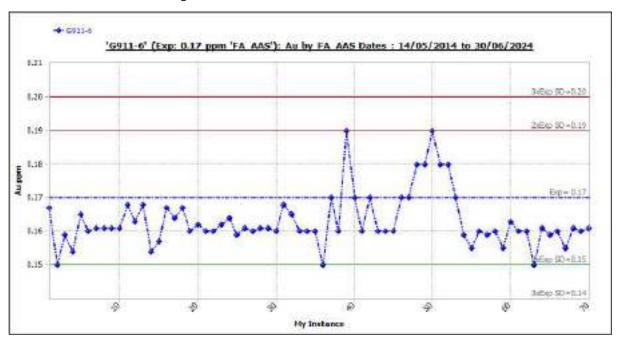


Figure 11-29 Standard G911-6: Outliers Included

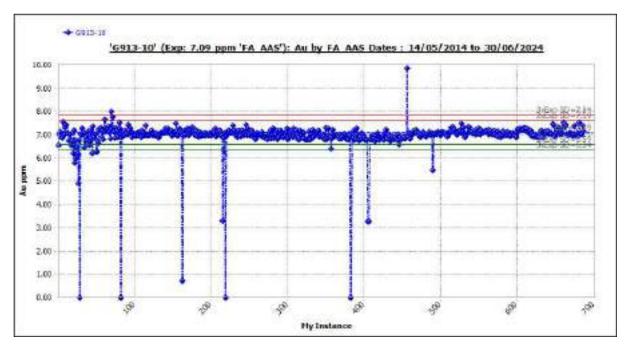


Figure 11-30 Standard G913-10: Outliers Included.

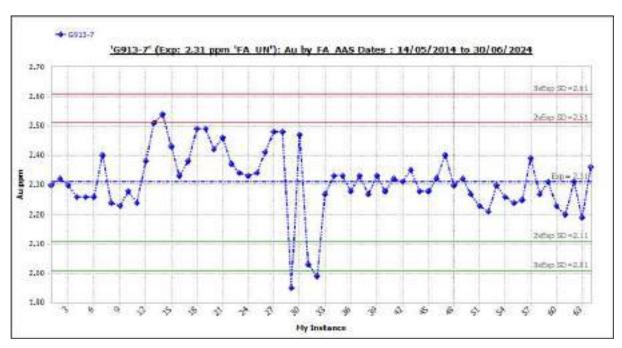


Figure 11-31 Standard G913-7: Outliers Included.

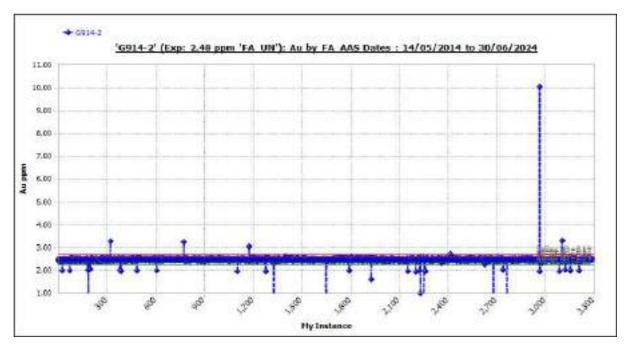


Figure 11-32 Standard G914-2: Outliers Included.

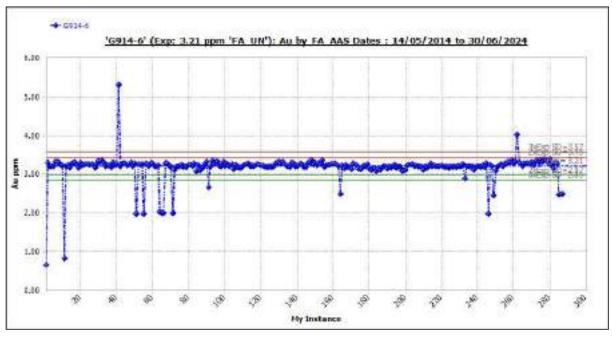


Figure 11-33 Standard G914-6: Outliers Included.

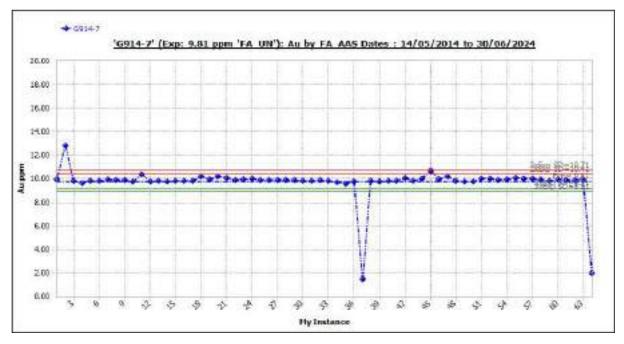


Figure 11-34 Standard G914-7: Outliers Included.

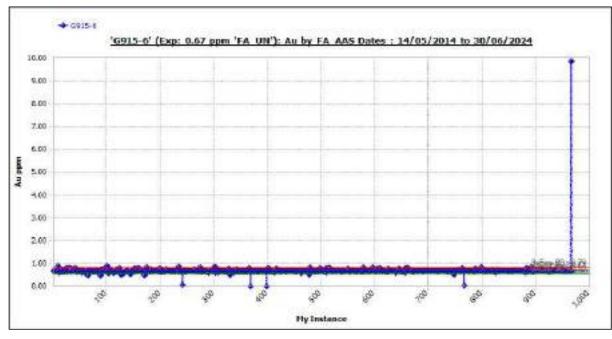


Figure 11-35 Standard G915-6: Outliers Included.

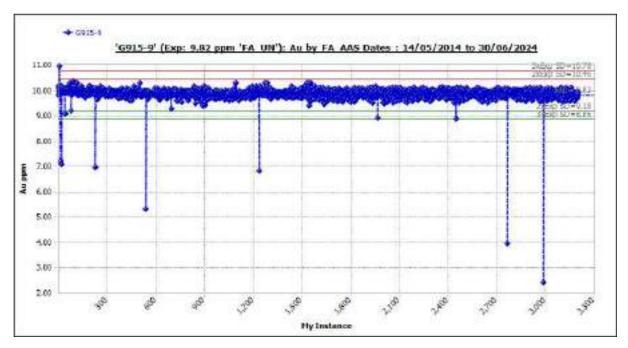


Figure 11-36 Standard G915-9: Outliers Included.

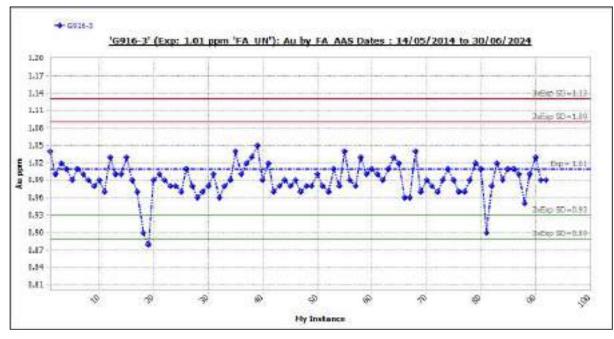


Figure 11-37 Standard G916-3: Outliers Included.

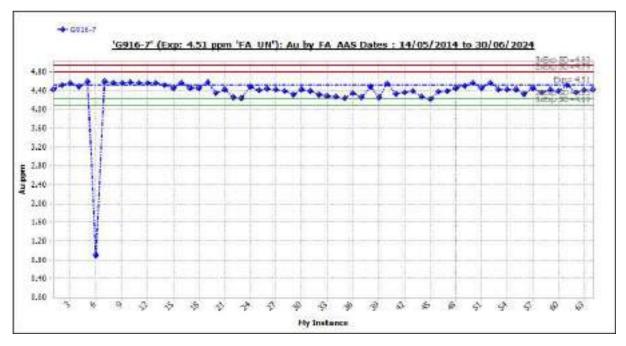


Figure 11-38 Standard G916-7: Outliers Included.

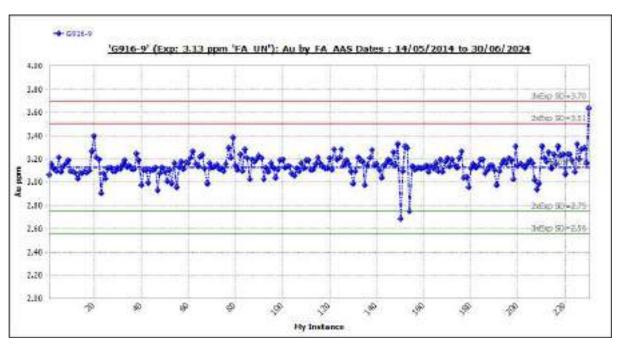


Figure 11-39 Standard G916-9: Outliers Included

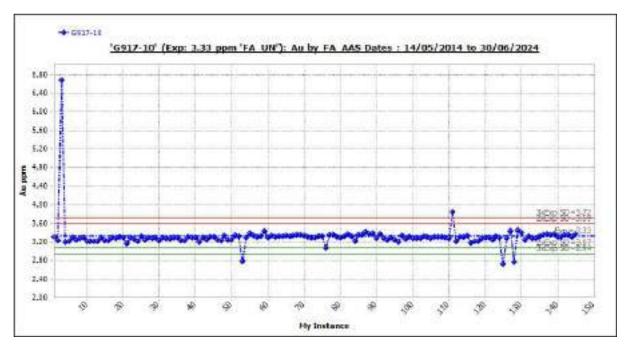


Figure 11-40 Standard G917-10: Outliers Included.

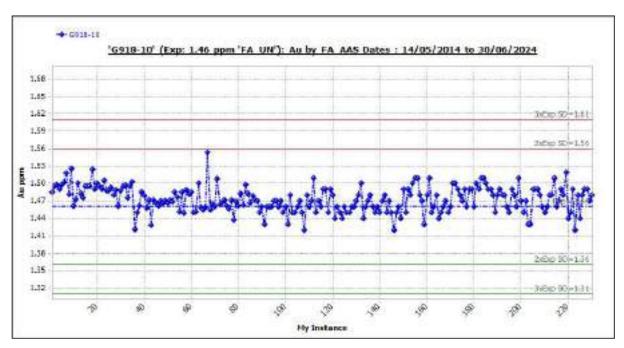


Figure 11-41 Standard G918-10: Outliers Included.

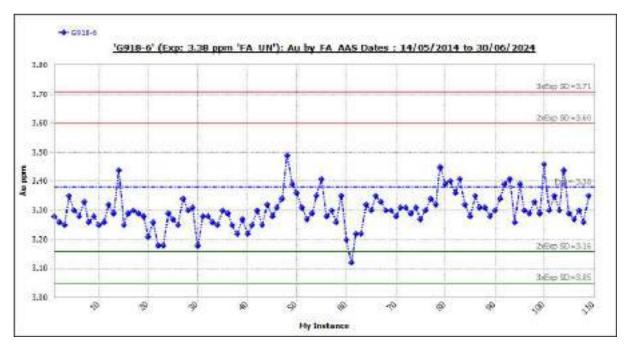


Figure 11-42 Standard G918-6: Outliers Included.

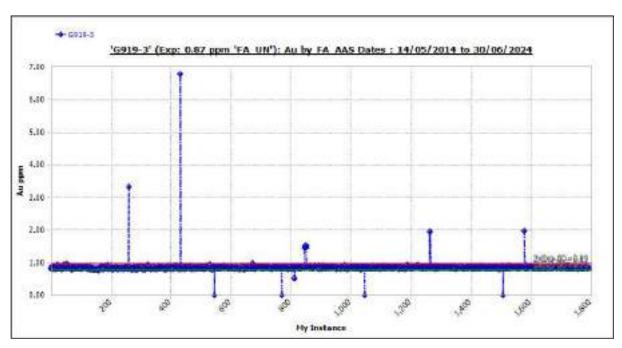


Figure 11-43 Standard G919-3: Outliers Included.

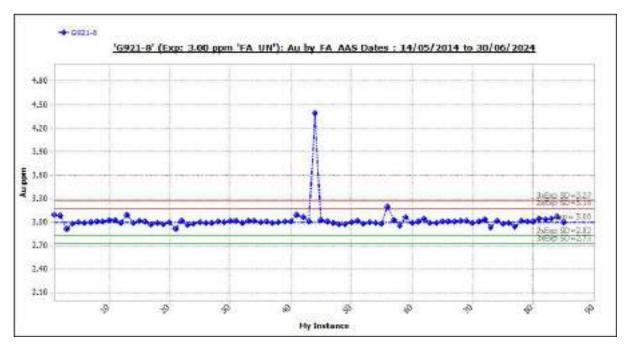


Figure 11-44 Standard G921-8: Outliers Included.

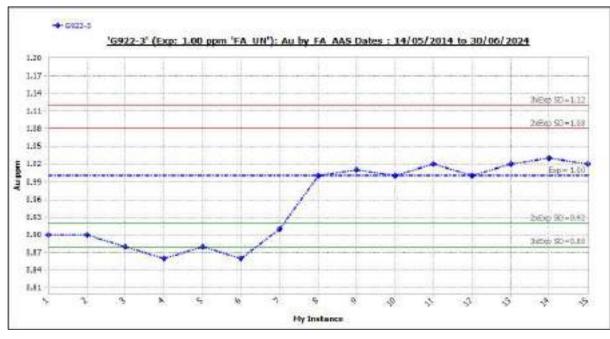


Figure 11-45 Standard G922-3: Outliers Included.

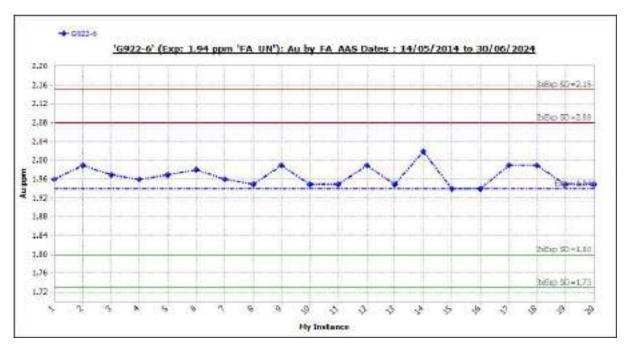


Figure 11-46 Standard G922-6: Outliers Included.

Standard G998-3: Outliers Included

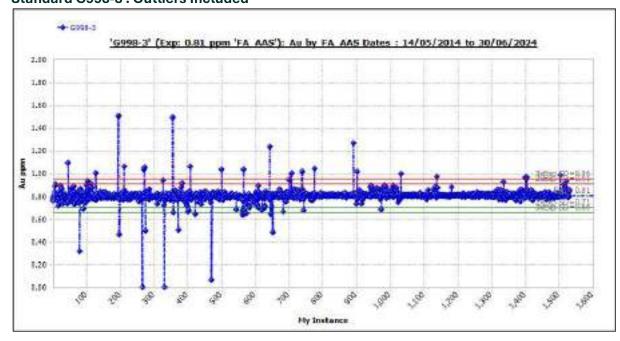


Figure 11-47 Standard G998-3: Outliers Included.

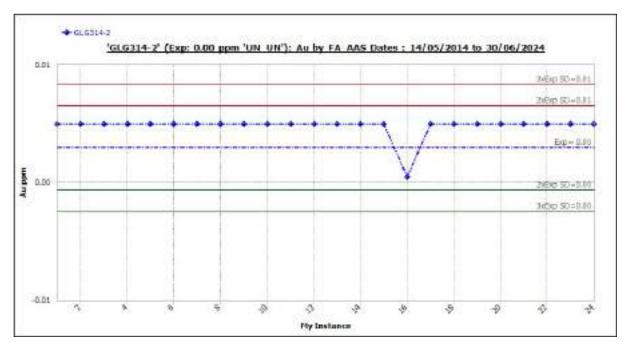


Figure 11-48 Standard GLG314-2: Outliers Included.

Table 11-9 Drill hole laboratory original (Au) v. repeat submitted July 15, 2015 to June 30, 2024.

No. of	mean	mean	SD	SD	CV	CV	sRPHD
Samples	Au1	Au2	Au1	Au2	Au1	Au2	(mean)
36,378	0.77	0.76	11.53	10.24	14.99	13.54	0.28

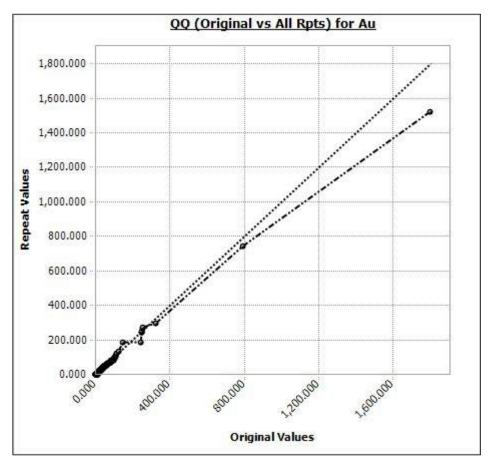


Figure 11-49 Q-Q Plot - Drillhole (Repeat Code): Original v. All Rpts for Au ppm.

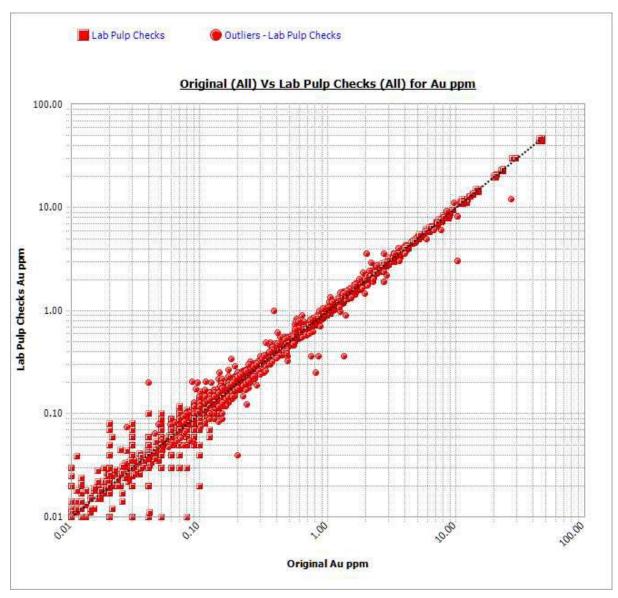


Figure 11-50 Q-Q Plot - drillhole (Repeat Code): original v. laboratory pulp checks for Au ppm.

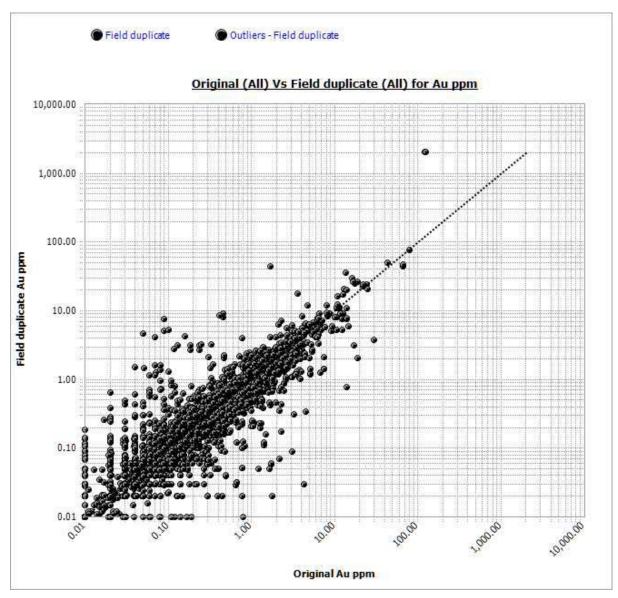


Figure 11-51 Q-Q Plot - drillhole (Repeat Code): original v. field duplicate for Au ppm.

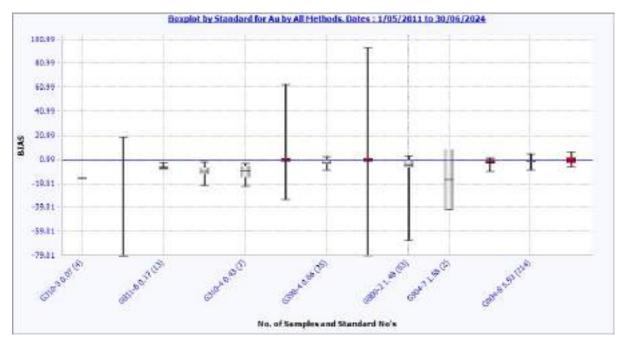


Figure 11-52 Boxplot by Standard for Au by Fire Assay (all methods).

11.3.3 Database Integrity

The Westgold corporate geological database is located on a dedicated Microsoft SQL Server 2019 (RTM-CU24) The database itself utilises the Maxwell Geoservices DataShed architecture and is a fully relational system with strong validation, triggers and stored procedures, as well as a normalised system to store analysis data.

The database itself is accessed and managed in-house using the DataShed front end, whilst routine data capture and upload is managed using Maxwell's LogChief data capture software. This provides a data entry environment which applies most of the validation rules as they are directly within the master database, ensuring only correct and valid data can be input in the field. Data are synced to the master database directly from this software, and once data have been loaded, it can no longer be edited or removed by LogChief users. Authorised users are allowed to make changes of selected collar fields. Only the Company database manager and authorised assistant have permissions allowing for modification or deletion. Validated data cannot be changed or modified unless specifically requested by the supervisors.

Westgold is using DataShed v. 4.6.3.11, utilising Data Schema (MDS) v 4.6.5 (Production). Data validation checks are performed to ensure data migration integrity, namely drill collars and coordinates, downhole direction surveys, geology, sampling, assays and QA/QC.

11.4 SAMPLE PREPARATION, SECURITY AND ANALYTICAL PROCEDURES SUMMARY

The Qualified Person considers the sample preparation, security and analytical procedures to be adequate. Any data with errors have either been corrected or excluded to ensure data used for Mineral Resource estimation are reliable.

During site visits, the Qualified Person inspects the various MGO core logging yards and directly observes how core was sampled and transferred to the care of the laboratory. The sampled trays of cut core are stacked on pallets and placed in the onsite core yard before being delivered to the laboratory by a dedicated sample transport vehicle. Regular field inspections of drill sites observing the RC sampling process are also undertaken when RC rigs are on site at MGO. In the opinion of the Qualified Person, the procedures in place ensure samples remained in the custody of appropriately qualified staff.

Monthly audits of the Bureau Veritas Bluebird facility are undertaken by Westgold senior geological staff, with the latest being conducted on July 27, 2024. These audits have confirmed the processes and equipment employed by Bureau Veritas meet industry standards.

Pulps returned from laboratory sample preparation are stored in the core yard on pallets. These remain available for re-checking of assay programs.

During the site visits, the Qualified Person found no evidence of active tampering. Procedures to prevent inadvertent contamination of assay samples have been followed, including daily hosing out of the core saw and sampling area.

12 DATA VERIFICATION

Through examination of internal Westgold documents including monthly QA/QC site reporting, the implementation of routine, control checks and personal inspections on site, the Bureau Veritas Meekatharra assay laboratory and discussions with other Westgold personnel, the Qualified Person has verified the data in this Technical Report and satisfied himself that the data is adequate for the purpose of this Technical Report.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

The MGO processes its gold mineralised ore through Westgold's Bluebird mill. Details on gold processing and relevant test-work that relate to the metallurgical performance of the mills are summarised below. Further details on processing are outlined in Section 17.

13.1 GOLD PROCESSING

The Bluebird mill has been operated by Westgold continuously since September 2015, therefore local feed variability is well understood. Various test-work programs by Westgold dating back to 2015 and those carried out by previous operators at the site have been used to understand potential impacts during crushing and milling as new production sources come online. As new production sources are delineated, testing is conducted to assess whether the metallurgy will vary significantly from the anticipated responses.

For the Bluebird Mill, feed characterisation, classification and recovery test-work is conducted on new production sources as required. Typical metallurgical test-work comprises the following:

- Head assays determination;
- Multi Element scans;
- Bond Work Index determination and Abrasion index testing;
- Grind establishment to 106 μm;
- Gravity recovery;
- Leach test on the gravity tail with the following set points:
 - o pH 10.0;
 - o CN at 200 ppm;
 - o 40% solids with site water; and
 - o 24-48 hours leach time.

In addition to the above, extended leach test-work is sometimes required using additional reagents such as lead nitrate or increased oxygen addition. Diagnostic leach test-work may also be carried out if the standard leach test shows lower than expected recoveries.

14 MINERAL RESOURCE ESTIMATES

14.1 SUMMARY

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimates prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The Consolidated Gold Mineral Resource estimate for Meekatharra (which is divided into four geographical regions, Nannine, Paddy's Flat, Reedy's and Yaloginda), is summarised in **Table 14-1**, and is effective as of June 30, 2024.

Table 14-1 Westgold Consolidated Meekatharra Gold Mineral Resources as of June 30, 2024.

Ore Body		Measured			Indicated		Measu	red and Indi	icated	Inferred		
	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au
Meekatharra North		10 7			10 7			(0 ,			(0)	
Five Mile Well	-	-	-	45,654	1.98	2,906	45,654	1.98	2,906	2,133	1.02	70
Maid Marion (OP)	-	-	-	-	-	-	-	-	-	-	-	-
Sabbath	-	-	-	51,486	1.98	3,278	51,486	1.98	3,278	72,823	2.14	5,010
Nannine												
Aladdin (OP)	68,248	2.55	5,595	460,335	1.76	26,048	528,583	1.86	31,643	45,701	1.58	2,322
Aladdin (UG)	-	-	-	40,742	2.77	3,628	40,742	2.77	3,628	58,068	3.03	5,657
Bailey's Island	-	-	-	23,357	1.43	1,074	23,357	1.43	1,074	20,741	0.91	607
Caledonian (OP)	-	-	-	41,014	1.72	2,268	41,014	1.72	2,268	61,822	1.74	3,458
Caledonian (UG)	-	-	-	163,177	3.31	17,365	163,177	3.31	17,365	84,962	3.56	9,724
Golden Shamrock	-	-	-	91,230	1.58	4,634	91,230	1.58	4,634	66,681	1.36	2,916
Nannine Reef	-	-	-	30,114	1.38	1,336	30,114	1.38	1,336	1,617	1.06	55
Three Sisters	-	-	-	9,264	1.51	450	9,264	1.51	450	425	1.37	19
Paddy's Flat												
Fatts	-	-	-	156,980	3.29	16,605	156,980	3.29	16,605	4,136	2.10	279
Fenian - Marmont	-	-	-	-	-	-	-	-	-	-	-	-
Magazine	-	-	-	2,249,266	1.35	97,626	2,249,266	1.35	97,626	1,619,605	1.30	67,693
Mickey Doolan	-	-	-	-	-	-	-	-	-	-	-	-
Golden Bar	-	-	-	374,872	1.39	16,795	374,872	1.39	16,795	49,430	1.06	1,688
Paddy's North	-	-	-	6,108,000	1.22	238,676	6,108,000	1.22	238,676	278,000	1.23	10,953
Prohibition (OP)	44,658	2.95	4,236	268,531	2.04	17,612	313,188	2.17	21,848	13,480	2.03	880
Prohibition (UG)	201,137	3.42	22,116	573,537	2.92	53,844	774,674	3.05	75,960	199,569	3.25	20,853
Vivian-Consols	28,677	5.03	4,641	184,518	6.97	41,344	213,195	6.71	45,984	92,693	5.74	17,111
Mudlode - Hendrix	101,801	4.08	13,354	725,255	3.49	81,378	827,056	3.56	94,732	316,756	3.96	40,328
Reedy's												
Boomerang – Kurara (OP)	-	-	-	187,868	1.00	6,052	187,868	1.00	6,052	737,174	1.65	39,130
Boomerang - Kurara (UG)	-	-	-	432,376	4.56	63,348	432,376	4.56	63,348	2,768,737	2.74	243,817
Callisto	-	-	-	112,836	2.03	7,364	112,836	2.03	7,364	70,451	1.59	3,601
Culculli	-	-	-	98,651	1.25	3,965	98,651	1.25	3,965	299,792	1.41	13,611
Jack Ryan (OP)	69,762	1.29	2,893	7,183	1.53	353	76,945	1.31	3,247	86,302	1.32	3,663
Jack Ryan (UG)	42,746	2.39	3,285	61,778	2.51	4,985	104,524	2.46	8,270	81,697	2.92	7,670
Midway	-	-	-	55,105	1.36	2,409	55,105	1.36	2,409	142,620	1.12	5,136
Missing Link	-	-	-	40,820	1.28	1,680	40,820	1.28	1,680	128,397	1.62	6,687

Ore Body	Measured			Indicated		Measur	red and Ind	icated		In	ferred	
	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au	Tonnes	Grade (g/t Au)	Ounces Au
Rand	-	-	-	1,123,705	1.75	63,224	1,123,705	1.75	63,224	3,181,530	2.36	241,039
RL9	-	-	-	80,000	1.74	4,475	80,000	1.74	4,475	82,000	1.42	3,744
South Emu/Triton (OP)	4,436	5.68	810	14,699	3.94	1,862	19,135	4.34	2,672	123	4.80	19
South Emu/Triton (UG)	313,413	4.49	45,243	745,684	3.99	95,657	1,059,097	4.14	140,901	1,134,011	4.41	160,785
Thompson's Bore	-	-	-	-	-	-	-	-	-	240,970	1.48	11,466
Turn of the Tide	-	-	-	256,263	1.40	11,535	256,263	1.40	11,535	199,791	1.20	7,708
West Zone	-	-	-	8,367	1.24	334	8,367	1.24	334	37,126	1.25	1,492
Yaloginda												
Albury Heath	-	-	-	193,725	1.74	10,837	193,725	1.74	10,837	14,858	3.28	1,567
Batavia	10,633	2.70	923	98,705	2.31	7,331	109,338	2.35	8,254	41,449	2.28	3,038
Bluebird Group (OP)	38,280	2.72	3,348	460,380	1.67	24,709	498,660	1.75	28,056	122,405	2.49	9,797
Bluebird Group (UG)	304,177	4.09	39,998	4,368,252	3.03	425,158	4,672,429	3.10	465,156	6,032,318	2.55	495,099
Euro	-	-	-	-	-	-	-	-	-	2,037,000	1.30	85,138
Gibraltar	-	-	-	-	-	-	-	-	-	-	-	
GNH	-	-	-	331,000	1.59	16,900	331,000	1.59	16,900	1,326,000	1.43	61,100
Jess	-	-	-	-	-	-	-	-	-	-	-	-
Rhen's Group	-	-	-	2,588,769	1.41	117,688	2,588,769	1.41	117,688	1,698,498	1.34	72,956
Romsey	-	-	-	258,937	1.30	10,823	258,937	1.30	10,823	76,930	1.62	4,007
Lukes Junction	-	-	-		-	-	-	-	-	394,147	1.50	19,008
Surprise	-	-	-		-	-	-	-		•	-	
Surprise West	-	-	-		-	-	-	-		•	-	
Surprise Supergene	-	-	-	1	1	-	-	-	-	1	-	-
Whangamata	4,428	1.19	169	196,052	1.12	7,060	200,480	1.12	7,229	167,521	1.48	7,971
Stockpiles												
Bluebird ROM	16,766	0.89	482	1	1	-	16,766	0.89	482	-	-	-
Fine Ore Stocks Including Scats	58,185	2.10	3,938	-	-	-	58,185	2.11	3,938		-	
Bluebird GIC	13,621	10.65	4,666		-	-	13,621	10.65	4,666	-	-	-
Paddy's Flat Mines ROM	53,988	0.94	1,634	-	-	-	53,988	0.94	1,634	-	-	
Reedy Mines ROM	44,934	0.85	1,228	-	-	-	44,934	0.85	1,228	-	-	-
Yaloginda Mines ROM	162,674	0.61	3,179	-	-	-	162,674	0.61	3,179	-	-	-
Nannine Mines ROM	-	-	-	-	-	-	-	-	-	-	-	-
Meekatharra North Mine ROM	-	-	-	-	-	-	-	-	-	-	-	-
Totals	1,582,564	3.18	161,738	23,318,486	2.02	1,514,615	24,901,050	2.09	1,676,353	24,090,489	2.19	1,698,872

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

This section describes the preparation and estimation of Mineral Resources for Meekatharra Gold Operations (MGO). The Mineral Resource estimates reported herein were prepared under the supervision of Mr. Jake Russell, MAIG, in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F. Mr. Russell is General Manager – Technical Services at Westgold and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the JORC Code, 2012 Edition and fulfils the requirements to be a 'Qualified Person' for the purposes of NI 43-101.

There are no material differences between the definitions of Mineral Resources under the applicable definitions adopted by the Canadian Institute of Mining, Metallurgy and Petroleum (the CIM Definition Standards) and the corresponding equivalent definitions in the JORC Code for Mineral Resources.

In the opinion of Mr. Russell, the Mineral Resource estimation reported herein is a reasonable representation of the consolidated gold Mineral Resources found at MGO at the current level of sampling.

14.2 MEEKATHARRA GOLD OPERATIONS

MGO is geographically divided into five areas as shown in **Figure 4-1**. The subdivision was established to assist with distinguishing those Mineral Resources proximal to existing Westgold infrastructure (i.e. Yaloginda – Bluebird Mill) and those 'satellite' Mineral Resources (i.e. Meekatharra North, Paddy's Flat, Nannine and Reedy's).

Figure 14-1 shows Location of Westgold MGO Mineral Resources and Mineral Reserves effective June 30, 2024. The plan also depicts the project areas within MGO.

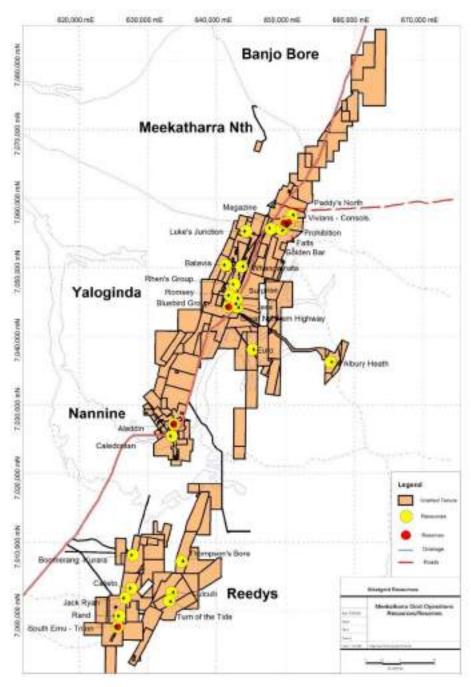


Figure 14-1 Location of Westgold MGO Mineral Resources and Mineral Reserves effective 30 June 2024. Source: Westgold.

14.3 PADDY'S FLAT

Paddy's Flat consists of deposits located within approximately 15 km north of the Bluebird Mill and includes the underground deposits of Fatts, Prohibition, Vivian-Consols, and Mudlode-Hendrix, which are all accessible from the Consols decline.

The area also consists of the reported open pit deposits of Magazine, Golden Bar, and the Paddy's North group (Democrat, Halcyon, Halcyon West, Commodore, Butler, Ingliston, and Alberts).

Figure 14-2 Location of deposits of the MGO Paddy's Flat Mineral Resources - Source: Westgold.

The Paddy's Flat underground mine halted production in March 2024 during the reporting period. Ongoing exploration and resource development works continued in parallel with mining activities until the end of the reporting period. This includes the Fatts, Prohibition, Vivian – Consols and Mudlode – Hendrix Mineral Resource Estimates.

All Paddy's Flat deposits are reported within optimised pit shells above a likely economic cut-off grade for the open pit mineable portion of the Mineral Resource Estimate. The underground portion of the Mineral Resource Estimates are reported above a depth for which ground conditions are conducive to underground mining and above a likely economic cut-off grade.

14.3.1 Fatt's

14.3.1.1 Summary

The Fatt's deposit is located approximately 15 km North of the Bluebird Mill. The deposit has no surface expression. It is accessible from the Consols decline.

All production for the Fatt's mineralisation has been conducted by Westgold. Mining of the Fatt's mineralisation commenced in 2016 and was last mined in January 2022. Production for Fatt's for the Westgold project to date has produced 283,748t at 2.62g/t for 23,897oz as of June 30, 2024.

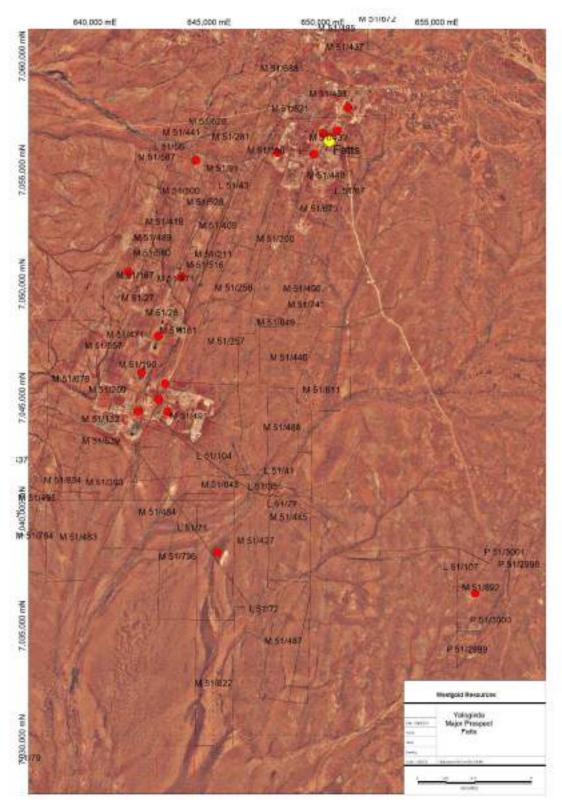


Figure 14-3 Location of the Fatt's deposit - Source: Westgold.

14.3.1.2 Modelling Domains

The Fatt's mineralisation is wireframed to a 2.0 g/t cut-off grade coincident with a statistical population break. A low-grade halo surrounding the high-grade domains has been modelled to a 0.3 g/t wireframe cut-off, coincident with a lithological boundary represented by a decrease in in magnetic susceptibility of the host ultramafic rock.

14.3.1.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-2 Fatt's domain top-cuts.

Domain	Top-cut
4000	10
4001	13.5
4002	13.5
4003	10
4004	10
4005	10
4006	13.5
4007	10
4008	10

14.3.1.4 Density

Density values for fresh rock were allocated based on historical density test-work from diamond drillhole samples of ultramafic rock from the adjacent Vivian-Consols deposit (Graindorge, 2011). No discrimination was made between mineralised and unmineralised rock densities in the model. The model is wholly contained with fresh rock.

Note that some of the depleted stopes were backfilled with CRF (cemented rock fill) to allow mining of adjacent stopes without rib pillars. Due to the mining method and sequence, no survey of the fill volume was possible. For the resource model, these filled stope voids have been treated as depleted and allocated a 0.00 density.

Values used in the Fatt's resource model are tabled below.

Table 14-3 Fatt's density values.

Rock Type	Density
Ultramafic (fresh)	2.70
CRF (flagged as void)	0.00
Air/Void	0.00

14.3.1.5 Variography

A geostatistical analysis of down-hole composited Fatt's data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

The variogram model and estimation parameters for the major domain 4001 were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

A summary of the resulting parameters is tabled below.

 ${\it Table~14-4~Fatt's~variogram~model~and~interpolation~parameters.}$

Domain Code	4001
Estimate	N
# Structures	2
C0	0.16
C1	0.37
a1	3.00
C2	0.47
a2	13.00
C3	
a3	
TOTAL SILL	1.00

1. Major : Semi Major	3
1. Major : Minor	1.5
2. Major : Semi Major	1.3
2. Major : Minor	1.18
3. Major : Semi Major	
3. Major : Minor	

SURPAC STRIKE	293.737
SURPAC PLUNGE	16.66
SURPAC DIP	-25.3

Search	
Method	ELLIPSOID
Estimation Block Size (x,y,z)	5, 5, 2.5
Estimation Block Size X	5
Estimation Block Size Y	5
Estimation Block Size Z	2.5
Disc Point X	4
Disc Point Y	4
Disc Point Z	4

Grade Dependent Parameters	N
Threshold Max	
Search Limitation	

Limit Samples by Hole Id	Υ
Hole Id D Field	D2
Max Samps per Hole	
Pass1	Υ
Min	8
Max	20
Max Search	30
Major/Semi	1.3
Major/Minor	1.3
Run Pass2	Υ
Factor	2
Major/Semi	1.3
Major/Minor	1.3
Min	4
Max	20

Run Pass 3	Y
Factor	4
Major/Semi	1.3
Major/Minor	1.3
Min	4
Max	20

14.3.1.6 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-5 Fatt's block model parameters.

	Υ	Х	Z
Min	2,450	1,100	150
Max	2,900	1,500	550
Extents	450	400	400
Parent size	10.00	10.00	5.00
Sub-Block size	0.625	0.625	0.625

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with increased search distance 2 x and 4 x for subsequent interpolation runs, and a reduction of minimum and maximum informing samples for the third interpolation pass.

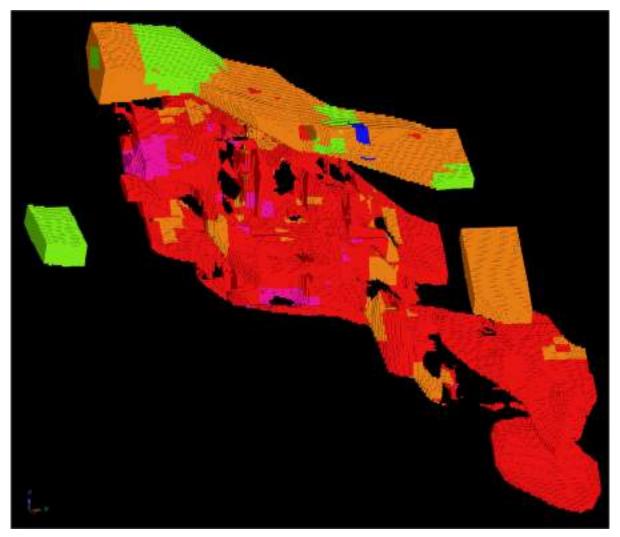


Figure 14-4 Fatt's depleted resource model. Low-grade alteration halo domain 4000 hidden - Source: Westgold.

14.3.1.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

Ther is no historical production for Fatt's. The modelling of the Fatt's mineralisation has changed significantly with the addition of infill resource and grade control data. However, over the life of the project from March 2017 to June 2023, claimed stope production (CMS survey of the mined void v. estimated model, adjusted for external dilution sources) v. mill reconciled actual stope production has been within 2% variation.

Table 14-6 Fatt's stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		%	Variance	
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz
Stoping	209,215	2.85	19,164	204,247	2.90	19,033	2%	-2%	1%
Development	64,390	2.11	4,364	61,643	2.28	4,521	4%	-8%	-3%

14.3.1.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Fatt's Mineral Resource was classified in the model on the following basis:

- 1. No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- 2. The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, a drillhole spacing of 10-20 m, and supported by face sampling from development.
- 3. The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, for the low-grade alteration halo domain, and mineralisation domains defined by a single cross-section of drillholes where the strike extents are only broadly constrained by wide-spaced drill sections >40 m.

The Fatt's Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

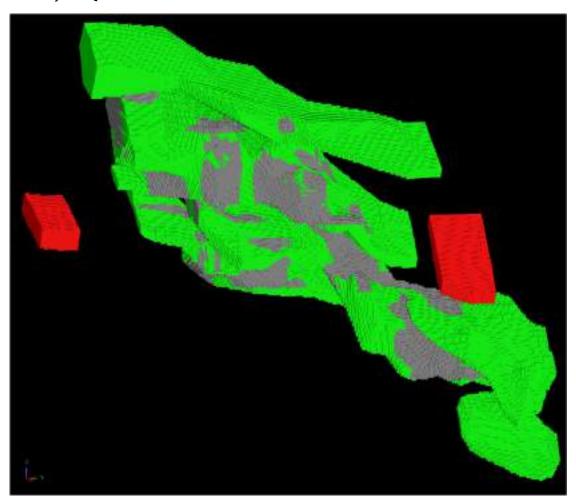


Figure 14-5 Fatt's resource classification. Yellow Measured, Green Indicated, Red Inferred, Grey Depleted - Source: Westgold.

14.3.1.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Fatt's Mineral Resource Statement - Rounded for Reporting 30/06/2024 Measured Indicated Measured and Indicated Inferred **Project** kt koz g/t kt koz kt g/t g/t g/t koz kt koz Fatt's 0 0.00 0 157 3.29 17 157 3.29 17 4 2.10 0.3 Total 0.00 157 3.29 2.10 0.3

Table 14-7 Fatt's Mineral Resources on June 30, 2024.

>=2.0g/t Au

The Fatt's Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.

- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.2 Magazine

14.3.2.1 Summary

The Magazine group is located approximately 13 km north of the Bluebird mill, adjacent to the Great Northern Highway, and directly south of the Meekatharra township. The model contains the Magazine, Alons-Fisher, Grants Central, and Grants open pits, and the Hawks Hill prospect to the south.

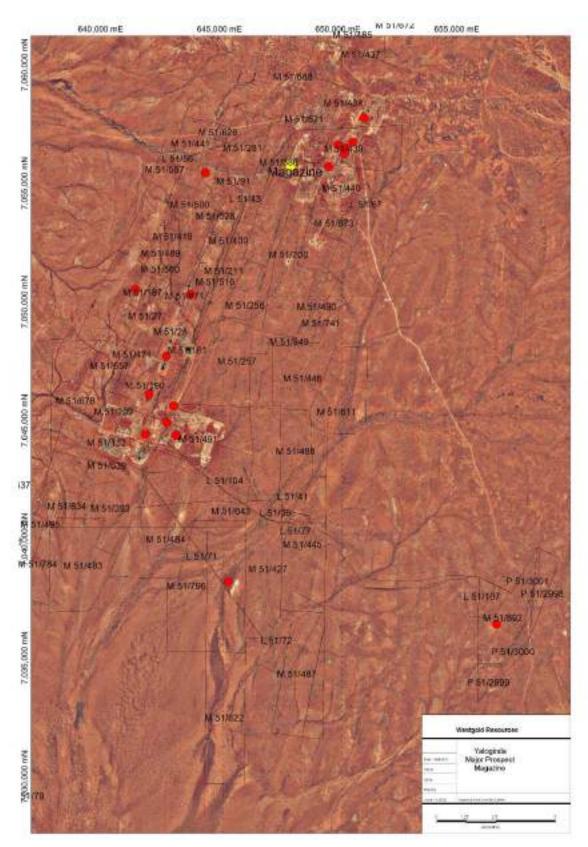


Figure 14-6 Location of the Magazine Group deposits - Source: Westgold.

Production by Whim Creek Consolidated then Dominion Mining between July 1989 and June 1995 from the open pits in the Magazine group is tabled below (Hollingsworth, 2010). Production from the Magazine open pit by St Barabra Mines from 1999 to 2001 produced 1.32 Mt at 1.56 g/t for 66,320 oz (Saint Barbara Mines, 2002).

Table 14-8 Magazine Group open pit production July 1989 to June 1995 (Hollingsworth, 2010).

Pit	Tonnes	Grade	Gold
	(t)	(g/t)	(oz)
Allons Fisher	413,723	1.74	23,145
Grants	275,856	1.47	13,037
Central			
Grants North	33,202	1.37	1,462
Grants	600,514	1.59	30,698

A resource model for the group was created by Westgold in 2019, combining all historic drill data, mapping and interpretation work into a combined block model.

The Magazine and Alons-Fisher gold deposits are shear-hosted within a sequence of mafic meta-volcanic rocks and meta-sediments. Mineralisation is evident as subparallel and stockwork quartz veining within broader shears. Sulphide mineralisation is seen in fresh rock. At Grants mineralisation is again associated with quartz veining and sulphide development which is controlled by shallow east dipping shears that crosscut a sequence of folded BIF's (Stanley, 2019a).

14.3.2.2 Drilling and Sample Data

Drillhole data is stored in a Maxwell's DataShed system based on the SQL Server platform. An export from the main database is undertaken to create a Microsoft Access database as a snapshot of the database at the time of mineralisation modelling. Westgold stored the Magazine drill hole data in an Access database extracted from the SQL server November 18, 2018. The Surpac string files exported and stored with the statistical work were dated January 26, 2019.

95% of the in-situ surface drillhole collars were re-surveyed with DGPS by Westgold.

The data contained within mineralisation models and used in the resource estimation process is sourced 89% from face sampling bit RC drill holes, 8% from historic percussion RC drillholes, 2.8% from production drillholes of unknown method (wholly contained within the depleted open pits), and 0.5% from diamond drill holes.

Assay methods for Westgold drillhole samples were Fire Assay (AAS). Historical assay methods were Fire Assay.

14.3.2.3 Modelling Domains

Initially, the assays were compared against geological logging to determine if there were any features that could be used as a guide for defining domains. Correlations between logged quartz-carbonate alteration, Fe and Fuchsite alteration, sulphide mineralisation and quartz percentage were attempted however in all cases no consistent correlations were found.

Historic and recent Westgold mapping identified the presence of broad shear zones with late-stage quartz veining which is sub-parallel to the major shear orientation. The shear zones were also host to stock work veining and earlier un-mineralised tension veins which crosscut the shear zone at 45 degrees.

All assays above 0.2 g/t were extracted from the database and plotted via log probability plots to determine grade populations for Magazine, Allon Fisher and Grants in oxidised, transitional, and fresh material. Across all deposits and oxidation states an empirical mineralisation boundary between 0.35 g/t and 0.4 g/t was observed which represented the broader shear domains.

Digitised wireframes were completed in Surpac software by snapping to drill data. To satisfy mining constraints a minimum downhole intercept of two metres was modelled, with some intervals greater than two metres of dilution included to maintain geological continuity. Wireframes were created at a 0.4 g/t Au cut-off.

All assays within the mineralisation solids were extracted and log probability plots analysed to determine possible internal high-grade populations. The plots indicated higher grade population disintegrations above 0.8 g/t and 3.00 g/t which are believed to represent the late-stage quartz veining. Because of the multiple generations of veining (mineralised and un-mineralised) it was not possible to define an internal high grade sub-domain based on the logged quartz within the database.

Long-section contouring of grams per tonne for the Eastern and Western shear domains show a steep low-grade plunge with internal high-grade plunges ranging from shallow to the south through to shallow to the north. When compared to one another there is an offset in high grade zones suggesting a north-northwest striking trend which correlates with extension / shear faulting because of north-northwest shorting due to dextral shearing of the synform (Stanley, 2019b).

Figure 14-7 Long section of contoured grams per tonne for the eastern and eastern shear lodes at Magazine - Source: Westgold.

14.3.2.4 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-9 Magazine group 1000 (Hawks Hill) mineralisation domain raw and top-cut statistics.

Au raw																	
Domain	1010 raw	1011 raw	1020 raw	1030 raw	1040 raw	1041 raw	1042 raw	1050 raw	1060 raw	1080 raw	1090 raw	1100 raw	1110 raw	1120 raw	1130 raw	1140 raw	1150 raw
Raw Data:																	
VOLUME																	
% total Volume																	
Drillholes																	
Samples	31.00	37.00	12.00	47.00	3.00	8.00	8.00	17.00	44.00	47.00	5.00	15.00	33.00	38.00	35.00	8.00	64.00
Imported	415.00	37.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00
Minimum	0.21	0.27	0.15	0.07	0.47	0.19	0.20	0.25	0.08	0.01	0.43	0.04	0.01	0.02	0.06	0.01	0.02
Maximum	4.29	7.90	0.97	12.18	1.35	1.61	2.91	3.59	25.00	49.69	0.89	1.58	3.88	2.01	7.02	0.75	7.23
Mean	0.90	1.22	0.45	1.36	0.95	0.81	1.00	1.38	2.41	2.20	0.63	0.58	1.05	0.65	1.12	0.43	1.23
Standard deviation	0.88	1.39	0.22	2.07	0.45	0.50	0.92	0.92	5.08	7.24	0.17	0.41	1.06	0.53	1.42	0.30	1.51
cv	0.98	1.14	0.49	1.53	0.47	0.62	0.92	0.67	2.11	3.29	0.27	0.71	1.01	0.83	1.26	0.69	1.23
Variance	0.77	1.93	0.05	4.29	0.20	0.25	0.85	0.85	25.83	52.38	0.03	0.17	1.12	0.28	2.01	0.09	2.29
Skewness	2.49	3.53	1.02	3.62	-0.84	0.55	1.56	0.94	3.42	6.42	0.95	1.36	1.40	0.75	3.17	-0.33	2.06
90%	1.98	2.01	0.58	3.40	1.26	1.46	1.99	2.44	3.55	2.74	0.75	1.05	2.28	1.43	1.76	0.75	3.01
95%	2.55	3.57	0.74	4.77	1.30	1.53	2.45	2.77	15.29	5.38	0.82	1.39	3.32	1.47	3.02	0.75	4.31
97.5%	2.95	4.14	0.86	5.48	1.33	1.57	2.68	3.18	17.83	7.50	0.86	1.48	3.81	1.64	5.79	0.75	5.63
99.0%	3.75	6.39	0.92	9.07	1.34	1.60	2.82	3.43	21.88	30.01	0.88	1.54	3.85	1.86	6.53	0.75	6.42
Top Cut (WGX 2019)				6.00					8.00	8.00							
No Values Cut				1					3	1							
% Data				2.1%					6.8%	2.1%							
% Metal				9.7%					34.0%	40.3%							
Au_cut																	
Domain	1010 cut	1011 cut	1020 cut	1030 cut	1040 cut	1041 cut	1042 cut	1050 cut	1060 cut	1080 cut	1090 cut	1100 cut	1110 cut	1120 cut	1130 cut	1140 cut	1150 cut
Raw Data:																	
Samples	31.00	37.00	12.00	47.00	3.00	8.00	8.00	17.00	44.00	47.00	5.00	15.00	33.00	38.00	35.00	8.00	64.00
Imported	415.00	37.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00	415.00
Minimum	0.21	0.27	0.15	0.07	0.47	0.19	0.20	0.25	0.08	0.01	0.43	0.04	0.01	0.02	0.06	0.01	0.02
Maximum	4.29	7.90	0.97	6.00	1.35	1.61	2.91	3.59	8.00	8.00	0.89	1.58	3.88	2.01	7.02	0.75	7.23
Mean	0.90	1.22	0.45	1.22	0.95	0.81	1.00	1.38	1.59	1.32	0.63	0.58	1.05	0.65	1.12	0.43	1.23
Standard deviation	0.88	1.39	0.22	1.48	0.45	0.50	0.92	0.92	2.19	1.81	0.17	0.41	1.06	0.53	1.42	0.30	1.51
CV	0.98	1.14	0.49	1.21	0.47	0.62	0.92	0.67	1.38	1.38	0.27	0.71	1.01	0.83	1.26	0.69	1.23
Variance	0.77	1.93	0.05	2.20	0.20	0.25	0.85	0.85	4.79	3.28	0.03	0.17	1.12	0.28	2.01	0.09	2.29
Skewness	2.49	3.53	1.02	2.01	-0.84	0.55	1.56	0.94	2.29	2.66	0.95	1.36	1.40	0.75	3.17	-0.33	2.06
90%	1.98	2.01	0.58	3.40	1.26	1.46	1.99	2.44	3.55	2.74	0.75	1.05	2.28	1.43	1.76	0.75	3.01
95%	2.55	3.57	0.74	4.77	1.30	1.53	2.45	2.77	7.93	5.38	0.82	1.39	3.32	1.47	3.02	0.75	4.31
98%	2.95	4.14	0.86	5.48	1.33	1.57	2.68	3.18	8.00	7.50	0.86	1.48	3.81	1.64	5.79	0.75	5.63
99.0%	3.75	6.39	0.92	5.80	1.34	1.60	2.82	3.43	8.00	7.92	0.88	1.54	3.85	1.86	6.53	0.75	6.42

Table 14-10 Magazine group 2000 (Magazine south) mineralisation domain raw and top-cut statistics.

Au raw																		
Domain	2010 raw	2011 raw	2020 raw	2030 raw	2031 raw	2032 raw	2040 raw	2050 raw	2060 raw	2070 raw	2071 raw	2072 raw	2080 raw	2090 raw	2100 raw	2110 raw	2120 raw	2130 raw
Raw Data:	20201011	2022100	20201011	2000 1011	2002 1000	2002 1011	20401411	2050 1010	2000 1011	2070100	2072100	2072100	2000 1011	2030 100	2100 1411	2220 .000	22201011	21501011
VOLUME																		
% total Volume																		
Drillholes																		
Samples	515.00	10.00	395.00	1104.00	3.00	18.00	417.00	5.00	47.00	12.00	26.00	9.00	3.00	62.00	12.00	22.00	24.00	9.00
Imported	2684.00		2684.00	2684.00	2684.00	2684.00	2684.00	2684.00	2684.00	2684.00	2684.00	9.00	2684.00	2684.00	2684.00		2684.00	2684.00
Minimum	0.01	0.40	0.01	0.01	0.44	0.03	0.01	0.60	0.09	0.15	0.06		0.31	0.10	0.28		0.04	0.45
Maximum	177.50	6.01	126.70	28.90	0.70	3.68	61.40	4.21	2.38	4.81	4.04		2.29	5.49			1.66	1.19
Mean	1.89	1.44	2.33	1.51	0.54	1.23	1.54	2.21	0.83	1.33	1.09		1.03	0.89			0.59	0.67
Standard deviation	8.29	1.68	8.07	2.31	0.14	1.13	3.79	1.57	0.50	1.35	1.03	1.88	1.09	0.91	0.40	4.07	0.50	0.26
CV	4.39	1.16	3,47	1.53	0.27	0.93	2.45	0.71	0.60	1.02	0.95	0.95	1.06	1.03	0.55	2.45	0.85	0.38
Variance	68.78	2.81	65.12		0.02	1.29	14.35	2,47	0.25	1.83	1.07	3.53	1.19	0.83			0.25	0.07
Skewness	18.85	2.71	11.30	5.15	1.65	1.14	11.31	0.02	1.17	1.79	1.86		1.67	2.77	2.06		0.88	1.19
90%	3.26		4.09	3.21	0.63	2.56	3.04	3.53	1.37	2.65	2.09		1.75	1.66			1.41	0.93
95%	5.19	3.99	6.76		0.67	3.67	4.54	3.87	1.79	3.68	3.48		2.02	2.79			1.49	1.06
97.5%	7.84	5.00	12.28	7.65	0.68	3.68	6.74	4.04	2.09	4.24	3.98		2.16	2.94	1.56	12.03	1.56	1.13
99.0%	15.77	5.61	25.75	12.20	0.69	3.68	8.26	4.14	2.27	4.58	4.01		2.24	3.98			1.62	1.16
Top Cut (WGX 2019)	12.00		12.00	10.00			10.00									4.00		
No Values Cut	6		11	19			4									2		
% Data	1.2%		2.8%	1.7%			1.0%									9.1%		
% Metal	23.7%		28.8%	5.0%			14.0%									47.3%		
Au cut				0.0,1														
Domain	2010 cut	2011 cut	2020 cut	2030 cut	2031 cut	2032 cut	2040 cut	2050 cut	2060 cut	2070 cut	2071 cut	2072 cut	2080 cut	2090 cut	2100 cut	2110 cut	2120 cut	2130 cut
Raw Data:																		
Samples	515.00	10.00	395.00	1106.00	3.00	18.00	417.00	5.00	47.00	12.00	26.00	9.00	3.00	62.00	12.00	22.00	24.00	9.00
Imported	2686.00		2686.00			2686.00	2686.00	2686.00	2686.00	2686.00	2686.00		2686.00	2686.00	2686.00	2686.00	2686.00	2686.00
Minimum	0.01	0.40	0.01	0.01	0.44	0.03	0.01	0.60	0.09	0.15	0.06		0.31	0.10	0.28		0.04	0.45
Maximum	12.00	6.01	12.00	10.00	0.70	3.68	10.00	4.21	2.38	4.81	4.04	5.41	2.29	5.49	1.85	4.00	1.66	1.19
Mean	1.44	1.44	1.66	1.43	0.54	1.23	1.33	2.21	0.83	1.33	1.09	1.99	1.03	0.89	0.74	0.88	0.59	0.67
Standard deviation	1.99	1.68	2.38	1.81	0.14	1.13	1.66	1.57	0.50		1.03		1.09	0.91			0.50	0.26
CV	1.38	1.16	1.44	1.27	0.27	0.93	1,25	0.71	0.60	1.02	0.95		1.06	1.03	0.55		0.85	0.38
Variance	3.95	2.81	5.65	3.29	0.02	1.29	2.74	2.47	0.25	1.83	1.07	3.53	1.19	0.83			0.25	0.07
	1	2.71	2.92		1.65	1.14	2.84	0.02	1.17	1.79	1.86		1.67	2.77	2.06		0.88	1.19
Skewness	3.21											F 40	4.75	4.00	0.00			0.93
	3.21	1.97	4.09	3.21	0.63	2.56	3.04	3.53	1.37	2.65	2.09	5.10	1.75	1.66	0.88	1.49	1.41	
Skewness	1				0.63 0.67	2.56 3.67	3.04 4.54	3.53 3.87	1.37 1.79	2.65 3.68	2.09 3.48		2.02	2.79			1.41	1.06
Skewness 90%	3.26	1.97	4.09									5.25			1.27	3.75		

Table 14-11 Magazine group 3000 (Magazine Allons-Fisher) mineralisation domain raw and top-cut statistics, part 1.

Au raw																																
Domain	3010 raw	3011 raw	3012 raw	3013 raw	3020 raw	3030 raw	3040 raw	3050 raw	3060 raw	3070 raw	3080 raw	3090 raw	3100 raw	3110 raw	3120 raw	3130 raw	3140 raw	3150 raw	3160 raw	3170 raw	3180 raw	3190 raw	3200 raw	3210 raw	3220 raw	3230 raw	3240 raw	3250 raw	3260 raw	3270 raw	3280 raw	3290 raw
Raw Data:																																
VOLUME																																
% total Volume																																
Drillholes																																
Samples	2561.00	48.00	24.00	46.00	1092.00	70.00	4.00	245.00	55.00	117.00	36.00	11.00	11.00	2.00	37.00	17.00	26.00	9.00	59.00	32.00	83.00	21.00	7.00	23.00	48.00	32.00	319.00	18.00	105.00	43.00	51.00	43.00
Imported	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00	5364.00		5364.00
Minimum	0.01	0.01	0.14	0.03	0.01	0.09	0.57	0.03	0.01	0.02	0.13	0.06	0.12	0.67	0.30	0.24	0.01	0.09	0.06	0.29	0.05	0.20	0.07	0.03	0.01	0.08	0.04	0.25	0.01	0.14	0.05	0.18
Maxi mum	449.50	5.46	8.20	15.98	56.15	18.00	1.11	99.00	22.10	49.20	20.74	6.76	2.68	2.08	6.98	3.20	36.00		6.76	2.70	4.90	2.34	19.50	3.20	101.78	10.00	13.00	3.40	14.50	4.80	14.50	12.50
Mean	2.07	0.95	1.57	2.36	1.61	1.11	0.74	2.80	2.04	1.87	1.17	1.55	1.18	1.38	1.75	1.68	2.22		0.83	0.85		0.82	5.46	0.65	3.90	1.31	0.95		1.22	1.06	1.67	1.68
Standard deviation	13.28	1.05	2.09	3.77	2.96	2.16	0.25	8.67	3.45	5.09	3.37	1.91	0.84	1.00	1.62	0.86	6.95	1.20	0.97	0.69	0.68	0.52	7.41	0.68	15.17	1.94	1.15	0.80	1.90	0.96	2.79	2.02
cv	6.40	1.11	1.34	1.60	1.84	1.94	0.34	3.10	1.69	2.73	2.89	1.23	0.72		0.93	0.51	3.14		1.17	0.82	0.88	0.64		1.05	3.89	1.49	1.21	0.82	1.55	0.90	1.66	1.20
Variance	176.29	1.10	4.37	14.25	8.75	4.66	0.06	75.17	11.90	25.85	11.36	3.63	0.71	0.99	2.63	0.74	48.28	1.45	0.94	0.48	0.46	0.28	54.91	0.46	230.05	3.78	1.32	0.64	3.59	0.92	7.76	4.07
Skewness	29.08	2.46	2.34	2.57	8.52	7.20	1.87	7.50	4.19	7.67	5.92	2.43	0.61	0.00	1.68	0.19	4.97	2.55	4.27	1.81	3.68	1.32	1.41	2.85	6.08	3.45	4.94	2.09	4.60	2.26	4.03	3.91
90%	3.32	1.92	3.92	7.54	3.40	1.70	0.93	3.86	3.61	2.94	1.23	2.92	2.21	1.80	4.40	2.76	2.35		1.56	2.11		1.39	13.69	1.29	2.67	2.76	2.00		2.38	1.90	3.25	3.20
95%	5.38	2.81	6.40	10.67	5.60	1.97	1.02	9.62	7.44	5.04	1.44	4.71	2.43	1.94	4.74	3.12	3.66		1.80	2.40		1.59	16.60	1.75	9.97	4.76	3.10	2.50	3.73	2.59	3.30	4.04
97.5%	8.08	3.72	7.36	14.84	7.73	3.09	1.07	26.89	9.57	9.77	3.53	5.73	2.56	2.01	5.41	3.16	15.32	3.31	2.42	2.70	2.87	1.95	18.05	2.40	27.11	6.00	3.90	2.95	6.70	3.90	11.42	4.10
99.0%	17.40	4.73	7.86	15.74	12.52	8.69	1.09	34.19	15.25	19.57	13.86	6.35	2.63	2.05	6.35	3.18	27.73	3.66	4.45	2.70	3.28	2.18	18.92	2.88	67.46	8.40	5.04	3.22	8.91	4.46	14.50	8.89
																		-									_				_	_
Top Cut (WGX 2019)	18.00							14.00	10.00	10.00	6.00						6.00	3.00					12.00		8.00	6.00			7.00		10.00	_
No Values Cut	23							12	1	3	1						1	1					1		3	1			3		2	
% Data	0.9%							4.9%	1.8%	2.6%	2.8%						3.8%	11.1%					14.3%		6.3%	3.1%			2.9%		3.9%	
% Metal	25.1%							33.1%	10.8%	23.6%	35.1%						52.2%	12.0%					19.6%		65.4%	9.6%			7.6%		10.5%	
Au_cut																																
Domain	3010 cut	3011 cut	3012 cut	3013 cut	3020 cut	3030 cut	3040 cut	3050 cut	3060 cut	3070 cut	3080 cut	3090 cut	3100 cut	3110 cut	3120 cut	3130 cut	3140 cut	3150 cut	3160 cut	3170 cut	3180 cut	3190 cut	3200 cut	3210 cut	3220 cut	3230 cut	3240 cut	3250 cut	3260 cut	3270 cut	3280 cut	3290 cut
Raw Data:																																
Samples	2562.00	48.00	24.00	46.00	1092.00	70.00	4.00	245.00	55.00	117.00	36.00	11.00	11.00	2.00	37.00	17.00	26.00	9.00	59.00	32.00	83.00	21.00	7.00	23.00	48.00	32.00	319.00	18.00	105.00	43.00	51.00	43.00
Imported	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00	5296.00
Minimum	0.01	0.01	0.14	0.03	0.01	0.09	0.57	0.03	0.01	0.02	0.13	0.06	0.12	0.67	0.30	0.24	0.01		0.06	0.29		0.20	0.07	0.03	0.01	0.08	0.04	0.25	0.01	0.14	0.05	0.18
Maxi mum	18.00	5.46	8.20	15.98	56.15	18.00	1.11	14.00	10.00	10.00	6.00	6.76	2.68	2.08	6.98	3.20	6.00	3.00	6.76	2.70	4.90	2.34	12.00	3.20	8.00	6.00	13.00	3.40	7.00	4.80	10.00	12.50
Mean	1.55	0.95	1.57	2.36	1.61	1.11	0.74	1.87	1.82	1.42	0.76	1.55	1.18	1.38	1.75	1.68	1.06	0.73	0.83	0.85	0.77	0.82	4.39	0.65	1.35	1.18	0.95	0.98	1.13	1.06	1.50	1.68
Standard deviation	2.48	1.05	2.09	3.77	2.96	2.16	0.25	3.12	2.36	2.02	0.95	1.91	0.84	1.00	1.62	0.86	1.35		0.97	0.69	0.68	0.52	5.28	0.68	1.86	1.43	1.15	0.80	1.39	0.96	1.98	2.02
CV	1.59	1.11	1.34	1.60	1.84	1.94	0.34	1.67	1.30	1.42	1.26	1.23	0.72	0.73	0.93	0.51	1.27	1.26	1.17	0.82	0.88	0.64	1.20	1.05	1.38	1.21	1.21	0.82	1.23	0.90	1.32	1.20
Variance	6.13	1.10	4.37	14.25	8.75	4.66	0.06	9.75	5.57	4.06	0.91	3.63	0.71	0.99	2.63	0.74	1.81	0.85		0.48		0.28	27.85	0.46	3.46	2.03	1.32		1.92	0.92	3.92	4.07
Skewness	4.30	2.46	2.34	2.57	8.52	7.20	1.87	3.10	2.32	3.27	5.04	2.43	0.61	0.00	1.68	0.19	2.66			1.81		1.32	0.82	2.85	3.02	2.45	4.94		2.94	2.26	3.29	3.91
90%	3.32	1.92	3.92	7.54	3.40	1.70	0.93	3.86	3.61	2.94	1.23	2.92	2.21	1.80	4.40	2.76	2.35	1.45	1.56	2.11	1.17	1.39	11.44	1.29	2.67	2.76	2.00	1.68	2.38	1.90	3.25	3.20
95%	5.38	2.81	6.40	10.67	5.60	1.97	1.02	9.62	7.44	5.04	1.44	4.71	2.43	1.94	4.74	3.12	3.66	2.23	1.80	2.40	1.57	1.59	11.72	1.75	6.08	4.76	3.10	2.50	3.73	2.59	3.30	4.04
98%	8.08	3.72	7.36	14.84	7.73	3.09	1.07	14.00	9.57	9.70	2.06	5.73	2.56	2.01	5.41	3.16	4.82	2.61	2.42	2.70	2.87	1.95	11.86	2.40	8.00	5.20	3.90	2.95	6.63	3.90	8.16	4.10
99.0%	17.39	4.73	7.86	15.74	12.52	8.69	1.09	14.00	9.80	10.00	4.42	6.35	2.63	2.05	6.35	3.18	5.53	2.85	4.45	2.70	3.28	2.18	11.94	2.88	8.00	5.68	5.04	3.22	7.00	4.46	10.00	8.89

Table 14-12 Magazine group 3000 (Magazine Allons-Fisher) mineralisation domain raw and top-cut statistics, part 2.

Au raw																												
Domain	3300 raw	3310 raw	3320 raw	3330 raw	3340 raw	3341 raw	3350 raw	3360 raw	3370 raw	3380 raw	3390 raw	3400 raw	3410 raw	3420 raw	3430 raw	3440 raw	3450 raw	3451 raw	3460 raw	3470 raw	3480 raw	3490 raw	3500 raw	3510 raw	3520 raw	3530 raw	3540 raw	3550 raw
Raw Data:																												
VOLUME																												
% total Volume																												
Drillholes																												
Samples	69.00	29.00	12.00	72.00	151.00	130.00	47.00	40.00	12.00	16.00	7.00	26.00	125.00	28.00	3.00	7.00	24.00	15.00	9.00	11.00	11.00	7.00	23.00	8.00	5.00	12.00	10.00	5.00
Imported	5364.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00	845.00
Minimum	0.09	0.12	0.07	0.01	0.01	0.10	0.04	0.08	0.06	0.14	0.10	0.07	0.01	0.06	0.74	0.19	0.09	0.10	0.41	0.41	0.06	0.49	0.28	0.26	0.80	0.23	0.11	0.36
Maximum	9.00	2.89	1.08	6.00	9.40	5.40	3.40	4.30	7.00	2.85	0.98	1.44	109.05	10.37	1.61	4.19	43.50	2.19	1.60	31.40	2.00	1.89	3.20	3.98	1.90	3.90	3.80	3.10
Mean	1.16	0.90	0.67	1.48	1.50	0.92	1.04	1.18	1.36	0.80	0.56	0.65	2.39	1.29	1.18	1.58	5.38	0.87	0.92	6.17	0.90	0.88	1.11	1.15	1.33	1.21	1.55	1.39
Standard deviation	1.37	0.75	0.30	1.45	1.42	0.74	0.81	0.99	2.02	0.66	0.31	0.28	10.39	1.98	0.44	1.49	9.76	0.65	0.40	11.87	0.53	0.49	0.78	1.20	0.49	1.22	1.12	1.11
cv	1.19	0.83	0.44	0.98	0.95	0.80	0.78	0.84	1.49	0.82	0.55	0.43	4.35	1.54	0.37	0.94	1.82	0.75	0.44	1.93	0.59	0.55	0.70	1.04	0.37	1.01	0.72	0.80
Variance	1.89	0.56	0.09	2.11	2.02	0.54	0.66	0.99	4.08	0.43	0.10	0.08	107.90	3.92	0.19	2.23	95.30	0.42	0.16	140.89	0.28	0.24	0.61	1.44	0.24	1.49	1.25	1.23
Skewness	3.55	1.49	-0.52	1.68	2.80	2.56	1.51	1.53	2.41	2.35	-0.10	0.79	9.17	3.88	-0.03	0.93	3.09	1.19	0.65	1.93	0.55	1.86	1.44	2.34	0.11	1.31	0.95	0.99
90%	2.39	2.40	0.98	3.70	3.08	1.90	2.11	2.25	3.23	1.32	0.88	1.00	2.36	2.44	1.48	3.01	13.02	1.84	1.49	26.11	1.38	1.32	2.25	1.84	1.83	2.80	3.00	2.38
95%	4.06	2.45	1.03	4.90	3.73	2.43	2.76	2.99	4.96	1.89	0.93	1.03	5.08	3.33	1.55	3.60	21.40	2.18	1.55	30.01	1.67	1.61	2.63	2.91	1.86	3.36	3.40	2.74
97.5%	4.47	2.57	1.06	5.44	4.98	2.54	3.30	4.00	5.98	2.37	0.96	1.18	14.10	5.68	1.58	3.90	30.96	2.18	1.57	30.71	1.84	1.75	2.91	3.44	1.88	3.63	3.60	2.92
99.0%	6.03	2.77	1.07	5.71	7.47	2.91	3.40	4.18	6.59	2.66	0.97	1.34	30.87	8.49	1.60	4.07	38.48	2.19	1.59	31.12	1.93	1.83	3.09	3.77	1.89	3.79	3.72	3.03
									5.00					7.00						7.00								=
Top Cut (WGX 2019)													10.00				10.00											
No Values Cut	_								1				5	1			3			2								
% Data									8.3%				4.0%	3.6%			12.5%			18.2%								
% Metal	_				_				12.2%				46.8%	9.3%			40.8%		_	68.2%				_			_	
Au_cut						3341 cut																						
Domain Raw Data:	3300 cut	3310 cut	3320 cut	3330 cut	3340 cut	3341 CUT	3350 cut	3360 cut	3370 cut	3380 cut	3390 cut	3400 cut	3410 cut	3420 cut	3430 cut	3440 cut	3450 cut	3451 cut	3460 cut	3470 cut	3480 cut	3490 cut	3500 cut	3510 cut	3520 cut	3530 cut	3540 cut	3550 cut
Samples	69.00	29.00	12.00	72.00	151.00	130.00	47.00	40.00	12.00	16.00	7.00	26.00	125.00	28.00	3.00	7.00	24.00	15.00	9.00	11.00	11.00	7.00	23.00	8.00	5.00	12.00	10.00	5.00
Imported	914.00	914.00	914.00			914.00	914.00	914.00	914.00	914.00	914.00			914.00	914.00	914.00				914.00	914.00	914.00	914.00		914.00		914.00	914.00
Minimum	0.09	0.12	0.07	0.01	0.01	0.10	0.04	0.08	0.06	0.14	0.10		0.01	0.06	0.74	0.19		0.10		0.41	0.06	0.49	0.28		0.80		0.11	0.36
Maximum	9.00	2.89	1.08	6.00	9.40	5.40	3.40	4.30	5.00	2.85	0.98		10.00	7.00	1.61	4.19		2.19		7.00	2.00	1.89	3.20		1.90		3.80	3.10
Mean	1.16	0.90	0.67	1.48	1.50	0.92	1.04	1.18	1.19	0.80	0.56		1.27	1.17	1.18	1.58		0.87	0.92	1.96	0.90	0.88	1.11		1.33		1.55	1.39
Standard deviation	1.37	0.75	0.30	1.45	1.42	0.74	0.81	0.99	1.19	0.66	0.30			1.43	0.44	1.49		0.65		2.51	0.53	0.49	0.78		0.49		1.12	1.11
CV Standard deviation	1.19	0.83	0.30	0.98	0.95	0.80	0.78	0.84	1.29	0.82	0.51	0.43	1.67	1.23	0.44	0.94		0.75		1.28	0.59	0.49	0.70		0.49	1.01	0.72	0.80
Variance	1.89	0.56	0.09	2.11	2.02	0.54	0.76	0.99	2.37	0.43	0.10		4.49	2.05	0.19	2.23		0.73		6.28	0.39	0.33	0.61		0.37		1.25	1.23
Skewness	3.55	1.49	-0.52	1.68	2.80	2.56	1.51	1.53	1.93	2.35	-0.10			2.87	-0.03	0.93		1.19		1.88	0.55	1.86	1.44		0.24	1.31	0.95	0.99
90%	2.39	2.40	0.98	3.70	3.08	1.90	2.11	2.25	3.23	1.32	0.88			2.44	1.48	3.01		1.19		6.42	1.38	1.32	2.25		1.83		3.00	2.38
90%	4.06	2.40	1.03	4.90	3.73	2.43	2.11	2.25	4.16	1.89	0.88			3.33	1.48	3.60		2.18		7.00	1.67	1.61	2.63		1.86		3.40	2.74
98%	4.47	2.57	1.05	5.44	4.98	2.54	3.30	4.00	4.10	2.37	0.96	1.18	10.00	4.67	1.58	3.90		2.18		7.00	1.84	1.75	2.03		1.88		3.60	2.92
98%	6.03	2.77		5.71		2.91	3.40	4.00	4.83	2.66	0.96			6.07	1.60	4.07		2.18		7.00	1.04	1.83	3.09		1.89		3.72	3.03
77.070	0.03	Z.11	1.07	5.71	7.47	2.91	3.40	4.18	4.63	2.00	0.97	1.34	20.00	0.07	1.00	4.07	20.00	2.19	1.59	7.00	1.93	1.03	3.09	3.//	1.69	3.79	3.72	3.03

Table 14-13 Magazine group 4000 (Grants Central) mineralisation domain raw and top-cut statistics.

Au raw																								
Domain	4010 raw	4020 raw	4030 raw	4040 raw	4050 raw	4060 raw	4070 raw	4080 raw	4090 raw	4100 raw	4110 raw	4120 raw	4130 raw	4140 raw	4150 raw	4160 raw	4170 raw	4180 raw	4190 raw	4200 raw	4210 raw	4220 raw	4230 raw	4240 rav
Raw Data:																								
VOLUME																								
% total Volume																								
Drillholes																								
Samples	143.00	168.00	82.00	47.00	9.00	23.00	33.00	6.00	8.00	144.00	103.00	294.00	219.00	58.00	26.00	9.00	53.00	48.00	22.00	29.00	4.00	4.00	9.00	152.0
Imported	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.0
Minimum	0.03	0.07	0.07	0.01	0.19	0.10	0.12	0.19	0.46	0.05	0.07	0.01	0.02	0.05	0.17	0.16	0.01	0.01	0.05	0.24	0.54	0.47	0.12	0.1
Maximum	2.85	13.50	6.00	12.00	2.95	2.05	5.60	0.98	8.12	39.00	22.50	36.00	10.60	3.70	1.50	2.20	4.50	2.00	5.20	2.05	1.40	1.55	1.55	1.4
Mean	0.84	1.48	0.92	0.89	1.01	1.07	1.65	0.48	4.16	1.34	2.04	1.35	1.38	1.05	0.68	0.85	1.00	0.84	0.85	0.70	0.89	1.17	0.83	0.5
Standard deviation	0.59	2.00	0.82	1.70	0.93	0.59	1.56	0.26	3.15	3.43	3.70	3.29	1.51	0.91	0.38	0.75	1.02	0.58	1.04	0.48	0.37	0.49	0.46	0.2
cv	0.71	1.35	0.90	1.91	0.92	0.55	0.95	0.55	0.76	2.56	1.81	2.44	1.10	0.87	0.56	0.88	1.02	0.69	1.22	0.68	0.42	0.42	0.56	0.4
Variance	0.35	3.99	0.67	2.89	0.86	0.35	2.44	0.07	9.94	11.78	13.72	10.83	2.29	0.82	0.14	0.56	1.04	0.33	1.09	0.23	0.14	0.24	0.22	0.0
Skewness	1.24	3.94	3.53	6.33	1.41	0.08	1.05	1.68	0.25	9.58	3.44	7.71	2.63	1.40	1.18	0.98	2.07	0.62	3.74	1.55	1.06	-1.50	-0.12	0.8
90%	1.65	3.10	1.50	1.05	2.01	1.81	4.00	0.67	8.12	2.48	3.34	2.43	3.41	2.53	1.30	1.80	2.20	1.66	1.34	1.55	1.21	1.51	1.24	0.9
95%	2.09	3.96	2.44	1.40	2.48	1.98	4.27	0.82	8.12	3.24	11.11	4.40	4.71	3.12	1.50	2.00	3.26	1.93	1.58	1.63	1.30	1.53	1.39	1.0
97.5%	2.35	8.24	2.59	2.08	2.71	2.02	4.61	0.90	8.12	4.42	14.00	6.37	5.20	3.36	1.50	2.10	4.17	1.99	3.22	1.80	1.35	1.54	1.47	1.1
99.0%	2.51	10.85	3.62	7.39	2.86	2.04	5.20	0.95	8.12	9.48	16.43	11.61	6.36	3.53	1.50	2.16	4.34	2.00	4.41	1.95	1.38	1.55	1.52	1.3
Top Cut (WGX 2019)		10.00		7.00						10.00	7.00	10.00												
No Values Cut		2		1						2	8	4												
% Data		1.2%		2.1%						1.4%	7.8%	1.4%												
% Metal		2.8%		12.0%						15.5%	25.5%	15.5%												
Au cut																								
Domain	4010 cut	4020 cut	4030 cut	4040 cut	4050 cut	4060 cut	4070 cut	4080 cut	4090 cut	4100 cut	4110 cut	4120 cut	4130 cut	4140 cut	4150 cut	4160 cut	4170 cut	4180 cut	4190 cut	4200 cut	4210 cut	4220 cut	4230 cut	4240 cut
Raw Data:																								
Samples	143.00	168.00	82.00	47.00	9.00	23.00	33.00	6.00	8.00	144.00	103.00	294.00	219.00	58.00	26.00	9.00	53.00	48.00	22.00	29.00	4.00	4.00	9.00	152.0
Imported	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.00	1693.0
Minimum	0.03	0.07	0.07	0.01	0.19	0.10	0.12	0.19	0.46	0.05	0.07	0.01	0.02	0.05	0.17	0.16	0.01	0.01	0.05	0.24	0.54	0.47	0.12	0.1
Maximum	2.85	10.00	6.00	7.00	2.95	2.05	5.60	0.98	8.12	10.00	7.00	10.00	10.60	3.70	1.50	2.20	4.50	2.00	5.20	2.05	1.40	1.55	1.55	1.4
Mean	0.84	1.44	0.92	0.78	1.01	1.07	1.65	0.48	4.16	1.13	1.52	1.14	1.38	1.05	0.68	0.85	1.00	0.84	0.85	0.70	0.89	1.17	0.83	0.5
Standard deviation	0.59	1.77	0.82	1.00	0.93	0.59	1.56	0.26	3.15	1.50	1.87	1.66	1.51	0.91	0.38	0.75	1.02	0.58	1.04	0.48	0.37	0.49	0.46	0.2
cv	0.71	1.23	0.90	1.28	0.92	0.55	0.95	0.55	0.76	1.32	1.23	1.46	1.10	0.87	0.56	0.88	1.02	0.69	1.22	0.68	0.42	0.42	0.56	0.4
Variance	0.35	3.12	0.67	1.01	0.86	0.35	2.44	0.07	9.94	2.24	3.50	2.75	2.29	0.82	0.14	0.56	1.04	0.33	1.09	0.23	0.14	0.24	0.22	0.0
Skewness	1.24	3.30	3.53	5.41	1.41	0.08	1.05	1.68	0.25	3.87	2.19	3.69	2.63	1.40	1.18	0.98	2.07	0.62	3.74	1.55	1.06	-1.50	-0.12	0.8
90%	1.65	3.10		1.05	2.01	1.81	4.00	0.67	8.12	2.48	3.34	2.43	3.41	2.53	1.30	1.80	2.20	1.66	1.34			1.51	1.24	0.9
		3.96	2.44	1.40	2.48	1.98	4.27	0.82	8.12	3.24	7.00	4,40	4.71	3.12	1.50	2.00	3.26	1.93	1.58			1.53	1.39	1.0
95%	2.09																							
95% 98%	2.09	8.24	2.59	2.08	2.71	2.02	4.61	0.90	8.12	4.42	7.00	6.37	5.20	3.36	1.50	2.10	4.17	1.99	3.22	1.80		1.54	1.47	1.1

| The column | The

Table 14-14 Magazine group 5000 (Grants) mineralisation domain raw and top-cut statistics.

14.3.2.5 Density

Density values for oxide, transitional and fresh mineralised and unmineralised material were allocated based on historic density test-work (Saint Barbara Mines, 2000). Density values are allocated by lithology. Values used in the resource model are tabled below.

Oxide **Transitional Rock Type** Fresh Mineralised - shear mafic/sediment hosted 1.85 2.20 2.70 Mineralised - BIF hosted 2.20 2.50 2.90 Mineralised - Laterite 1.98 Unmineralised - BIF 2.20 2.50 3.10 Unmineralised - Dolerite 1.95 2.38 2.85 Unmineralised - mafic/sediment 1.95 2.38 2.85 Fill 1.50 Air/Void 0.00

Table 14-15 Magazine density values.

14.3.2.6 Variography

A geostatistical analysis of down-hole composited data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Domains with insufficient samples for geostatistical analysis were allocated variogram parameters of spatially and statistically similar domains for estimation. A summary of the resulting parameters for the major mineralisation domains are shown in the table below.

Table 14-16 Magazine group variogram model and interpolation parameters for the major domains.

(terentine)	3043	318	2060	2000	3610	1001	266	MI.	ALE:	#100°	619	6.80	400	188	100.00	1000	tation.	9000	1676
Patricing	Y			*	*	T		*		9	4.		4		4	4	+	4	- ¥
# Direction	3.00	- 1		11.54	75.4			11.1	1				20.0		50.4	100	1		100
1.00	8.44	5.40	: 0.31	9-34	+11	- 0.00	0.01	. 6 62	3.54	913	8.0	1.04	0.46	6/0	1148	0.53	76-30	0.67	0.40
	8.50	136	0.44	0.15	6.00	0.00	1.10	1.25	2:58	104	8.30	0.00	634	6.9	306	-0.0	6.6	0.86	441
46	780.00	19.00	60/30	3000	3.00	10,400	1946	46.00	4100	DASS	51.00	10	-64/00	41.00	11.40	14.60	31.60	11.49	19,60
	0.09	0.00	0.00	6.0	1.00	0.65	2.65	0.26		9.16	16.17	5100	9.19	5.N	.416	1.000	6.70	1 0.22	525
-	86.00	10.00	90.00		36.00		1800	14.00	10.00	4708	11.00	- 10	1000		1436	19.80	54.00		10.10
1.04																	_		
100		.110			1111	1					1111	12.0		- 11	100			100	
9714 914	1.00	1.46	1.80	1.00	1.191	. 546	1.00	1.00	138	146	1.00	1.00	10.18	1.00	1/8	1-21	1.00	17.11 F/R	599
70000	_			-				-	-		-		-		_	-	_	transfer or	
E. March Serie Mayor	3.4	8.7	- ()	3.5	1.1	1.11	1.0	. 13	9.3		1.9	- 23	1.1	1.5	. 14	1.5	14		14
A. Window o'Window	90	1.6			17	4.1	11.2	0.4	2,3	100	14	- 11		. A3		- 63	- 14	TA	11.1
V. Section Services	3.6			1.3			1.3	1.4	1.0	- 3	3.8	11.5	1.5		-	. 10	13	2.6	2.5
CANAL WAR	1	- 12		- 13		- 14	: 68	1.4	5.5	143	13		4.5	- 1	1.54		- 12	- 41	1.0
11 Major 1941 1950		_	_	_	-			-			-		_	-	_	-	_		-
I for the			_		_				7				-			-	-		
	_	_	_	_	_	_		_		_	_	_	_	_	_	-	-	_	_
10090 1994		100	_	-	1		-	100	775		- 19	100		100		1		1	
63878C7C7688	- 11	127	- 2	- 1	- 1		- 10	- 19	- 11		- 19	14.0		- 26	- 10	331	- 49	- 15	-11
E-PHO 117		- 11		- 40	-			-			-	- 13	-		-		-		- 11
	-0)		_		_	_	-11	_	_				- 51	_	_		_	-	
3911	and the second	A CONTRACTOR	THE RESERVE	-	-	to large and	nice and the	HTDOO!	to the same of	THEFT	none property	-	distance of	THE PARTY	-	No.	No. of Street, or other	Account to	Accession.
Maria					Curticia														
TERRORES TRANS	LEGAL.	CHUL	MARKE.	LEAR.	LILLS.	VH.E.	CHILL.	HIS R.	SHOE:	LHOU	MAR.	CHOIC.	UKK.	personal in	LH.H.	ARA.	KRING	MLE.	KROL:
STANDARD STATE	-	-	-		_		-	-	_	-	-	_						-	_
Minneson Wallings P.	90	- 11		- 1	10		- 1	- 11		. 16	10	11	. 10		. 1	- 3	- 1		
Annual State Co.			-		0	_	-				X	- 1		- 2		- 3		_	- 30
DAIREE	- 3										- 1				-		- 1		- 0
RHORRY	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
beineid					4														
Brooks (I specialized from products		10				. K.				. 16	H		H	N		R	. 4		
Three fundables																			
Transcorence.																			
											-1-0								
growt Surramon by Hone on	- N	. M	. A.	H.	- 8	- Ac.	. 9	. H.	- 6	. N.	N.		. n	18	. 19	- 11	4	4.	. 11
research Code	80.	100	82	103	1000	14	0.1	70.0	14	100	0.0	18	0.0	0.2	94	0.0	33	00	.03
Table Section per Solice					111111111111111111111111111111111111111		7.02	11111	7211-17		1100	111	100	200			- 177	100	111111
Nest-	W.			- W -	0	. T	8	10	41	- 81	. 14	- 11	. 66	10.	- 8	- B	- 14		- 14
90/0	.0	LI.		12	U		- SE												
Man	90	- 30	- 98	50	-44	100	50			111,000	10000								100
Styriotics:	.15.60	36.62	31.00	49.30	2.80	3686	45.90	35.44	4530	3535	48.18	20.00	40.30	24:02	25.69	48.19	34346	3738	6034
Majoritone	1.6	1.2	13.	1.0	1.8	1	1.3	LL	1.6	3 .	1.0	1.1	13.	1	1	14.	1.6	114	115
Managhmen	4	0.7	- 4	7.1	1.1	1.6	1.64	1.4	6.5	4.7	11	- 4	4.1		3.4	4.	54.	4.1	1.9
111/2/2015	1000	1111					11/2/11		110-11	112	127.11	7.7			7 - 7	1	1		1.75
No. Park	1		1.1		100	- 1		9		- 9	V	- 1	9.		¥	- 9		1.1	
16/61	1		1	1	1	- 1	-1-	1.	-des	3	-	1			2.	1	2	1	1
Marchine	-186	141	130	1.81	- 3.00	.15	179	1-8	180	1.8	1.80	126	1.36	236	140	1.6	18	346	1.36
	536	1/2	LIE.	7,93	1.00	-16	1.60	1.8.	3/12	0.75	1.86	5.00	5.46	3.00	5.44	1/6	14	4.16	1.00
000 ACRES 01	100	1	1	1	1	1	1	1	1	1	1	- 1	1	1	1	100		100	1
Manager and American		36	- 1	1	41.	- 10	36	1	-	1	-	- 1	1		1	-	1	1	1
The Mark Control	100				- 31	-	- 15	-	-	-	-	-	-	-	-	-	_	-	-
	- 2										-	_						-	
Min.						-				-	- 12			-	-	- 7			
Mini Man Rep Seri 3				7		Ţ	1	1			7	-1-	-1-	-		1		-	-
Min. Man. But Pari 3 Fiction	-1	1	.4	- 4		. 4	. 4.	. 4 .	. 4.		-4		.4.	4.	4	4.		4.	. 4
Mini Mani Pan Paini 3 Palishi Maja Chime	1	4 123	1.90	6.80	180	100	138	131	180	J.35	LRC	128	130	7.00	110	1.00	LE	1st	1.36
Min. Man. Part Part 3 Fiction Major Store Major Store	1.80	123 123	1.100	6.80 1.1.	180	2 E	1.70	1.38 3.8	.4 180 8.3	2.38 1.7	1.00	128	. A 1.30 5.1	7.0E	120 54	1.00	LE UE	Jak 13	1.90 111
Mini Mani Pan Paini 3 Palishi Maja Chime	1	4 123	1.90	6.80	180	100	138	131	180	J.35	LRC	128	130	7.00	110	1.00	LE	1st	1.36

14.3.2.7 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-17 Magazine block model parameters.

	Υ	Х	Z
Min	-350	-1,150	300
Max	3,200	-300	550
Extents	3,550	850	250
Parent size	10.00	5.00	10.00
Sub-Block size	1.25	0.625	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with increased search distance 2 x and 3 x for subsequent interpolation runs, and a reduction of minimum and maximum informing samples for the third interpolation pass.

Within the block model, the attribute 'res_zone_n' is assigned a numerical code for each individual mineralisation domain. Attribute 'geo_ore' is assigned with a character description of the mineralisation domain groups. Mined or depleted material is flagged in attribute 'geo_ox' as 0 for air or void, or 5 for backfill waste material.

Mineralisation domain	Description
group	
hawks_hill	Domain group 1000
mg_al_minor_shear	Domain group 2000; 3000 (except major shear domains)
mg_al_eastern_shear	Domains 2040; 3010
mg_al_central_shear	Domain 2030
mg_al_western_shear	Domains 2010; 2020; 3020; 3050
grc_shallow	Domains 4010; 4020; 4030; 4040; 4050; 4060; 4080; 4090; 4150; 4160;
	4170; 4180; 4190; 4200; 4210; 4220; 4230
grc_moderate	Domains 4070; 4100; 4110; 4120; 4130; 4140
grc_laterite	Domain 4240
grants	Domain group 5000

Table 14-18 Magazine mineralisation domain groups.

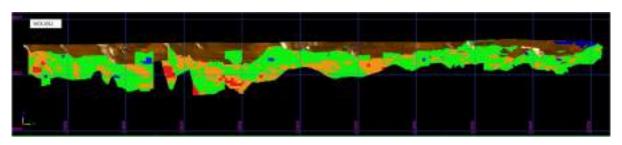


Figure 14-8 Magazine depleted Mineral Resource model, all domains - Source: Westgold.

14.3.2.8 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous production data as production records are incomplete or unreliable.

14.3.2.9 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Magazine Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or by domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

The Magazine Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

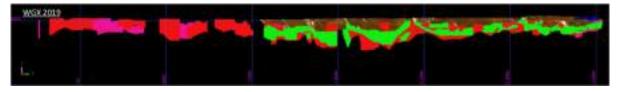


Figure 14-9 Magazine Mineral Resource classification. Green = Indicated, red = Inferred, Magenta = Unreported - Source: Westgold.

14.3.2.10 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-19 Magazine Mineral Resources on June 30, 2024.

						Maga	zine					
			1	1ineral Re	source S		nt - Rounded	for Reportir	ng			
						30/06/	2024					
		Measure	ed	In	dicated		Measur	ed and Indi	cated	li li	nferred	
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
Magazine	0	0.00	0	2,249	1.35	98	2,249	1.35	98	1,620	1.30	68
Total	0	0.00	0	2,249	1.35	98	2,249	1.35	98	1,620	1.30	68

>=2.0g/t Au

The Magazine Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.3 Golden Bar

14.3.3.1 Summary

The Golden Bar deposit is located approximately 14 km north of the Bluebird mill. The remining in-situ resource is below the backfilled open pit.

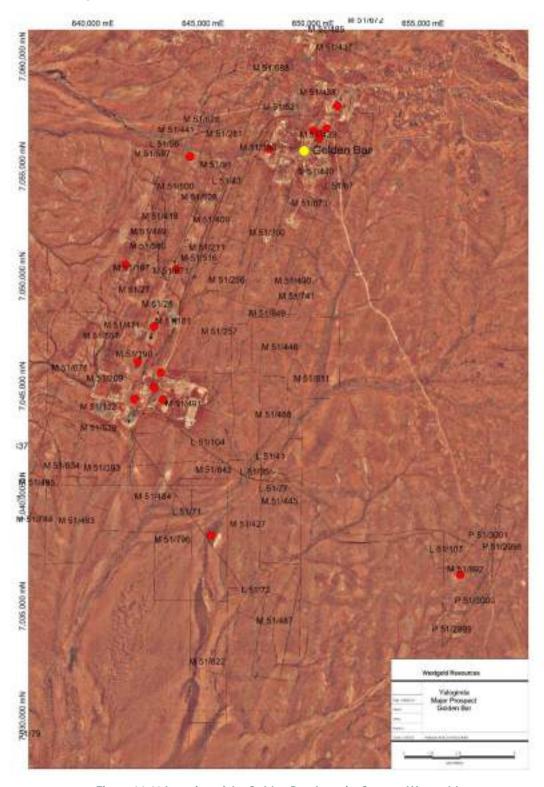


Figure 14-10 Location of the Golden Bar deposit - Source: Westgold.

Production by Dominion Mining between July 1989 and June 1995 from the Golden Bar and the backfilled Danube open pits adjacent to the west totalled 201,367 t at 2.02 g/t for 13,078 oz (Hollingsworth, 2010). Production summary data for the individual Golden Bar and Danube open pits is not available. The Danube deposit is completely depleted.

A Mineral Resource report was completed by Cube Consulting for Saint Barbara Mines in 2005 (Cube, 2005) which summarised the Surpac block model for the combined Mickey Doolan and Golden Bar deposits. Westgold only reports the Golden Bar portion of the model. Mickey Doolan has been modelled, mined, and depleted by Westgold; no portion of the remaining in-situ Mickey Doolan mineralisation is a reportable resource.

14.3.3.2 Modelling Domains

Digitised wireframes were completed in Surpac software by snapping to drill data. A statistical and visual analysis showed that an appropriate geological cut-off grade of 0.3 g/t Au was appropriate to apply to the Golden Bar interpretation, in combination with the logged lithological and alteration codes. Interpretation was carried out on 10 m spaced drill sections. In cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure.

14.3.3.3 Statistical Analysis and Compositing

The interpreted orebody wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

Five metre (5 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis and Mineral Resource estimation to reduce the inherent variability in the raw samples. Composites were taken from within the volume model.

Statistical comparisons were completed on all the domains for top-cut analysis. Only two outlier values above 10 g/t were cut for domain 8.

14.3.3.4 Density

A density value of 2.50 was applied to the oxide and transitional material at Golden Bar. There is no documentation of any supporting test-work.

14.3.3.5 Variography

Variogram model produced by Cube for the Golden Bar domains 8 and 10 are presented below. The remaining Golden Bar domains with insufficient samples for geostatistical analysis were allocated variogram parameters of spatially and statistically similar domains for estimation.

Table 14-20 Variogram parameters for the Golden Bar mineralisation domains (Cube, 2005).

	Sill	Relative Variance %	Range	Azimuth	Plunge	Dip	Major/ Semi Major Ratio	Major/ Minor Ratio
(8) Nugget Co	0.45	0.46	0	0	0	0	1	1
(8) Structure1	0.52	0.54	40	0	0	0	1	- 1
(10) Nugget Co	0.35	0.44	0	0	0	0	1	1
(10) Structure1	0.45	0.56	30	0	0	0	1	1
(Av.) Nugget Co		0.45	0	0	0	0	1	1
(Av.) Structure1		0.65	35	0	0	0	1	. 1

14.3.3.6 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-21 Block model parameters (Cube, 2005).

	Minimum	Maximum	Model Extent
Easting	450	1800	1350
Northing	870	3880	3010
RL	150	700	550
Parent Cell X	5 m	Min Sub-Cell X m	2.5
Parent Cell Y	20 m	Min Sub-Cell Y m	5
Parent Cell Z	5 m	Min Sub-Cell Z m	2.5

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains with greater than 20 composite samples. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the un-sampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Golden Bar domains 7, 9, 12 and 13 with less than 20 composite were allocated the mean composite grade to the entire domain.

Table 14-22 Golden Bar domains 7, 9, 12 and 13 assigned mean composite grade (Cube, 2005).

Domain	Weathering	Number of Composites	Assigned Grade (Au g/t			
1	Oxide	2	0.91			
1.1	Fresh	7	0.32 0.86 1.12			
3	Oxide	11				
4	Oxide	14				
4	Fresh	2	15.34			
7	Oxide	3	0.87			
9	Oxide	9	1.69			
12 Oxide		7	0.97			
13	Oxide	10	0.77			

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

14.3.3.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons.

The model has not been reconciled against previous production data.

14.3.3.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Golden Bar Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, with a slope of regression approaching 1.0, and supported by drillhole spacing of 20 m or less.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

The Golden Bar Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.3.3.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-23 Golden Bar Mineral Resource on June 30, 2024.

Golden Bar Mineral Resource Statement - Rounded for Reporting 30/06/2024													
	Measured Indicated Measured and Indicated						Inferred						
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Golden Bar	0	0.00	0	375	1.39	17	375	1.39	17	49	1.06	2	
Total	0	0.00	0	375	1.39	17	375	1.39	17	49	1.06	2	

>=0.7g/t Au

The Golden Bar Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.

- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.4 Paddy's North

14.3.4.1 Summary

The Paddy's North group is located approximately 15 km North of the Bluebird Mill, south of the Goldfields Highway, and directly east of the Meekatharra township. The model contains the Democrat, Halcyon, Halcyon West, Commodore, Butler, Ingliston, and Alberts deposits.

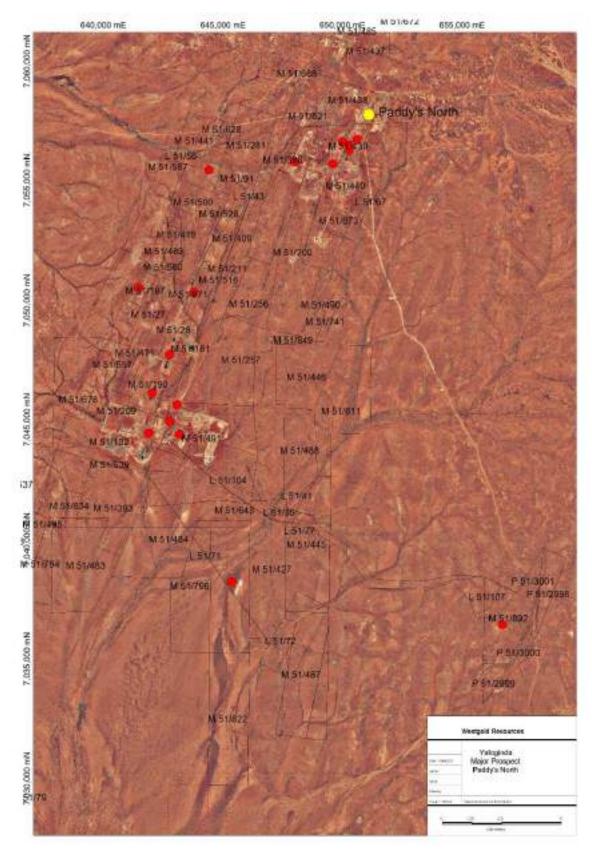


Figure 14-11 Location of the Paddy's North Group deposits - Source: Westgold.

Historic underground mine production from the shear-hosted (Commodore, Halcyon, Ingliston) and quartz-carbonate alteration stockwork vein (Ingliston Alberts, Lady Central) mineralisation for the Paddy's North group deposits from 1906 to 1953 compiled from MINDEX data by Hollingsworth (2010) is tabled below.

Table 14-24 Historic underground production for Paddy's North deposits.

Underground	Tonnes (t)	Grade (g/t)	Gold (oz)
Commodore	46,900	14.05	21,200
Halcyon	30,200	5.40	5,200
Ingliston	27,500	29.56	26,20
Ingliston Alberts	134,500	17.41	75,286
Macquarie	8590	7.07	1,954

Production by Whim Creek Consolidated then Dominion Mining between July 1989 and June 1995 from the open pits in the Paddy's North group is tabled below (Hollingsworth, 2010).

Table 14-25 Historic open pit production for Paddy's North deposits (Hollingsworth, 2010).

Pit	Tonnes (t)	Grade (g/t)	Gold (oz)
Commodore	993,500	1.70	54,301
Democrat	192,186	3.28	20,267
Halcyon	503,406	3.59	58,104
Ingliston Central	280,680	1.31	11,822
Readymix	89,803	2.44	7,045
Macquarie	83,416	2.68	7,187

A resource report for the group was created by Snowden (Graindorge, 2011b) for Reed Resources. Mineralisation is structurally controlled and occurs within several discrete north-east trending shear zones.

14.3.4.2 Modelling Domains

The Vulcan geological interpretation wireframes were supplied to Snowden by Reed Resources. Interpretation was based on a nominal 0.7 g/t wireframe cut-off grade.

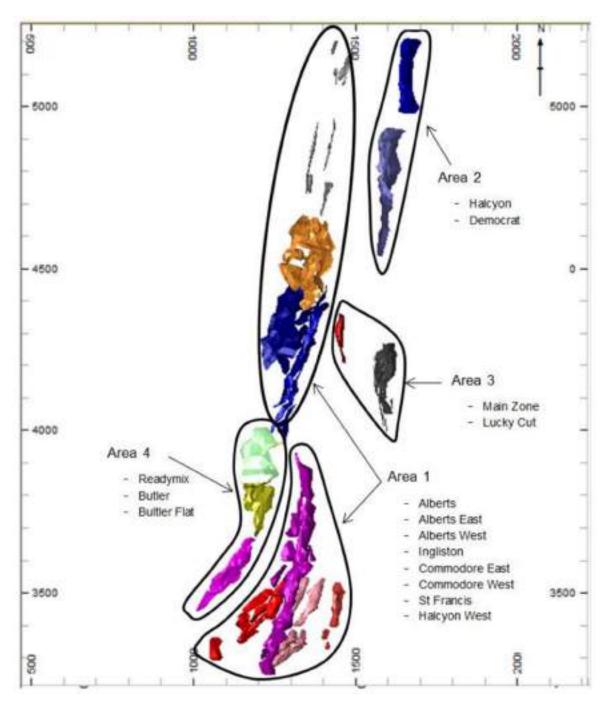


Figure 14-12 Paddy's North mineralisation domain groups (Graindorge, 2011b) - Source: Westgold.

14.3.1.4 Statistical Analysis and Compositing

Downhole composites were extracted within the different mineralisation domains. Drillhole sample data was composited downhole to 1 m. Top-cuts were applied per mineralisation domain group area.

Table 14-26 Paddy's North statistics by mineralisation domain group (Graindorge, 2011b).

Partial -	Area 1	Area 2	Area 3	Area 4		
Statistic	Au (g/t)	Au (g/t)	Au (g/t)	Au (g/t) 2486 0.01 54.00 0.87 2.17 2.49	Au (g/t	
Samples	20891	3170	1532	2486		
Minimum	0.00	0.01	0.01	0.01		
Maximum	175.00	230.00	39.70	54.00		
Mean	0.89	2.57	2.70	0.87		
Standard deviation	2.88	7.05	4.00	2.17		
CV	3.23	2.75	1.48	2.49		
Variance	8.31	49.73	16.02	4.72		

Table 14-27 Paddy's North top-cuts by mineralisation domain group (Graindorge, 2011b).

Area	Attribute field	Top cut	Percent of data affected	Raw CV	Cut CV
1	AU	10	<1	3.23	1.58
2	AU	20	1	2.75	1.51
3	AU			1.48	1.48
4	AU	7	1	2.49	1.50

14.3.4.3 Density

Density values were suppled to Snowden by Reed Resources. Values are tabled below.

Table 14-28 Paddy's North density values (Graindorge, 2011b).

Oxidation state	All other areas	Halcyon, Halcyor West and Democrat
	Bulk density (t/m²)	Bulk density (t/m³)
Oxide	1.7	2.0
Transition	2.25	2.4
Fresh	2.7	2.8

14.3.4.4 Variography

A geostatistical analysis of down-hole composited data for the domain groups. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

A summary of the resulting parameters is shown in the tables below.

Table 14-29 Paddy's North variogram model parameters (Graindorge, 2011b).

1	Discotion	*******	Stru	cture 1	Struc	cture 2	Struc	ture 3
Area	Direction	Nugget	Sill	Range	Sill	Range	Sill	Range
00	000-020	570050	27953040	20	Sergero	25	75000V	170
1	060-290	0.42	0.46	3 2	0.08	25	0.04	75
	030110			2		10		30
	090000			3		40		
2	000→180	0.29	0.57	12	0.13	54		
	000090			5		10		
	000000			3		26		62
3	060-270	0.20	0.16	3 6	0.31	19	0.33	102
	030090			2		5		10
7.380 HOVE	000000	2022457	C 250.00	16	5	72		
4 (Nth)	060-270	0.46	0.36	4	0.18	20		
	030090			34		35		
	000040			16		72		
4 (Sth)	060-310	0.46	0.36	4	0.18	20		
	030130			34		35		

Table 14-30 Paddy's North pass 1 search ranges (Graindorge, 2011b).

Area	Rotation angles	Range 1	Range 2	Range 3
	Z axis = 110			
1	X axis = 60	125	60	25
	Z axis = 180			
	Z axis = 90			
2	X axis = 90	30	40	8
	Z axis = 90			25 8 8 25
	Z axis = 90			
3	X axis = 60	45	5 60 40 75	8
	Z axis = 180			25 8 8 25
	Z axis = 90			
4 North	X axis = 60	55	15	
	Z axis = 180			25 8 8 25
	Z axis = 90	5-01		73/8
4 South	X axis = 60	55		25
	Z axis = 180			

14.3.4.5 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Datamine block model parameters are tabled below **Table 14-31**.

Table 14-31 Paddy's North block model parameters.

	Υ	X	Z
Min	9,900	9,750	150
Max	10,600	10,210	510
Extents	700	460	360
Parent size	5.00	5.00	5.00
Sub-Block size	1.25	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes. A minimum of 10 and a maximum of 40 samples, and a maximum of 8 samples per drillhole was used for the first estimation pass. An increased search distance of 2 x was used for subsequent estimation passes, and a reduction to a minimum of 2 informing samples was used for the third interpolation pass.

Within the block model, the attribute 'LODE' is assigned a numerical code for each individual mineralisation domain and 'ESTDOM' with the domain group area code. Mined or depleted material is flagged in attribute 'MINED' as 1 for mined out.

14.3.4.6 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain means.

The model has not been reconciled against previous production data.

14.3.4.7 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage / grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Paddy's North Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally supported by a drillhole spacing of 20 m or less and supported by at least fifty samples per mineralisation domain.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'RESCAT' as Unclassified = 0.

The Paddy's North Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

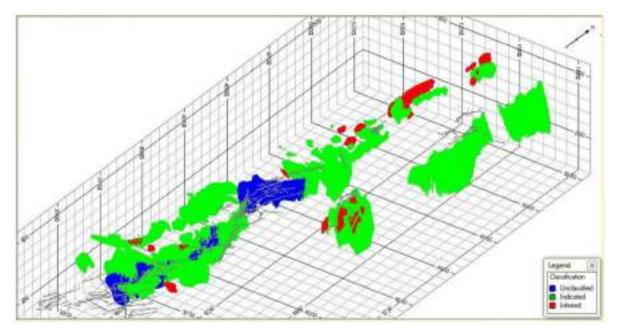


Figure 14-13 Paddy's North Mineral Resource classification. Green = Indicated, red = Inferred, blue = Unclassified - Source: Westgold.

14.3.4.8 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Paddy's North Mineral Resource Statement - Rounded for Reporting 30/06/2024 Measured Indicated Measured and Indicated Inferred kt kt g/t kt Project g/t koz koz g/t kt g/t koz koz Paddy's North 0 6,108 1.22 278 0 0.00 239 6,108 1.22 239 1.23 11 Total 0 0.00 6,108 1.22 239 6,108 1.22 239 278 11

Table 14-32 Paddy's North Mineral Resources on June 30, 2024.

>=0.5g/t Au

The Paddy's North Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.

- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.5 Prohibition

14.3.5.1 Summary

The Prohibition deposit is located approximately 15 km north of the Bluebird mill. It has been mined historically as an underground mine, then later by open pit that completely encompassed the historic underground, then mined underground by Westgold. The deposit is accessible from the Consols decline.

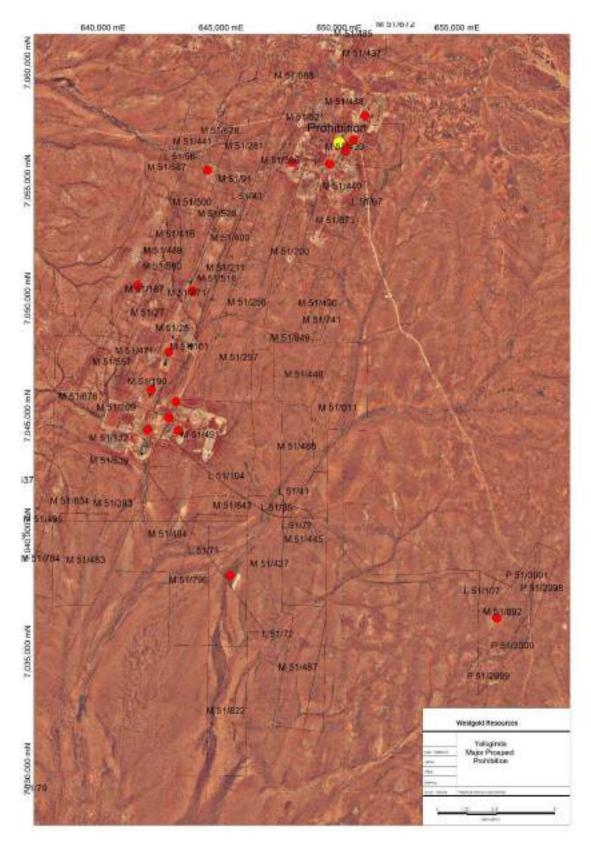


Figure 14-14 Location of the Prohibition deposit - Source: Westgold.

The geology, mineralisation and pre-Westgold production information in this section is adapted from Hollingsworth (2010) and Thébaud (2007). The deposit was mined as early as 1909 as the 'Queen of the Hills' underground mine to a depth of 130 m. The Queen of the Hills mine has a production period of 1909 – 1910 in the MINDEX database, during which it produced 159 oz of gold. For the period April 1913 to October 1922, the Queen of the Hills mine produced 34,923 t of ore at a grade of 10.23 g/t for 11,437 oz of gold. The production from the Queen of the Hills mine for the period 1909 – 1914 was 78,162 t of ore at 12.2 g/t for 30,676 oz of gold.

The open pit was established by Whim Creek Consolidated in 1986 and then continued later to 1995 by Dominion Mining Limited. This included mining of the Red Spider and Fenian West BIF lodes that were partly backfilled and currently lie below the Prohibition open pit access ramp. Initially ore was stockpiled and processed at the Haveluck plant north of Meekatharra, the later processed at plants owned by Dominion at Yaloginda (Bluebird mill) and Gabanintha. Production from the three deposits covered by the current open pit during this period was 977,020 t at 2.92 g/t for 91,723 oz from Prohibition, 245,895 t at 2.21 g/t for 17,472 oz from Red Spider, and 29,974 t at 1.80 g/t for 1,735 oz from Fenian West. Dominion Mining also established the Donovan decline in the Consols open pit in 1994 with 123 m of development before being abandoned.

Mining of the Prohibition mineralisation by Westgold commenced in 2015 when Westgold re-established the historic decline. Production was halted during the reporting period in March 2024. For the project to date, underground mining of Prohibition by Westgold has produced 3,072,042 t at 2.86 g/t for 282,071 oz as of June 30, 2024.

Westgold has updated the resource estimate, classification, depletion and sterilisation annually since production commenced in 2015. A detailed resource report was completed in 2021 (Isatelle, 2021) where all estimation parameters were reviewed and updated. Since the last reporting period, the mineralisation domain interpretation has been updated for new drilling and face sampling produced during the reporting period, and the block model estimate updated in area of new data. Resource classification has been updated. The resource is reported for all mining completed up to March 2024.

14.3.5.2 Modelling Domains

The following is adapted from Isatelle (2021). The ore domain interpretation is based on the geology using the lithology code as the primary domain control. the mineralised faults are hosted in a BIF unit which sits in a sediments package. Historic logging codes have been converted to a single uniform mine lithology logging code, where the iron rich sediment is logged as SIF, and the mineralised / sulphidised iron sediment logged as SIG. Whilst both are BIF units, the SIG is more altered with quartz veins and subsequently more mineralised. The SIF can hold gold grades but are generally of a lessor tenor. Quartz veins, breccia and quartz veined chert also display some gold grades however they are more sporadic than SIG.

When the lithological information is not consistent a cut-off grade of 2.0 g/t is used to set the domain boundaries, keeping the strike/dip consistent with proximal domains. In the case of missing lithology as is the case of some historic drilling, the 2.0 g/t COG is also used, however these drillholes are generally within the depleted open pit. SIG occurrences are used as primary estimation domains, with inclusions of short intervals of SIF included if required to maintain geological continuity where the mineralised fault structure has a lesser tenor of sulphidation.

The Prohibition model has 153 SIG mineralisation domains (group 9000 domains), a dolerite dyke domain (2000), a Prohibition BIF lithology domain (8000) and a background estimate domain (9999).

Domain drillhole and face sample intervals are flagged in a merged table in Leapfrog, with implicit mineralisation solid volumes created using the vein tool, cropped to the BIF lithology domain boundary. The ore volumes are exported to Surpac for block model flagging estimation.

14.3.5.3 Statistical Analysis and Compositing

The domain flagging merge table intervals are exported to the Access database for sample composite creation in Surpac, marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the domain number, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-33 Prohibition domain top-cuts and statistics - part 1.

Domain	2000	8000	9101	9102	9103	9104	9105	9106	9107	9108	9109	9110	9111	9112	9118	9119	9120	9121	9122	9123
Raw Data:	2000 AU	8000 AU	9101 AU	9102 AU	9103 AU	9104 AU	9105 AU	9106 AU	9107 AU	9108 AU	9109 AU	9110 AU	9111 AU	9112 AU	9118 AU	9119 AU	9120 AU	9121 AU	9122 AU	9123 AU
Samples	2026	51938	32	8	6	26	20	21	11	20	5	7	10	9	8	7	16	12	12	16
Minimum	0	0	0.04	0.02	0.01	0.01	0.05	0.01	0.05	0.01	0.29	1.06	0.2	0.02	0.03	0.01	0.01	0.01	0.04	0.01
Maximum	67.63	140.99	3.87	2.02	1.61	3.12	3.28	2.59	3.03	8.08	2.72	4.34	2.32	1.32	3.43	3.57	8.06	10.93	2.81	9.22
Mean	0.24	0.46	1.49	0.96	0.61	1.00	0.99	1.05	1.09	1.44	1.53	2.48	1.28	0.69	1.98	2.18	4.43	2.92	1.51	2.55
Standard deviation	2.18	1.5	1.18	0.71	0.53	0.92	0.88	0.81	0.78	1.74	0.78	1.33	0.73	0.48	1.05	1.3	2.45	3.15	1	2.68
cv	9.00	3.24	0.79	0.74	0.88	0.92	0.89	0.77	0.71	1.21	0.51	0.54	0.57	0.70	0.53	0.60	0.55	1.08	0.67	1.05
Variance	4.77	2.26	1.39	0.5	0.28	0.84	0.78	0.66	0.6	3.03	0.6	1.78	0.53	0.23	1.11	1.68	6.01	9.93	1.01	7.18
50.0%	0.01	0.11	1.33	0.79	0.44	0.81	0.74	0.79	0.99	1.05	1.47	1.66	0.98	0.7	2.25	1.97	5.01	1.6	1.69	1.38
90.0%	0.33	1.1	3.18	2	1.11	2.49	1.62	2.25	1.66	2.31	2.22	4.14	2.18	1.26	2.95	3.5	7.11	6.77	2.61	6.14
95.0%	0.84	1.81	3.5	2.01	1.36	2.85	3.1	2.32	2.3	2.86	2.47	4.24	2.25	1.29	3.19	3.53	7.62	8.72	2.7	6.76
97.5%	1.83	3	3.63	2.02	1.49	3.04	3.19	2.44	2.67	5.47	2.6	4.29	2.29	1.31	3.31	3.55	7.84	9.82	2.76	7.99
99.0%	3.62	5.21	3.77	2.02	1.56	3.09	3.25	2.53	2.89	7.03	2.67	4.32	2.31	1.32	3.39	3.56	7.97	10.49	2.79	8.73

Top Cut	1.00	5.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00
Domain	2000	8000	9101	9102	9103	9104	9105	9106	9107	9108	9109	9110	9111	9112	9118	9119	9120	9121	9122	9123
Cut Data:	2000 AU_0	8000 AU_0	9101 AU_0	9102 AU_0	9103 AU_	9104 AU_0	9105 AU_0	9106 AU_	9107 AU_	9108 AU_0	9109 AU_0	9110 AU_	9111 AU_	9112 AU_	9118 AU_	9119 AU_	9120 AU_	9121 AU_	9122 AU_	9123 AU_0
Samples	2026	51938	32	8	6	26	20	21	11	20	5	7	10	9	8	7	16	12	12	16
Top Cut Count																				
Minimum	0	0	0.04	0.02	0.01	0.01	0.05	0.01	0.05	0.01	0.29	1.06	0.2	0.02	0.03	0.01	0.01	0.01	0.04	0.01
Maximum	1	5	3.87	2.02	1.61	3.12	3.28	2.59	3.03	8.08	2.72	4.34	2.32	1.32	3.43	3.57	8.06	10.93	2.81	9.22
Mean	0.10	0.41	1.48	0.98	0.70	1.01	0.9	1.18	1.42	1.6	1.41	2.75	1.25	0.63	1.62	2.16	4.2	3.03	1.39	2.32
Standard deviation	0.22	0.79	1.09	0.73	0.53	0.85	0.81	0.84	0.93	1.88	0.8	1.34	0.64	0.5	1.15	1.33	2.75	3.08	1.03	2.47
cv	2.32	1.94	0.74	0.74	0.76	0.84	0.9	0.71	0.65	1.18	0.56	0.49	0.52	0.79	0.71	0.62	0.66	1.02	0.74	1.07
Variance	0.05	0.63	1.19	0.53	0.28	0.72	0.66	0.71	0.86	3.52	0.63	1.8	0.41	0.25	1.32	1.77	7.58	9.49	1.06	6.12
50%	0.01	0.11	1.37	0.81	0.57	0.82	0.7	1.09	1.18	1.15	1.49	2.37	0.88	0.7	1.37	1.89	5.06	1.56	1.69	1.38
90%	0.28	1.06	3.05	2	1.2	2.48	1.6	2.31	2.34	2.49	2.05	4.13	2.17	1.19	2.83	3.52	7.3	6.66	2.58	6.14
95%	0.68	1.77	3.46	2.01	1.41	2.52	2.69	2.45	2.68	3.9	2.38	4.23	2.21	1.28	3.12	3.54	7.74	8.46		
98%	1	3	3.55	2.02	1.51	3.01	3.17	2.52	2.86	5.99	2.55	4.29	2.27	1.3	3.28	3.56	7.9	9.69	2.73	
99.0%	1	5	3.71	2.02	1.57	3.08	3.24	2.56	2.96	7.24	2.65	4.32	2.3	1.31	3.37	3.56	7.99	10.44	2.78	8.28

Table 14-34 Prohibition domain top-cuts and statistics - part 2.

Domain	9124	9125	9126	9127	9128	9129	9130	9131	9132	9133	9134	9135	9136	9137	9138	9139	9140	9141	9143	9144
Raw Data:	9124 AU	9125 AU	9126 AU	9127 AU	9128 AU	9129 AU	9130 AU	9131 AU	9132 AU	9133 AU	9134 AU	9135 AU	9136 AU	9137 AU	9138 AU	9139 AU	9140 AU	9141 AU	9143 AU	9144 AU
Samples	14	16	14	18	18	17	12	7	6	5	12	35	19	10	22	6	6	33	18	13
Minimum	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.13	0.01	0.01	0.38	0.01	0.01	0.83	0.01	0.66	0.96	0	0.01	0.82
Maximum	3.26	12.96	6.37	4.6	4.1	5.26	5.98	2.51	7.24	4.84	2.55	12.54	5.86	4.04	16.84	4.09	4.59	5.24	4.3	6.63
Mean	0.95	2.54	1.48	1.27	1.50	1.23	1.30	1.28	2.84	1.85	1.46	2.22	0.70	2.29	1.70	2.47	2.75	1.28	1.05	2.38
Standard deviation	1.17	3.22	1.91	1.31	1.1	1.48	1.96	0.83	2.82	1.61	0.72	2.47	1.37	1.13	3.43	1.1	1.12	1.39	1.28	1.87
cv	1.23	1.27	1.29	1.03	0.73	1.21	1.51	0.65	0.99	0.87	0.49	1.11	1.97	0.49	2.02	0.45	0.41	1.08	1.22	0.78
Variance	1.36	10.38	3.66	1.72	1.2	2.19	3.85	0.69	7.96	2.6	0.52	6.1	1.87	1.28	11.77	1.21	1.25	1.92	1.64	3.48
50.0%	0.07	1.04	0.06	1.03	1.45	0.33	0.1	0.92	1.06	1.29	1.41	1.62	0.02	2.42	0.73	2.34	2.44	0.79	0.08	1.57
90.0%	2.67	4.93	3.53	2.91	2.65	3.04	4.37	2.17	6.64	3.33	2.44	4.92	1.77	3.62	2.48	3.63	3.92	2.82	2.73	5.36
95.0%	3.01	7.62	4.55	3.48	3.05	4.16	5.38	2.34	6.94	4.09	2.5	6.03	2.16	3.83	2.6	3.86	4.25	3.92	3.37	6.55
97.5%	3.14	10.29	5.46	4.04	3.57	4.71	5.68	2.42	7.09	4.46	2.53	7.51	4.01	3.93	9.02	3.98	4.42	4.2	3.84	6.59
99.0%	3.21	11.89	6.01	4.38	3.89	5.04	5.86	2.47	7.18	4.69	2.54	10.53	5.12	3.99	13.71	4.05	4.52	4.83	4.11	6.61

Top Cut 999.00 8.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00

Domain	9124	9125	9126	9127	9128	9129	9130	9131	9132	9133	9134	9135	9136	9137	9138	9139	9140	9141	9143	9144
Domain	3124	3123	3120	3127	3120	3123	3130	3131	3132	3133	3134	3133	3130	3137	3136	3133	3140	3141	3143	3144
Cut Data:	9124 AU_0	9125 AU_0	9126 AU_0	9127 AU_0	9128 AU_0	9129 AU_0	9130 AU_	9131 AU_	9132 AU_0	9133 AU_0	9134 AU_0	9135 AU_0	9136 AU_0	9137 AU_	9138 AU_0	9139 AU_0	9140 AU_0	9141 AU_0	9143 AU_	9144 AU_0
Samples	14	16	14	18	18	17	12	7	6	5	12	35	19	10	22	6	6	33	18	13
Top Cut Count																				
Minimum	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.13	0.01	0.01	0.38	0.01	0.01	0.83	0.01	0.66	0.96	0	0.01	0.82
Maximum	3.26	8	6.37	4.6	4.1	5.26	5.98	2.51	7.24	4.84	2.55	9	5.86	4.04	8	4.09	4.59	5.24	4.3	6.63
Mean	0.93	1.95	1.6	1.01	1.46	1.35	2.05	1.41	2.09	1.6	1.5	1.89	0.76	2.09	1.16	2.2	2.72	1.29	0.78	2.32
Standard deviation	1.18	2.19	2.15	1.19	1.05	1.7	2.32	0.85	2.43	1.46	0.67	1.95	1.44	1.18	1.6	1.17	1.11	1.34	1.11	1.92
cv	1.26	1.12	1.34	1.18	0.72	1.26	1.13	0.6	1.16	0.92	0.44	1.03	1.9	0.56	1.38	0.53	0.41	1.04	1.43	0.83
Variance	1.38	4.81	4.61	1.43	1.1	2.91	5.39	0.72	5.91	2.14	0.44	3.79	2.08	1.39	2.55	1.37	1.23	1.8	1.23	3.69
50%	0.06	1.03	0.06	0.3	1.4	0.31	0.87	1.25	0.92	1.22	1.46	1.42	0.02	1.47	0.33	2.04	2.42	0.77	0.05	1.41
90%	2.69	4.39	4.12	2.86	2.67	3.86	5.31	2.27	6.26	2.7	2.43	4.08	1.83	3.6	2.44	3.41	3.87	3.08	2.16	6.53
95%	3.02	5.82	5.25	3.17	2.91	4.57	5.64	2.39	6.75	3.77	2.5	5.76	2.64	3.76	2.57	3.75	4.23	3.78	2.82	6.58
98%	3.14	6.73	5.81	3.33	3.46	4.91	5.81	2.45	7	4.3	2.52	6.73	4.25	3.9	4.24	3.92	4.41	3.94	3.44	6.6
99.0%	3.21	7.49	6.15	4	3.84	5.12	5.91	2.48	7.15	4.62	2.54	8.08	5.22	3.98	6.5	4.02	4.52	4.34	3.95	6.62

Table 14-35 Prohibition domain top-cuts and statistics - part 3.

Domain	9145	9146	9147	9148	9149	9150	9290	9295	9300	9320	9321	9325	9330	9360	9380	9390	9400	9420	9430	9432
Raw Data:	9145 AU	9146 AU	9147 AU	9148 AU	9149 AU	9150 AU	9290 AU	9295 AU	9300 AU	9320 AU	9321 AU	9325 AU	9330 AU	9360 AU	9380 AU	9390 AU	9400 AU	9420 AU	9430 AU	9432 AU
Samples	28	23	5	4	21	29	85	126	549	163	14	7	31	12	7	14	18	724	29	23
Minimum	0.01	0.01	0.01	3.05	0.01	0.01	0.13	0.05	0.01	0	0.01	0.99	0.02	0.31	0.23	0.85	0.22	0	0.08	0.02
Maximum	5.65	5.4	12.13	13.35	6.56	5.81	9.6	15.18	19.3	10.4	2.88	2.5	2.25	2.5	1.92	2	3.8	29.5	12.4	4.4
Mean	1.53	1.07	4.20	8.24	2.06	1.27	1.32	1.54	1.80	1.57	1.04	1.80	0.75	1.01	1.12	1.42	1.51	1.98	1.26	1.07
Standard deviation	1.53	1.34	4.48	3.89	1.83	1.37	1.22	1.74	2.14	1.47	0.86	0.56	0.65	0.57	0.58	0.4	1.23	3.33	2.46	1.29
cv	1.00	1.25	1.07	0.47	0.89	1.08	0.92	1.13	1.19	0.94	0.83	0.31	0.86	0.56	0.52	0.28	0.81	1.68	1.96	1.2
Variance	2.35	1.79	20.07	15.15	3.35	1.87	1.48	3.02	4.59	2.16	0.74	0.32	0.42	0.33	0.34	0.16	1.51	11.09	6.04	1.67
50.0%	1.27	0.65	1.43	6.35	1.43	0.67	1.08	0.99	1.04	1.07	0.68	1.73	0.65	0.87	1.03	1.24	0.97	0.92	0.4	0.35
90.0%	3.33	2.15	9.07	12.1	5.29	2.97	2.52	3.04	4.4	3.09	2.35	2.42	1.5	1.47	1.91	1.95	3.4	4.5	1.63	2.7
95.0%	3.9	3.51	10.6	12.72	5.5	3.57	3.2	3.8	6.16	4.5	2.55	2.46	2.07	1.91	1.91	1.97	3.8	7.08	5.18	4.02
97.5%	4.65	4.45	11.36	13.04	6.01	4.4	3.62	5.69	7.2	5.49	2.72	2.48	2.25	2.21	1.92	1.98	3.8	12.08	8.16	4.31
99.0%	5.25	5.02	11.82	13.23	6.34	5.25	4.93	6.06	9.36	6.19	2.82	2.49	2.25	2.38	1.92	1.99	3.8	16.31	10.7	4.37

Top Cut	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	4.20	8.00	13.00	5.60	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	19.00	8.00	9999.00
Domain	9145	9146	9147	9148	9149	9150	9290	9295	9300	9320	9321	9325	9330	9360	9380	9390	9400	9420	9430	9432
Cut Data:	9145 AU_0	9146 AU_0	9147 AU_	9148 AU_0	9149 AU_	9150 AU_0	9290 AU_0	9295 AU_	9300 AU_0	9320 AU_0	9321 AU_	9325 AU_	9330 AU_	9360 AU_	9380 AU_	9390 AU_	9400 AU_	9420 AU_	9430 AU_	09432 AU_0
Samples	28	23	5	4	21	29	85	126	549	163	14	7	31	12	7	14	18	724	29	23
Top Cut Count																				
Minimum	0.01	0.01	0.01	3.05	0.01	0.01	0.13	0.05	0.01	0	0.01	0.99	0.02	0.31	0.23	0.85	0.22	0	0.08	0.02
Maximum	5.65	5.4	12.13	13.35	6.56	5.81	4.2	8	13	5.6	2.88	2.5	2.25	2.5	1.92	2	3.8	19	8	4.4
Mean	1.42	1.04	3.2	7.59	2.02	0.82	1.33	1.76	1.78	1.53	1.19	1.74	0.84	0.97	1.15	1.27	1.54	1.75	1.38	0.92
Standard deviation	1.63	1.34	4.07	4.08	1.91	1.02	1	1.41	1.85	1.28	0.94	0.57	0.63	0.56	0.64	0.41	1.26	2.56	2.09	1.22
cv	1.15	1.29	1.27	0.54	0.94	1.24	0.75	0.8	1.04	0.84	0.79	0.33	0.75	0.58	0.56	0.33	0.82	1.46	1.52	1.32
Variance	2.65	1.8	16.58	16.68	3.63	1.04	1	1.98	3.43	1.65	0.88	0.33	0.4	0.31	0.41	0.17	1.58	6.56	4.37	1.49
50%	0.11	0.59	0.71	5.36	1.33	0.5	1.1	1.43	1.09	1.06	0.7	1.57	0.8	0.81	1.04	1.08	0.93	0.95	0.4	0.32
90%	3.5	2.09	7.75	11.98	5.41	2.21	2.85	3.77	4.4	3.09	2.54	2.4	1.5	1.43	1.91	1.94	3.3	4.3	3.6	2.7
95%	3.94	3.81	9.94	12.67	5.47	2.65	3.4	3.8	5.58	4.51	2.71	2.45	2.09	1.83	1.92	1.95	3.68	5.87	5.68	3.51
98%	4.16	4.6	11.03	13.01	5.59	3.28	4.03	4.65	7.02	5.3	2.8	2.48	2.25	2.17	1.92	1.96	3.8	8.83	6.76	4.1
99.0%	4.88	5.08	11.69	13.21	6.18	4.42	4.16	6.02	8.12	5.6	2.85	2.49	2.25	2.37	1.92	1.98	3.8	15.62	7.5	4.32

Table 14-36 Prohibition domain top-cuts and statistics - part 4.

Domain	9434	9436	9450	9470	9490	9491	9495	9500	9520	9540	9545	9549	9550	9552	9553	9555	9556	9557	9558	9559
Raw Data:	9434 AU	9436 AU	9450 AU	9470 AU	9490 AU	9491 AU	9495 AU	9500 AU	9520 AU	9540 AU	9545 AU	9549 AU	9550 AU	9552 AU	9553 AU	9555 AU	9556 AU	9557 AU	9558 AU	9559 AU
Samples	23	14	54	107	545	14	3	33	321	32	64	39	170	6	14	9	16	9	29	21
Minimum	0.33	0.02	0.04	0.01	0.01	1.88	2.59	0.01	0	0.09	0	0.05	0.04	0.01	0.33	0.01	0	0.4	0.37	0.42
Maximum	2.6	11.75	26.7	15	138	18.52	4.77	23.65	40.36	14.33	7.18	18.04	25.04	6.28	5.48	1.99	5.24	4.31	13.78	3.5
Mean	1.09	2.14	2.63	1.75	4.28	5.29	3.71	2.79	5.49	4.13	1.22	4.85	5.73	2.03	2.53	0.72	1.93	2.17	2.21	1.66
Standard deviation	0.56	3.43	3.91	2.15	7.02	4.46	0.89	4.12	5.3	3.28	1.68	3.85	5.53	2.57	1.55	0.66	1.61	1.31	2.92	0.92
cv	0.51	1.61	1.48	1.23	1.64	0.84	0.24	1.48	0.97	0.79	1.37	0.79	0.96	1.27	0.61	0.92	0.84	0.6	1.32	0.55
Variance	0.31	11.78	15.27	4.64	49.27	19.91	0.79	16.99	28.12	10.73	2.81	14.82	30.56	6.61	2.41	0.43	2.58	1.73	8.53	0.84
50.0%	0.87	0.09	1.6	1.05	3.16	3.28	3.18	1.47	4.17	3.2	0.29	3.78	4.11	0.02	2.18	0.48	1.66	1.71	1.46	1.32
90.0%	1.94	6.1	5.24	3.43	8.02	9.74	4.47	4.74	11.6	7.9	2.88	10.56	14.42	5.45	4.9	1.38	4.36	4.04	2.42	2.84
95.0%	2.18	8.68	6.84	5.27	11.68	12.38	4.62	6.35	14.64	10.3	4.86	11.89	17.74	5.87	5.17	1.69	4.66	4.18	7.66	3.42
97.5%	2.37	10.22	9.44	8	14.96	15.45	4.69	11.18	18.81	11.86	5.93	12.35	18.54	6.07	5.33	1.84	4.95	4.25	12.12	3.47
99.0%	2.51	11.14	18.01	8.88	20.99	17.29	4.74	18.66	22.62	13.34	6.42	15.76	22.95	6.2	5.42	1.93	5.12	4.29	13.12	3.49
Top Cut	9999.00	9.00	11.00	9.00	27.00	10.50	9999.00	9.00	30.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	9999.00	5.00	9999.00

Domain	9434	9436	9450	9470	9490	9491	9495	9500	9520	9540	9545	9549	9550	9552	9553	9555	9556	9557	9558	9559
Cut Data:	9434 AU_0	9436 AU_0	9450 AU_0	9470 AU_0	9490 AU_0	9491 AU_0	9495 AU_	9500 AU_	9520 AU_	9540 AU_	9545 AU_0	9549 AU_	9550 AU_0	9552 AU_0	9553 AU_0	9555 AU_0	9556 AU_0	9557 AU_0	9558 AU_0	9559 AU_0
Samples	23	14	54	107	545	14	3	33	321	32	64	39	170	6	14	9	16	9	29	21
Top Cut Count																				
Minimum	0.33	0.02	0.04	0.01	0.01	1.88	2.59	0.01	0	0.09	0	0.05	0.04	0.01	0.33	0.01	0	0.4	0.37	0.42
Maximum	2.6	9	11	9	27	10.5	4.77	9	30	14.33	7.18	18.04	25.04	6.28	5.48	1.99	5.24	4.31	5	3.5
Mean	1	1.53	2.01	1.67	4.06	4.19	3.71	2.22	4.51	4.06	1.36	4.05	5.63	1.56	2.7	0.64	1.61	2.49	1.57	1.67
Standard deviation	0.52	2.71	2.22	1.58	3.97	2.74	0.89	2.41	4.61	3.07	1.63	3.83	5.66	2.21	1.49	0.63	1.62	1.42	0.87	0.97
cv	0.52	1.77	1.1	0.95	0.98	0.65	0.24	1.09	1.02	0.75	1.2	0.94	1.01	1.42	0.55	0.99	1	0.57	0.55	0.58
Variance	0.27	7.37	4.91	2.5	15.79	7.5	0.79	5.82	21.21	9.4	2.67	14.65	32.08	4.91	2.22	0.4	2.62	2.03	0.75	0.94
50%	0.8	0.09	1.15	1.24	3.02	2.83	3.18	1.15	3.43	3.28	0.54	2.36	3.81	0.17	2.44	0.39	1.08	2.34	1.44	1.32
90%	1.57	5	4.18	3.12	8	9.7	4.47	4.94	10.23	7.86	3.34	7.65	14.45	5.04	4.86	1.32	4.18	4.13	2.34	2.94
95%	2.16	7.74	6.66	4.55	11.89	9.82	4.62	8.23	13.69	9.55	4.6	11.25	18.09	5.66	5.1	1.66	4.54	4.22	2.77	3.45
98%	2.31	8.37	8.4	5.44	15.92	10.16	4.69	8.75	17.13	10.97	5.25	13.1	21.19	5.97	5.29	1.82	4.89	4.27	3.45	3.48
99.0%	2.49	8.75	10.41	8.24	21.6	10.36	4.74	8.9	20.97	12.82	5.99	16.07	22.3	6.16	5.4	1.92	5.1	4.3	5	3.49

Table 14-37 Prohibition domain top-cuts and statistics - part 5.

Domain	9560	9590	9600	9610	9620	9630	9631	9635	9640	9641	9650	9660	9665	9666	9668	9670	9671	9672	9674	9675
Raw Data:	9560 AU	9590 AU	9600 AU	9610 AU	9620 AU	9630 AU	9631 AU	9635 AU	9640 AU	9641 AU	9650 AU	9660 AU	9665 AU	9666 AU	9668 AU	9670 AU	9671 AU	9672 AU	9674 AU	9675 AU
Samples	57	50	25	70	2	2451	6	6	1088	10	592	492	1127	5	17	1330	11	5	15	436
Minimum	0.01	0.01	0.01	0.02	0.64	0	0.32	0.82	0.01	1.44	0.01	0.03	0.02	3.37	0.3	0	0.52	0.03	0.01	0.02
Maximum	19.4	26.65	14.49	11.56	1.35	100	26.2	7.2	76.01	7.48	165	98.78	26.84	7.4	12.59	71.7	23.76	3.87	11.15	22.34
Mean	1.85	6.22	3.84	2.25	1	4.63	8.58	3.14	4.95	3.34	4.69	3.78	3.41	5.25	3.61	4.83	3.85	2.67	3.54	3.07
Standard deviation	2.64	7.11	4.51	2.75	0.36	6.22	8.38	2.16	6.5	1.77	9.5	6.43	3.16	1.47	2.93	5.87	6.45	1.52	2.87	3.54
cv	1.43	1.14	1.17	1.22	0.36	1.34	0.98	0.69	1.31	0.53	2.03	1.7	0.93	0.28	0.81	1.22	1.67	0.57	0.81	1.15
Variance	6.99	50.48	20.36	7.55	0.13	38.67	70.2	4.66	42.27	3.15	90.28	41.31	9.96	2.18	8.59	34.41	41.54	2.31	8.22	12.55
50.0%	1.25	3.55	1.55	1.11	0.64	3.03	5.57	2.5	2.95	2.76	2.82	2.45	2.61	4.51	2.91	3.37	1.44	2.81	2.44	1.86
90.0%	3.17	14.76	10.75	5.88	1.21	9.45	15.76	5.46	11.36	4.94	9.21	7.6	7	6.93	6.57	10.04	4.83	3.84	7.17	7.03
95.0%	4.12	22.25	13.99	8.54	1.28	13	20.98	6.33	15.48	6.21	13.5	10.22	8.91	7.16	8.7	12.97	13.4	3.86	9.23	10.21
97.5%	4.87	25.03	14.49	9.79	1.31	19.84	23.59	6.77	21	6.85	18.3	12.58	11.64	7.28	10.64	17.5	18.58	3.86	10.19	13.59
99.0%	11.31	26.24	14.49	10.74	1.34	27.12	25.16	7.03	31.31	7.23	29.07	23.3	15.12	7.35	11.81	29.82	21.69	3.87	10.77	17.43

10p Cut	9.00	3333.00	3333.00	3333.00	9999.00	35.00	15.00	9999.00	33.00	5555.00	35.00	10.00	17.00	3333.00	3333.00	30.00	5.00	9999.00	5555.00	5555.00
Domain	9560	9590	9600	9610	9620	9630	9631	9635	9640	9641	9650	9660	9665	9666	9668	9670	9671	9672	9674	9675
Cut Data:	9560 AU	9590 AU (9600 AU	9610 AU (9620 AU	9630 AU (9631 AU (9635 AU	9640 AU	9641 AU (9650 AU (9660 AU	9665 AU	9666 AU	9668 AU	9670 AU	9671 AU	9672 AU	9674 AU	9675 AU (
Samples	57	50	25	70	2	2451	6	6	1088	10	592	492	1127	5	17	1330	11	5	15	436
Top Cut Count																				
Minimum	0.01	0.01	0.01	0.02	0.64	0	0.32	0.82	0.01	1.44	0.01	0.03	0.02	3.37	0.3	0	0.52	0.03	0.01	0.02
Maximum	9	26.65	14.49	11.56	1.35	35	15	7.2	35	7.48	35	16	17	7.4	12.59	30	5	3.87	11.15	22.34
Mean	1.52	5.09	3.08	2.21	1	4.27	6.69	3.18	4.64	3.3	4.55	3.07	3.19	5.08	3.77	3.66	2.22	2.88	3.31	2.79
Standard deviation	1.9	6.45	3.99	2.54	0.36	4.89	4.8	2.15	5.47	1.75	5.35	2.94	2.9	1.48	2.68	4.41	1.72	1.44	2.73	3.53
cv	1.25	1.27	1.3	1.15	0.36	1.15	0.72	0.68	1.18	0.53	1.17	0.96	0.91	0.29	0.71	1.21	0.78	0.5	0.83	1.27
Variance	3.63	41.59	15.94	6.46	0.13	23.88	23.04	4.63	29.89	3.05	28.57	8.61	8.39	2.2	7.17	19.49	2.97	2.08	7.45	12.47
50%	1	1.61	1.4	1.26	0.64	2.8	5.37	2.53	2.93	2.74	2.99	2.19	2.45	4.33	3.29	2.35	1.33	3.34	2.2	1.61
90%	3.08	12.95	7.73	5.13	1.21	9.08	11.5	5.5	10.19	4.93	9.96	6.61	6.38	6.85	5.71	8.31	4.81	3.84	6.64	6.2
95%	4.82	19.56	12.96	7.62	1.28	12.48	13.25	6.35	14.09	6.13	14.47	8.3	8.47	7.13	7.94	11.29	4.96	3.86	8.26	9.14
98%	6.17	22.1	14.35	9.04	1.31	17.54	14.12	6.77	20.5	6.8	21.15	10.87	11.34	7.26	10.24	16.33	4.98	3.86	9.55	13.63
99.0%	7.87	25.38	14.49	10.48	1.34	27.31	14.65	7.03	30.65	7.21	30.62	15.73	15.46	7.34	11.65	24.44	4.99	3.87	10.51	19.56

Table 14-38 Prohibition domain top-cuts and statistics - part 6.

Domain	9680	9682	9683	9684	9685	9687	9689	9690	9691	9692	9693	9694	9695	9696	9697	9698	9699	9700	9701	9705
Raw Data:	9680 AU	9682 AU	9683 AU	9684 AU	9685 AU	9687 AU	9689 AU	9690 AU	9691 AU	9692 AU	9693 AU	9694 AU	9695 AU	9696 AU	9697 AU	9698 AU	9699 AU	9700 AU	9701 AU	9705 AU
Samples	209	5	15	11	33	7	58	433	58	265	35	36	43	619	19	281	25	201	4	69
Minimum	0.02	1.64	0	0.85	0.11	1.99	0	0.01	0.06	0	0.57	0.16	0.01	0	0.95	0	0.4	0.14	1.57	0.16
Maximum	47.22	14.62	18.8	11.01	22.56	4.57	6.93	37.11	17.5	47.1	16.2	8.58	9.24	54.25	6.34	52.37	12.21	40.79	3.88	35.05
Mean	4.55	7.06	5.72	4.42	3	2.94	2.47	3.75	3.14	3.35	4.25	3.57	3.1	3.75	2.23	3.6	3.75	5.75	2.69	3.24
Standard deviation	5.57	4.84	5.03	3.07	4.36	1.05	1.96	4.34	3.17	4.13	3.66	1.72	2.33	5.05	1.53	4.51	2.96	6.27	1.01	4.51
cv	1.22	0.69	0.88	0.69	1.45	0.36	0.79	1.16	1.01	1.24	0.86	0.48	0.75	1.35	0.69	1.25	0.79	1.09	0.37	1.39
Variance	31.01	23.42	25.32	9.42	19.05	1.1	3.83	18.88	10.04	17.09	13.37	2.97	5.42	25.55	2.34	20.38	8.74	39.26	1.01	20.35
50.0%	2.76	4.16	3.52	3.93	1.16	2.38	1.92	2.59	2.35	2.25	2.66	3.3	2.41	2.55	1.54	2.5	2.79	3.38	1.83	2.14
90.0%	9.61	12.66	11.97	7.44	7.37	4.55	5.02	6.99	6.17	7.19	8.46	5.79	6.26	7.86	4.04	7.96	8.32	12.8	3.72	5.59
95.0%	14.85	13.64	14.17	9.1	9.24	4.56	6.69	9.76	7.99	9.09	11.01	6.05	7.88	11.32	6.08	9.47	9.52	17.12	3.8	8.32
97.5%	17.7	14.13	16.49	10.05	13.09	4.56	6.88	16.61	12.45	10.93	14.86	6.39	8.93	14.01	6.21	13.54	10.64	25	3.84	11.14
99.0%	23.04	14.43	17.87	10.63	18.77	4.57	6.92	23	15.94	15.9	15.66	7.71	9.14	23.6	6.29	18.21	11.58	27.96	3.87	19.14
Top Cut	20.00	9999.00	9999.00	9999.00	14.00	9999.00	9999.00	25.00	11.00	15.00	9999.00	9999.00	9999.00	17.00	9999.00	20.00	9999.00	28.00	9999.00	15.00

Domain	9680	9682	9683	9684	9685	9687	9689	9690	9691	9692	9693	9694	9695	9696	9697	9698	9699	9700	9701	9705
Cut Data:	9680 AU_0	9682 AU_0	9683 AU_0	9684 AU_0	9685 AU_	9687 AU_0	9689 AU_	9690 AU_	9691 AU_0	9692 AU_	9693 AU_0	9694 AU_	9695 AU_0	9696 AU_0	9697 AU_0	9698 AU_0	9699 AU_0	9700 AU_0	9701 AU_	9705 AU_0
Samples	209	5	15	11	33	7	58	433	58	265	35	36	43	619	19	281	25	201	4	69
Top Cut Count																				
Minimum	0.02	1.64	0	0.85	0.11	1.99	0	0.01	0.06	0	0.57	0.16	0.01	0	0.95	0	0.4	0.14	1.57	0.16
Maximum	20	14.62	18.8	11.01	14	4.57	6.93	25	11	15	16.2	8.58	9.24	17	6.34	20	12.21	28	3.88	15
Mean	4.3	5.47	5.82	4.47	2.6	3.09	2.37	3.34	3.02	2.91	5.34	3.48	2.73	3.18	2.06	3.23	3.64	6.42	2.65	3.08
Standard deviation	4.45	4.51	5.28	3.02	3.06	1.1	2.18	3.83	2.38	2.72	4.49	1.58	2.21	3.21	1.38	3.26	2.64	6.43	1.01	2.81
cv	1.04	0.82	0.91	0.67	1.17	0.36	0.92	1.15	0.79	0.94	0.84	0.46	0.81	1.01	0.67	1.01	0.73	1	0.38	0.91
Variance	19.84	20.32	27.87	9.1	9.34	1.22	4.77	14.69	5.65	7.39	20.12	2.51	4.88	10.3	1.9	10.66	6.98	41.31	1.02	7.87
50%	2.51	2.84	3.29	3.98	1.15	2.48	1.67	2.23	2.31	2.18	4.11	3.35	2	2.24	1.49	2.27	2.75	4.01	1.81	2.1
90%	10.78	11.72	12.95	7.48	7.33	4.56	5.75	6.21	6.69	6.12	11.26	5.76	5.5	7.01	3.52	7.15	7.8	14.05	3.72	7.4
95%	16.1	13.17	15.87	9.2	8.03	4.56	6.78	9.39	7.56	7.91	15.27	6.03	6.37	9.41	5.05	9.13	9.24	21.92	3.8	7.42
98%	17.05	13.9	17.34	10.1	10.12	4.57	6.92	14.47	8.73	9.62	15.73	6.11	8.19	12.63	6.14	11.81	9.64	26.49	3.84	11.03
99.0%	20	14.33	18.21	10.64	12.57	4.57	6.93	23.01	10.9	15	16.01	6.81	9.04	16.68	6.26	17.47	11.03	27.72	3.87	11.92

Table 14-39 Prohibition domain top-cuts and statistics - part 7.

Domain	9810	9815	9816	9820	9821	9825	9826	9827	9834	9835	9836	9845	9850	9858	9860	9861	9862	9863	9865	9870
Raw Data:	9810 AU	9815 AU	9816 AU	9820 AU	9821 AU	9825 AU	9826 AU	9827 AU	9834 AU	9835 AU	9836 AU	9845 AU	9850 AU	9858 AU	9860 AU	9861 AU	9862 AU	9863 AU	9865 AU	9870 AU
Samples	81	278	54	1068	30	42	124	22	46	298	261	43	107	286	205	85	506	40	140	237
Minimum	0.08	0.01	0.08	0.01	0.33	0.05	0.26	0.61	0.14	0.08	0.09	0.03	0.02	0.01	0.01	0.02	0.03	0.2	0.01	0.02
Maximum	12.45	48.54	11.99	84.28	10.35	15.25	20.82	17.01	43.11	32.13	24.04	42.9	18.17	30.94	46.83	38.35	46.13	12.53	19.27	41.87
Mean	2.78	3.57	2.78	5.09	3.59	2.27	3.52	4.2	5.09	4.15	3.7	9.03	2.71	3.99	4.39	4.28	5.32	2.32	2.91	5.09
Standard deviation	2.54	5.01	2.42	4.81	1.79	2.91	3.08	3.5	6.39	4.2	3.59	10.2	3.32	3.81	5.37	5.23	4.65	2.04	3.12	5.13
cv	0.91	1.4	0.87	0.94	0.5	1.28	0.87	0.83	1.25	1.01	0.97	1.13	1.22	0.96	1.22	1.22	0.87	0.88	1.07	1.01
Variance	6.44	25.07	5.85	23.13	3.21	8.5	9.46	12.25	40.77	17.62	12.91	104.14	11	14.51	28.81	27.32	21.62	4.15	9.76	26.31
50.0%	1.83	2.39	1.75	3.98	3.29	1.32	2.49	3.5	3.62	2.88	2.83	3.77	1.57	2.91	2.95	2.95	4.33	1.92	2.15	3.62
90.0%	6.53	7.6	5.34	10.22	5.11	4.05	7.39	5.8	8.23	9.4	7.23	19.24	6.18	8.32	9.35	9.35	10.53	3.75	6.86	10.71
95.0%	8.43	9.17	7.63	12.48	6.1	5.55	8.48	9.27	11.61	11.35	10.57	27.27	10.72	11.92	12.73	13.09	13.13	5.3	8.79	12.68
97.5%	9.26	13.87	9.21	14.57	7.84	12.32	12.14	12.96	13.6	16.72	15.12	41.48	12.39	13.56	17.45	14.21	16.22	5.68	11.18	16.1
99.0%	10.2	28.38	10.88	18.48	9.34	14.17	13.2	15.39	29.65	20.89	18.62	42.76	14.81	15.2	23.66	18.56	20.17	9.79	13.12	26.27
Top Cut	9999.00	17.00	9999.00	20.00	9999.00	6.00	10.00	7.00	15.00	25.00	9999.00	30.00	12.00	18.00	16.00	15.00	26.00	7.00	14.00	22.00

Domain	9810	9815	9816	9820	9821	9825	9826	9827	9834	9835	9836	9845	9850	9858	9860	9861	9862	9863	9865	9870
Cut Data:	9810 AU (9815 AU (9816 AU (9820 AU (9821 AU	9825 AU (9826 AU	9827 AU	9834 AU (9835 AU (9836 AU (9845 AU (9850 AU	9858 AU (9860 AU (9861 AU (9862 AU (9863 AU (9865 AU (9870 AU (
Samples	81	278	54	_	30		124	22	46	298	261	43	107	286	205	85	506	40	140	
Top Cut Count																				
Minimum	0.08	0.01	0.08	0.01	0.33	0.05	0.26	0.61	0.14	0.08	0.09	0.03	0.02	0.01	0.01	0.02	0.03	0.2	0.01	0.02
Maximum	12.45	17	11.99	20	10.35	6	10	7	15	25	24.04	30	12	18	16	15	26	7	14	22
Mean	2.24	2.99	2.06	4.44	3.46	1.98	3.06	3.57	3.77	3.9	3.45	7.99	2.25	3.68	3.34	4.18	4.67	2.19	2.51	4.18
Standard deviation	2.25	3.23	1.77	3.46	1.49	1.53	2.4	1.81	2.76	3.8	3.45	8.06	2.46	3.52	3.05	4.26	4.05	1.41	2.73	3.64
cv	1	1.08	0.86	0.78	0.43	0.78	0.78	0.51	0.73	0.97	1	1.01	1.09	0.96	0.91	1.02	0.87	0.64	1.09	0.87
Variance	5.04	10.4	3.13	11.97	2.23	2.35	5.74	3.28	7.62	14.41	11.9	65	6.06	12.38	9.3	18.11	16.42	1.99	7.45	13.23
50%	1.68	2.14	1.51	3.52	3.17	1.5	2.17	3.42	2.88	2.77	2.66	3.78	1.52	2.69	2.48	2.91	3.6	1.94	1.88	3.21
90%	4.97	6.83	4.17	8.97	4.69	3.89	6.82	5.71	6.9	8.2	6.26	17.61	4.61	7.7	7.18	12.75	9.52	3.73	4.99	9.17
95%	7.29	8.42	5.33	11.19	5.16	5.79	8.42	5.8	8.11	10.66	9.73	25.17	7.21	11.97	9.82	13.77	11.77	5.32	8.33	11.21
98%	8.57	12.71	7.65	13.23	6.63	6	10	6.91	10.37	15.77	15.09	30	11.22	13.55	12.83	15	15.95	5.62	11.62	13.15
99.0%	9.59	17	7.83	16.58	8.75	6	10	7	13.51	20.39	18.19	30	12	15.11	15.51	15	20.78	6.32	13.21	16.53

Table 14-40 Prohibition domain top-cuts and statistics - part 8.

Domain	9875	9876	9880	9900	9905	9910	9920	9922	9923	9929	9930	9931	9932	9933	9944	9999
Raw Data:	9875 AU	9876 AU	9880 AU	9900 AU	9905 AU	9910 AU	9920 AU	9922 AU	9923 AU	9929 AU	9930 AU	9931 AU	9932 AU	9933 AU	9944 AU	9999 AU
Samples	11	47	176	89	50	109	34	62	40	64	99	91	70	71	24	93263
Minimum	0.2	0.01	0.01	0.01	0.11	0.01	0.55	0.04	0.01	0.01	0.06	0.01	0.01	0.03	0.02	0
Maximum	49.12	6.81	17.12	19.5	28.1	12.03	23.59	28.9	34.1	28.84	20.74	21.1	18.05	19.53	8.05	2142.5
Mean	12.57	1.08	3.09	2.91	3.45	3.52	3.88	4.08	3.71	2.16	3.66	3.41	3.02	2.81	2.79	0.6
Standard deviation	15.07	1.25	2.74	3.37	4.31	2.77	4.3	5.43	5.59	3.63	3.26	3.48	3.03	2.96	2.01	13.06
cv	1.2	1.15	0.89	1.16	1.25	0.79	1.11	1.33	1.51	1.69	0.89	1.02	1	1.05	0.72	21.87
Variance	227.02	1.56	7.53	11.38	18.57	7.7	18.53	29.43	31.27	13.21	10.62	12.12	9.18	8.75	4.02	170.58
50.0%	5.73	0.65	2.36	1.9	2.06	3.33	2.58	2.2	2.28	1.59	2.73	2.46	2.27	2.1	2.08	0.02
90.0%	32.58	2.37	6.29	4.87	6.1	7.22	9	10.45	6.16	3.88	7.52	6.43	6.83	5.55	5.55	0.53
95.0%	40.94	3.1	8.01	10.31	9.54	8.58	9.43	16.82	8.91	4.94	9.49	8.66	8.17	7.04	6.68	0.97
97.5%	45.03	3.96	10.3	12.66	12.27	10.26	11.79	18.94	14.76	5.36	11.19	12.21	8.56	9.82	7.38	1.89
99.0%	47.48	5.53	13.03	17.28	20.51	11.89	18.87	24.03	26.36	13.96	17.06	18.87	11.97	15.32	7.78	6.14

20.00 9999.00 13.00 9999.00 13.00 9999.00 10.00 8.00 10.00 6.00 12.00 13.00 10.00 10.00 9999.00 5.00

Domain	9875	9876	9880	9900	9905	9910	9920	9922	9923	9929	9930	9931	9932	9933	9944	9999
Cut Data:	9875 AU_0	9876 AU_0	9880 AU_	9900 AU_0	9905 AU_0	9910 AU_0	9920 AU_0	9922 AU_0	9923 AU_0	9929 AU_0	9930 AU_0	9931 AU_0	9932 AU_	9933 AU_	9944 AU_0	9999 AU_(
Samples	11	47	176	89	50	109	34	62	40	64	99	91	70	71	24	93263
Top Cut Count																
Minimum	0.2	0.01	0.01	0.01	0.11	0.01	0.55	0.04	0.01	0.01	0.06	0.01	0.01	0.03	0.02	0
Maximum	20	6.81	13	19.5	13	12.03	10	8	10	6	12	13	10	10	8.05	5
Mean	6.69	1.22	2.78	3.3	3.08	3.36	3.18	3.15	2.93	1.82	3.22	3.05	2.83	2.42	2.66	0.15
Standard deviation	6.95	1.29	2.36	4.21	2.78	2.72	2.58	2.47	2.48	1.45	2.58	2.51	2.57	2.02	1.91	0.49
cv	1.04	1.06	0.85	1.28	0.9	0.81	0.81	0.78	0.85	0.8	0.8	0.82	0.91	0.83	0.72	3.32
Variance	48.27	1.67	5.58	17.76	7.72	7.42	6.66	6.11	6.17	2.12	6.64	6.31	6.58	4.06	3.65	0.24
50%	1.72	0.88	2.15	2.08	2.05	2.88	2.62	2.52	1.96	1.58	2.61	2.43	2	1.88	2.05	0.02
90%	17.59	2.47	5.23	5.21	5.95	6.81	8.4	8	5.62	3.96	6.13	5.85	6.95	4.71	5.5	0.34
95%	20	3.36	7.29	13.89	9.36	8.51	9.24	8	8.62	4.69	9.14	6.99	8.15	6.52	6.05	0.64
98%	20	4.22	8.87	17.32	10.35	10.58	9.53	8	10	5.26	10.6	9.14	8.42	8.51	6.86	1.1
99.0%	20	5.77	11.49	18.63	12.95	11.86	9.83	8	10	5.57	11.39	12.57	9.41	10	7.56	2.48

14.3.5.4 Density

Density values were allocated based on historical density test-work from Mercator and density test-work by Westgold using the immersion method. Density values are allocated by lithology and weathering. No discrimination was made between mineralised and unmineralised rock densities in the model. All background unmineralised material is either mafic or ultramafic volcanic or volcaniclastic sediment.

Note that some of the depleted stopes were backfilled with CRF (cemented rock fill) to allow mining of adjacent stopes without rib pillars. Specifically, stopes at the crown pillar below the base of the depleted open pit. Due to the mining method and sequence, no survey of the fill volume was possible. For the resource model, these filled stope voids have been treated as depleted and allocated a 0.00 density.

Table 14-41 Prohibition model density values.

Rock Type	Oxide	Transitional	Fresh
BIF	2.00	2.20	3.10
Mafic / Ultramafic / Dolerite	2.00	2.20	2.80
Air / Void	0.00		

14.3.5.5 Variography

A geostatistical analysis of down-hole composited Prohibition data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

For the 2024 reportable resource model, the mineralisation domains updated with new data were reviewed, with no changes to estimation parameters required since parameters were updated for the 2023 resource model. All other domains underwent comprehensive geostatistical analysis in 2001 for the resource report. Summaries of the parameters are tabled below.

Table 14-42 Prohibition estimation parameters updated for 2023 reportable resource model, part 1.

Domain Code	9118	9119	9120	9121	9122	9123	9124	9125	9126	9127	9128	9129	9130	9131	9132	9133
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
СО	0.19	0.20	0.20	0.20	0.20	0.19	0.23	0.19	0.22	0.19	0.18	0.22	0.24	0.19	0.24	0.23
C1	0.24	0.24	0.24	0.26	0.24	0.25	0.26	0.25	0.27	0.26	0.23	0.27	0.26	0.24	0.26	0.24
a1	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
C2	0.58	0.56	0.56	0.55	0.55	0.56	0.51	0.56	0.52	0.56	0.59	0.51	0.51	0.57	0.51	0.54
a2	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00	110.00
C3																
a3																
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18
1. Major : Minor	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
2. Major : Semi Major	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20
2. Major : Minor	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50	27.50
3. Major : Semi Major																
3. Major : Minor																
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	4	4	8	5	5	8	5	8	5	8	8	8	5	4	3	2
Max	8	7	16	12	12	16	14	16	14	17	17	17	12	7	6	5
Max Search	120	80	80	120	80	80	80	60	80	60	60	80	120	80	80	80
Major/Semi	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Major/Minor	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Run Pass2	N	N	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor						3	3	3	3	3	3	3	3	3	3	3
Major/Semi						1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Major/Minor						5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Min						4	4	4	4	4	4	4	4	4	4	4
Max						16	16	16	16	16	16	16	16	16	16	16

Table 14-43 Prohibition estimation parameters updated for 2023 reportable resource model, part 2.

Domain Code	9290	9295	9300	9320	9321	9325	9330	9360	9380	9390	9400	9420	9430	9432	9434	9436	9450	9470	9490	9491
Estimate	Υ	Υ	Y	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Y	Υ	Y	Y
# Structures	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	3	2
CO	0.20	0.13	0.18	0.45	0.20	0.40	0.40	0.40	0.40	0.18	0.22	0.15	0.30	0.30	0.30	0.30	0.22	0.22	0.25	0.19
C1	0.45	0.53	0.47	0.13	0.45	0.40	0.40	0.40	0.40	0.47	0.54	0.62	0.55	0.55	0.55	0.55	0.54	0.54	0.38	0.55
a1	6.00	7.00	24.00	20.00	6.00	10.00	10.00	10.00	10.00	24.00	7.00	7.00	5.00	5.00	5.00	5.00	7.00	7.00	4.00	7.00
C2	0.35	0.34	0.35	0.42	0.35	0.20	0.20	0.20	0.20	0.35	0.24	0.24	0.15	0.15	0.15	0.15	0.24	0.24	0.20	0.16
a2	28.00	65.00	68.00	60.00	28.00	30.00	30.00	30.00	30.00	68.00	40.00	40.00	32.00	32.00	32.00	32.00	40.00	40.00	19.00	27.00
C3				0.00		0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.10
a3				0.00		0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	45.00	89.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
						1													1	
1. Major : Semi Major	1.00	1.00	6.00	1.30	1.00	1.00	1.00	1.00	1.00	6.00	1.10	1.40	1.00	1.00	1.00	1.00	1.10	1.10	1.00	1.75
1. Major : Minor	1.50	1.75	6.00	5.00	1.50	1.00	1.00	1.00	1.00	6.00	2.30	2.33	1.00	1.00	1.00	1.00	2.30	2.30	1.00	1.40
2. Major : Semi Major	1.00	2.60	5.70	1.50	1.00	1.00	1.00	1.00	1.00	5.70	1.60	1.90	1.00	1.00	1.00	1.00	1.60	1.60	1.46	1.00
2. Major : Minor	4.00	6.50	5.70	6.00	4.00	1.00	1.00	1.00	1.00	5.70	8.00	3.33	1.00	1.00	1.00	1.00	8.00	8.00	1.90	2.70
3. Major : Semi Major																			1.730769	2.50
3. Major : Minor																			4.090909	8.00
		T			ı	ı			1										1	
Rotation convention												Surpac								
Azimuth	270.00	355.20	173	302.30	270.00	0.00	270.00	270.00	270.00	172.90	340.00	340.00	0.00	0.00	0.00	0	340	340	350.00	18.30
Dip	-70.00	14.10	19	-67.70	-70.00	0.00	-45.00	-70.00	-70.00	18.70	0.00	0.00	0.00	0.00	0.00	0	0	0	0.00	29.50
Plunge	0.00	69.40	-69	25.50	0.00	0.00	0.00	0.00	0.00	-68.80	75.00	75.00	0.00	0.00	0.00	0	75	75	50.00	42.30
						1	1		1				1						ı	
Search		ļ																		
						ELLIPSOID														
stimation Block Size (x,y,z						5, 10, 10						5, 10, 10		5, 10, 10						
Estimation Block Size X	5	5		5	5		5	5		5	5	5	5	5	5	5		5	5	
Estimation Block Size Y	10							10		10	10		10		10					
Estimation Block Size Z	10			10				10		10	10		10		10			10		
Disc Point X	2										2		2		2					
Disc Point Y	5	5	5	5 5			5	5	5	5	5 5		5	5	5	5	5	5 5	5	
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
rade Dependent Paramete																				
	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max																				-
Search Limitation										l										
Limite Committee Invitational	Y	V	Y	Υ	Y	Y	Y	v	٧	Y	Υ	V	Y	Y	٧	V	Υ	Υ	v	Y
Limit Samples by Hole Id																				
Hole Id D Field	D3	D3	D3 5	D3	D3	D3	D3	D3 5	D3 5	D3	D3 5	D3 5	D3	D3	D3 5	D3 5	D3	D3 5	D3	D3
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Docc1				. V		٧.	· ·				٧,	. v		, I	V	. V	. v	٧.	· ·	
Pass1 Min	Y	Y	Y	Y	Y	Y	Y	Y 1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	8 24	8	7 24	8	8	1	1	1	1	8 24	8	8	8	8	8 24	8	8 24	8	8	8
Max		24 60	60	24	24 60	26	26	26 60	26	60	24 60	24	24	24 60		24	60	24	20 60	24 60
Max Search	1.0	2.6		60 1.5	1.0	1.0	1.0	1.0	60 1.0			60 1.5	60 1.0	1.0	1.0	60 1.0		60 1.5	2.0	
Major/Semi			3.0							3.0	1.5						1.5			2.0
Major/Minor	3.0	3.0	3.0	3.0	3.0	1.0	5.0	5.0	5.0	3.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0
B B	· ·				V		N. 1	N.			V	L	· ·	— , —	V		.	V		- V
Run Pass2	Y	Y	Y 2.5	Y	Y	Y	N	N	Y	Y 2.5	Y	Y 2.5	Y	Y	Y	Y	Y	Y	Y	Y
Factor	2	2	2.5	2	2	2	1	1	2	2.5	2	2.5	2	2	2	2	2	2	2	2
Major/Semi	1.0	2.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.0	1.0	1.0	1.0	1.5	1.5	1.0	2.0
Major/Minor	2.0	3.0	3.0	3.0	2.0	1.0	5.0	5.0	5.0	1.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0
Min	24	24	1 24	1 24	1 24	26	2 26	26	2	1 24	2 24	2 24	2 24	2 24	2 24	2 24	1 24	1 24	4	24
Max	24		24	24	Z 4	∠6	∠6	∠6	26		24		24	∠ 4	24	24		24	12	24

Table 14-44 Prohibition estimation parameters unchanged since the 2021 resource model, part 1.

Domain Code	9290	9295	9300	9320	9321	9325	9330	9360	9380	9390	9400	9420	9430	9432	9434	9436	9450	9470	9490	9491
Estimate	9290 Y	9295 Y	9300 Y	9320 Y	9321 Y	9325 Y	9330 Y	9360 Y	9380 Y	9390 Y	9400 Y	9420 Y	9430 Y	9432 Y	9434 Y	9436 Y	9450 Y	9470 Y	9490 Y	9491 Y
		2	2	2	2	2	2	2	2	2	2	3		2	2	2	2	2		2
# Structures C0	0.20	0.13	0.18	0.45	0.20	0.40	0.40	0.40	0.40	0.18	0.22	0.15	0.30	0.30	0.30	0.30	0.22	0.22	0.25	0.19
C1	0.20	0.13	0.18	0.45	0.20	0.40	0.40	0.40	0.40	0.18	0.54	0.15	0.55	0.55	0.55	0.55	0.22	0.22	0.25	0.19
	6.00	7.00	24.00	20.00	6.00	10.00	10.00	10.00	10.00	24.00	7.00	7.00		5.00	5.00	5.00	7.00	7.00	4.00	7.00
a1 C2	0.35	0.34	0.35	0.42	0.35	0.20	0.20	0.20	0.20	0.35	0.24	0.24	5.00 0.15	0.15	0.15	0.15	0.24	0.24	0.20	0.16
a2	28.00	65.00	68.00	60.00	28.00	30.00	30.00	30.00	30.00	68.00	40.00	40.00	32.00	32.00	32.00	32.00	40.00	40.00	19.00	27.00
	28.00	65.00	68.00	0.00	28.00	0.00	0.00	0.00	0.00	68.00	0.00	40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	
C3 a3				0.00		0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.10
TOTAL SILL	1.00	1.00	1.00	0.00	1.00		0.00	0.00	0.00	4.00	0.00	4.00	0.00	0.00	0.00	0.00	0.00	0.00	45.00	89.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.00	1.00	6.00	1.30	1.00	1.00	1.00	1.00	1.00	6.00	1.10	1.40	1.00	1.00	1.00	1.00	1.10	1.10	1.00	1.75
	1.50	1.75	6.00	5.00	1.50	1.00	1.00	1.00	1.00	6.00	2.30	2.33	1.00	1.00	1.00	1.00	2.30	2.30	1.00	1.75
Major : Minor Major : Semi Major	1.00	2.60	5.70	1.50	1.00	1.00	1.00	1.00	1.00	5.70	1.60	1.90	1.00	1.00	1.00	1.00	1.60	1.60	1.46	1.00
	4.00													1.00						
2. Major : Minor	4.00	6.50	5.70	6.00	4.00	1.00	1.00	1.00	1.00	5.70	8.00	3.33	1.00	1.00	1.00	1.00	8.00	8.00	1.90	2.70
3. Major : Semi Major			-	-															1.730769	2.50
3. Major : Minor			L	l				l	l						l	L			4.090909	8.00
Detetion company			I	1	1	ı		ı	I	1		C			I	I				
Rotation convention	270.00	255.20	470	202.20	270.00	0.00	270.00	270.00	270.00	470.00	240.00	Surpac		0.00	0.00		240	240	250.00	40.00
Azimuth	270.00 -70.00	355.20 14.10	173 19	302.30 -67.70	270.00 -70.00	0.00	270.00 -45.00	270.00 -70.00	270.00 -70.00	172.90 18.70	340.00 0.00	340.00 0.00	0.00	0.00	0.00	0	340 0	340 0	350.00 0.00	18.30 29.50
Dip																				
Plunge	0.00	69.40	-69	25.50	0.00	0.00	0.00	0.00	0.00	-68.80	75.00	75.00	0.00	0.00	0.00	0	75	75	50.00	42.30
Search								<u> </u>												
Method																			ELLIPSOID	
stimation Block Size (x,y,z																		5, 10, 10		
Estimation Block Size X	5			5			5	5				5	5	5			5	5	5	
Estimation Block Size Y	10	10					10						10	10				10		
Estimation Block Size Z	10	10					10						10	10				10		
Disc Point X	2	2		2				2					2	2				2	_	
Disc Point Y	5	5		5			5	5	5	5	5	5	5	5			5	5	5	
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
rade Dependent Paramete	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max																				
Search Limitation																				
			1	1																
Limit Samples by Hole Id	Υ	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y
Hole Id D Field	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
			1																	
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ	Υ	Y	Υ	Υ	Υ
Min	8	8	7	8	8	1	1	1	1	8	8	8	8	8	8	8	8	8	8	8
Max	24	24	24	24	24	26	26	26	26	24	24	24	24	24	24	24	24	24	20	24
Max Search	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Major/Semi	1.0	2.6	3.0	1.5	1.0	1.0	1.0	1.0	1.0	3.0	1.5	1.5	1.0	1.0	1.0	1.0	1.5	1.5	2.0	2.0
Major/Minor	3.0	3.0	3.0	3.0	3.0	1.0	5.0	5.0	5.0	3.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0
				-					T	T										
Run Pass2	Y	Υ	Υ	Y	Y	Υ	N	N	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Y
Factor	2	2	2.5	2	2	2	1	1	2	2.5	2	2.5	2	2	2	2	2	2	2	2
Major/Semi	1.0	2.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.5	1.0	1.0	1.0	1.0	1.5	1.5	1.0	2.0
Major/Minor	2.0	3.0	3.0	3.0	2.0	1.0	5.0	5.0	5.0	1.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0
Min	1	1	1	1	1	2	2	2	2	1	2	2	2	2	2	2	1	1	4	1
Max	24	24	24	24	24	26	26	26	26	24	24	24	24	24	24	24	24	24	12	24

Table 14-45 Prohibition estimation parameters unchanged since the 2021 resource model, part 2.

Domain Code	9495	9500	9520	9540	9545	9549	9550	9552	9555	9558	9559	9560	9590	9600	9610	9620	9630	9631	9635	9640
	9495 Y			9540 Y										9600 Y						
Estimate	_	Y 2	Y 3	2	Y 2	Y 2	Y	Y 2	Y 2	Y 3	Y 3	Y 3	Y	_	Y	Y 3	Y 3	Y 2	Y	Y 3
# Structures	0.40	0.31	0.33	0.31	0.31	0.45	0.28	0.40	0.40	0.29	0.27	0.29	0.44	0.43	0.42	0.42	0.30	0.40	0.35	0.47
CO																				
C1	0.40	0.43	0.43	0.43	0.43	0.37	0.47	0.40	0.40	0.30	0.30	0.31	0.27	0.27	0.34	0.34	0.37	0.40	0.37	0.27
a1	10.00	13.00	13.00	13.00	13.00	5.00	6.00	10.00	10.00	4.00	4.00	4.00	6.00	6.00	6.00	6.00	7.00	10.00	5.00	6.00
C2	0.20	0.26	0.25	0.26	0.26	0.18	0.25	0.20	0.20	0.42	0.43	0.41	0.29	0.30	0.14	0.14	0.18	0.20	0.16	0.27
a2	30.00	65.00	60.00	65.00	65.00	24.00	45.00	30.00	30.00	39.00	39.00	39.00	40.00	40.00	18.00	18.00	21.00	30.00	15.00	40.00
СЗ	0.00							0.00	0.00								0.16	0.00	0.12	
a3	0.00							0.00	0.00								89.00	0.00	80.00	
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	4.00	2.50	2.50	2.50	2.50	4.00	1.00	1.00	1.00	4.00	4.00	4.00	4.00	1.00	4.00	4.00	4.75	4.00	100	4.00
1. Major : Semi Major	1.00	2.60	2.60	2.60	2.60	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	1.75	1.00	1.00	1.00
1. Major : Minor	1.00	4.30	4.33	4.30	4.30	1.00	1.20	1.00	1.00	1.33	1.33	1.33	1.00	1.00	1.00	1.00	2.33	1.00	1.25	1.00
2. Major : Semi Major	1.00	1.60	1.50	1.60	1.60	2.40	1.50	1.00	1.00	4.33	4.33	4.33	1.33	1.33	1.33	1.33	1.00	1.00	1.00	1.33
2. Major : Minor	1.00	10.90	10.00	10.90	10.90	3.00	7.50	1.00	1.00	6.50	6.50	6.50	4.00	4.00	4.00	4.00	2.10	1.00	1.50	4.00
3. Major : Semi Major																	1.68		1.70	
3. Major : Minor								l									8.09		7.30	
Batatian annuali																				
Rotation convention																				
Azimuth	0.00	341.80	341.75	341.80	341.80	77.80	196.50	0.00	0.00	215.42	215.42	215.42	6.46	6.46	6.46	6.46	358.25	0.00	193.90	6.46
Dip	0.00	9.80	9.85	9.80	9.80	-34.40	-7.60	0.00	0.00	-65.19	-65.19	-65.19	13.57	13.57	13.57	13.57	-9.85	0.00	-53.80	13.57
Plunge	0.00	79.80	79.85	79.80	79.80	-6.90	-49.60	0.00	0.00	-51.92	-51.92	-51.92	64.23	64.23	64.23	64.23	79.85	0.00	-72.90	64.23
			1																	
Search								<u> </u>												
Method					ELLIPSOID															
stimation Block Size (x,y,z																		5, 10, 10		
Estimation Block Size X	5	5		5			5	5				5	5	5			5	5	5	5
Estimation Block Size Y	10	10					10						10					10		10
Estimation Block Size Z	10	10					10						10					10		10
Disc Point X	2	2		2			2	2					2	2				2	2	2
Disc Point Y	5	5		5			5	5	5			5	5	5		5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
rade Dependent Paramete	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max																				
Search Limitation																				
	٧	V	Y		v		٧	V	Y	v	· ·	Y	Υ	v	Y		Y	V	v	Y
Limit Samples by Hole Id				Y	D3	Y			-	D3		D3	•			Y		D3		
Hole Id D Field	D3	D3	D3	D3		D3	D3	D3	D3		D3		D3	D3	D3	D3	D3		D3	D3
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pass1	Y	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Y	Υ
Min	1	10	10	10	10	8	8	1	1	8	4	8	8	8	8	8	9	1	8	4
Max	26	24	24	24	24	24	24	26	26	24	18	24	24	24	24	24	21	26	24	21
Max Search	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Major/Semi	1.0	2.0	2.0	2.0	2.0	2.4	2.3	1.0	1.0	3.0	3.0	3.0	2.3	1.0	3.0	3.0	1.5	1.0	3.0	1.5
Major/Minor	1.0	4.0	4.0	4.0	4.0	3.0	3.0	1.0	1.0	4.0	5.0	4.0	3.0	2.0	4.0	4.0	2.5	1.0	4.0	2.5
Wiajor/Willion	1.0	4.0	4.0	4.0	4.0	5.0	5.0	1.0	1.0	4.0	5.0	4.0	5.0	2.0	4.0	4.0	2.5	1.0	4.0	2.5
Run Pass2	Υ	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Y	Υ	Y
Factor	1	2	2	1	1	2	2	1	1.5	2	2	2	2	3	2.5	2	2	2	2	2
Major/Semi	1.0	2.0	2.0	2.0	2.0	2.4	2.3	1.0	1.0	3.0	3.0	1.0	2.3	1.0	3.0	3.0	1.5	1.0	3.0	1.5
Major/Minor	1.0	4.0	4.0	4.0	4.0	2.0	3.0	1.0	1.0	4.0	5.0	1.0	3.0	2.0	4.0	4.0	2.5	1.0	4.0	2.5
Min	2	2	2	2	2	2	1	2	1	2	1	4	2	2	2	2	4	2	2	1
Max	26	24	24	24	24	24	24	26	26	24	18	24	24	24	24	24.0	21	26	24	21
																2-1.0				

Table 14-46 Prohibition estimation parameters unchanged since the 2021 resource model, part 3.

Barratu Cada	9641	9650	9660	9664	9665	0000	9668	9670	9671	9672	9674	9675	9680	9685	9687	9689	9690	9691	9692	9693
Domain Code Estimate	9641 Y	9650 Y	9660 Y	9664 Y	9665 Y	9666	9668 Y	9670 Y	9671 Y	9672 Y	9674 Y	9675 Y	9680 Y	9685 Y	9687 Y	9689 Y	9690 Y	9691	9692 Y	9693 Y
	2	3	3	2	3	Y 2	Y	4			Y 2		Y 2	-				3	3	У 3
# Structures CO	0.40	0.41	0.34	0.40	0.45	0.40	0.40	0.32	0.50	0.40	0.40	0.30	0.48	0.48	0.40	0.25	0.38	0.48	0.34	0.35
		_																		
C1	0.40	0.42	0.36	0.40	0.34	0.40	0.40	0.35	0.32	0.40	0.40	0.39	0.30	0.30	0.40	0.23	0.23	0.30	0.41	0.23
a1	10.00	6.00	5.00	10.00	13.00	10.00	10.00	7.00	13.00	10.00	10.00	8.00	15.00	15.00	10.00	36.00	12.00	6.00	6.00	12.00
C2	0.20	0.17	0.30	0.20	0.21	0.20	0.20	0.24	0.18	0.20	0.20	0.32	0.22	0.22	0.20	0.47	0.18	0.23	0.25	0.19
a2	30.00	47.00	36.00	30.00	70.00	30.00	30.00	27.00	70.00	30.00	30.00	76.00	50.00	50.00	30.00	16.00	47.00	29.00	30.00	47.00
C3	0.00			0.00		0.00	0.00	0.09		0.00	0.00				0.00	0.06	0.21			0.24
a3	0.00			0.00		0.00	0.00	88.00		0.00	0.00				0.00	30.00	91.00			91.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.00	2.00	1.00	1	2.17	1	1	1.00	2.17	1	1	1.60	3.75	3.75	1	1.00	1.50	1.00	1.20	1.50
1. Major : Minor	1.00	2.00	2.50	1	6.50	1	1	2.33	6.50	1	1	2.00	3.75	3.75	1	1.00	6.00	3.00	2.00	6.00
2. Major : Semi Major	1.00	2.94	3.00	1	3.89	1	1	1.00	3.89	1	1	2.62	3.3	3.3	1	1.00	2.76	1.71	1.88	2.76
2. Major : Minor	1.00	5.88	4.50	1	7.00	1	1	3.38	7.00	1	1	9.50	8.3	8.3	1	2.67	9.40	5.80	3.75	9.40
3. Major : Semi Major	1.00	5.00	4.30	-	7.00			1.42	7.00	-		3.30	8.3	6.5		1.00	2.94	3.80	3.73	2.94
3. Major : Minor								8.80								3.00	15.17			15.17
3. 1110/01 : 1111101		ļ		1				0.00								5.00	13.17			13.17
Rotation convention										1			1							
Azimuth	0.00	11.75	355.04	0	22.76	0	0	351.17	22.76	0	0	5.04	8.29	8.29	0	329.1	182.3	180.38	191.17	182.3
Dip	0.00	9.85	8.65	0	33.83	0	0	28.02	33.83	0	0	8.65	39.3	39.3	0	-49.7	-38.4	-19.29	-28.02	-38.4
Plunge	0.00	79.85	59.62	0	53.00	0	0	67.20	53.00	0	0	59.62	77	77	0	82.2	-70.7	-74.09	-67.20	-70.7
Search																				
Method					ELLIPSOID															
stimation Block Size (x,y,z	5, 10, 10		5, 10, 10		5, 10, 10					5, 10, 10		5, 10, 10		5, 10, 10			5, 10, 10	5, 10, 10		5, 10, 10
Estimation Block Size X	5	5		5	5		5	5			5	5	5	5	5		5	5	5	5
Estimation Block Size Y	10				10	10	10	10			10	10		10	10				10	
Estimation Block Size Z	10			10	10	10	10	10			10	10		10	10				10	
Disc Point X	2	2		2	2		2	2			2	2	2		2	2	2	2	2	
Disc Point Y	5	5		5	5	5	5	5			5	5	5	5	5	5	5	5	5	
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
rade Dependent Paramete	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max		- 14	1.4		- 13	.,	.,	14	13	- 10	.,	- 14	- 14	.,	- 10	14	- 1	.,		- ''
Search Limitation																				
Scarcii Elimeation			!																	
Limit Samples by Hole Id	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ
Hole Id D Field	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pass1 Min	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	1	11	10	1	8	1	1	9	4	1	1	8	8	8	1	5	7	5	8	2
Max	26 60	23 60	19 60	26 60	24 60	26 60.00	26 60	20 60	24 60	26 60.00	26 60.00	24 60	24 60	24 60	26 60	21 60	22 60	22 60	20 60	22 60
Max Search																				
Major/Semi	1.0	2.0	2.0	1.0	2.0	1.0	1.0	1.5	2.0	1.0	1.0	2.0	3	3	1	1.0	2.0	1.3	1.5	1.5
Major/Minor	1.0	3.5	3.5	1.0	4.0	1.0	1.0	4.0	4.0	1.0	1.0	4.0	4	4	1	2.5	4.0	4.0	3.0	2.5
Run Pass2	Y	Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Y	Υ	Υ	Υ	Υ	Y	Y	Y	Y	Y
Factor	1	2	2	1	2	1	1	2	2	1	1	2	2	2	2	2	2	2	2	2
Major/Semi	1.0	2.0	2.0	1.0	2.0	1.0	1.0	1.5	2.0	1.0	1.0	2.0	3	3	1	1.0	2.0	1.3	1.5	1.5
Major/Minor	1.0	3.5	3.5	1.0	4.0	1.0	1.0	4.0	4.0	1.0	1.0	4.0	4	4	1	2.5	4.0	4.0	3.0	2.5
Min	2	5	5	2	2	2	2	5	1	2	2	4	2	2	2	2	5	2	5	1
Max	26	23	19	26	24	26	26	20.0	24	26	26	24	24	24	26	21	22	22	20	22

Table 14-47 Prohibition estimation parameters unchanged since the 2021 resource model, part 4.

	0504	0.00	0505	0500	0.500						0046		0004		0000					
Domain Code	9694	9695	9696	9698	9699	9700	9701	9705	9810	9815	9816	9820	9821	9825	9826	9827	9835	9836	9845	9850
Estimate	Υ	Y	Υ	Υ	Y	Y	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y
# Structures	3	4	3	3	3	3	2	1	3	3	3	3	3	3	3	3	2	2	2	2
СО	0.29	0.34	0.42	0.21	0.20	0.15	0.40	0.59	0.30	0.53	0.46	0.43	0.40	0.31	0.35	0.43	0.50	0.46	0.46	0.17
C1	0.41	0.22	0.25	0.44	0.42	0.58	0.40	0.17	0.47	0.23	0.36	0.27	0.27	0.47	0.28	0.20	0.18	0.21	0.26	0.58
a1	8.00	12.00	8.00	10.00	10.00	11.00	10.00	13.00	11.00	10.00	14.00	8.00	8.00	11.00	7.00	10.00	8.00	10.00	4.00	14.00
C2	0.30	0.19	0.33	0.35	0.39	0.27	0.20	0.24	0.23	0.25	0.19	0.31	0.33	0.22	0.37	0.37	0.32	0.32	0.27	0.25
a2	32.00	47.00	44.00	34.00	34.00	53.00	30.00	40.00	40.00	45.00	68.00	78.00	78.00	40.00	36.00	52.00	42.00	43.00	19.00	61.00
C3		0.25					0.00	0.00												
a3		91.00					0.00	0.00												
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.60	1.50	1.33	1.25	1.25	1.83	1	1.3	1.22	2.00	2.33	1.60	1.60	1.22	1.00	1.43	1.14	2.5	1.00	2.33
1. Major : Minor	2.67	6.00	2.67	3.33	3.33	3.67	1	2.6	2.20	5.00	3.50	2.67	2.67	2.20	3.50	5.00	2.67	3.33	2.00	4.67
2. Major : Semi Major	2.00	2.76	1.69	1.48	1.48	2.41	1	2	1.82	1.67	3.78	2.23	2.23	1.82	2.25	2.36	1.2	2.69	1.73	3.21
2. Major : Minor	4.00	9.40	5.50	4.86	4.86	7.57	1	6.7	5.00	7.50	6.80	11.14	11.14	5.00	7.20	10.40	7	6.14	3.80	8.71
3. Major : Semi Major		2.94																		
3. Major : Minor		15.17												l						
Rotation convention																				
Azimuth	191.17	182.3	186.01	181.17	181.17	11.17	0	18.7	100	181	177	182	182	100	192	192	186.013	181.17	129.002	11.17
Dip	-28.02	-38.4	-37.16	-28.02	-28.02	28.02	0	18.1	70	-28	-38	-38	-38	70	-49	-49	-37.159	-28.024	-44.136	28.024
Plunge	-67.20	-70.7	-64.59	-67.20	-67.20	67.20	0	63.6	0	-67	-71	-71	-71	0	-75	-75	-64.586	-67.204	9.851	67.204
Search																				
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID										
stimation Block Size (x,y,z	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10
Estimation Block Size X	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Estimation Block Size Y	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Estimation Block Size Z	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Disc Point X	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Disc Point Y	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
				•	•			,												
rade Dependent Paramete	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max																				
Search Limitation																				
					-	-					-	-				-	-	-		
Limit Samples by Hole Id	Υ	Υ	Υ	Y	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ
Hole Id D Field	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
								•												
Pass1	Y	Y	Y	Y	Y	Y	Υ	Υ	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Min	2	2	8	8	5	10	1	8	5	8	5	7	4	4	7	4	7	8	6	5
Max	22	22	23	23	23	23	26	26	24	22	22	20	20	24	20	20	20	22	24	23
Max Search	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Major/Semi	1.5	2.0	1.5	1.3	1.3	2.0	1.0	2.0	1.5	1.7	3.0	2.0	2.0	1.5	1.5	1.5	1.1	2.5	1.5	3.0
Major/Minor	3.0	6.0	4.0	4.0	4.0	5.0	1.0	3.0	3.5	6.0	5.0	4.0	4.0	3.5	4.0	6.0	4	5	2.5	6.0
			'			· '													•	
Run Pass2	Y	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Y	Υ	Y	Υ	Y	Y	Υ	Y	Υ	Y	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	1.5	2.0	1.5	1.3	1.3	2.0	1.0	2.0	1.5	1.7	3.0	2.0	2.0	1.5	1.5	1.5	1.1	2.5	1.5	3.0
Major/Minor	3.0	6.0	4.0	4.0	4.0	5.0	1.0	3.0	3.5	6.0	5.0	4.0	4.0	3.5	4.0	6.0	4	5	2.5	6.0
Min	1	1	5	5	2	5	2	2	2	5	2	5	1	1	5	1	5	4	4	2
Max	22	22	23	23	23	23	26	26	24	22	22	20	20	24	20	20	20	22	24	23
IVIUA			2.5	2.5		2.5	20	20	24				20	24			20		24	23

Table 14-48 Prohibition estimation parameters unchanged since the 2021 resource model, part 5.

	9858	9860	9862	9863	9865	9870	9880	9890	9900	9910	9920	9922	9923	9925	9930	9932	9940	9942	9999	2000
Domain Code	9858 Y			9863 Y	9865 Y			9890 Y	9900 Y					9925 Y			9940 Y			
Estimate	2	Y	Y 3	-		Y 2	Υ	Y 2		Y 2	Y 2	Y	Y		Y 2	Y 2	Y	Y	Y 3	Y 1
# Structures C0	0.28	0.15	0.43	0.40			0.40	0.40	0.40		0.47	0.40	0.40	0.40		0.40	0.40	0.45	0.36	0.80
C1	0.28	0.15	0.43	0.40			0.40	0.40	0.40		0.47	0.40	0.40	0.40		0.40	0.40	0.45	0.36	0.80
	12.00	11.00	11.00	10.00			10.00	10.00	10.00		10.00	10.00	10.00	10.00		10.00	10.00	5.00	5.00	10.00
a1 C2		0.27	0.31	0.20			0.20	0.20	0.20			0.20	0.20	0.20		0.20	0.20	0.23		0.00
	0.34 42.00	53.00	31.00	30.00	0.20 30.00		30.00	30.00	30.00		0.26 42.00	30.00	30.00	30.00		30.00	30.00	23.00	0.16 20.00	
a2 C3	42.00	53.00	0.13	0.00	0.00	36.00	0.00	0.00	0.00	34.00	42.00	30.00	0.00	0.00	32.00	0.00	0.00	23.00	0.12	0.00
a3			46.00	0.00	0.00		0.00	0.00	0.00			0.00	0.00	0.00		0.00	0.00		145.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	2.40	1.83	1.83	1	1	1.75	1	1	1	1	1.428571	1	1	1	1.75	1	1	1	1	1
1. Major : Minor	6.00	3.67	5.50	1	1	2.333333	1	1	1	6	5	1	1		2.333333	1	1	1	1.25	1
2. Major : Semi Major	3.00	2.41	2.38	1	1	2.117647	1	1	1	1	1.615385	1	1	1		1	1	1.4375	0.8	
2. Major : Minor	8.40	7.57	7.75	1	1	4	1	1	1	6.8	8.4	1	1		4.571429	1	1	2.875	2	
3. Major : Semi Major	8.40	7.57	2.71	-	-	1 7				0.0	0.4	- 1			4.371423	-	- 1	2.073	3	
3. Major : Minor			9.20																13.2	1
3. Iviajoi . IviiliOi	·	1	3.20	·	·					·	L .	L			1	·	L		13.2	
Rotation convention	1		1	1												1	Г		1	
Azimuth	183.712	11.17	191.74	0	О О	151.93	О	0	0	0.272	182.253	0	0	0	189.525	0	0	75.889	358.2	0
Dip	-26.946	28.02	-58.525	0			0	0	0		-38.381	0	0			0		-47.937	-9.8	0
Plunge	-61.7	67.20	-70.575	0			0	0			-70.721	0	0			0			79.8	0
1121182							-					-					-			
Search																				
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
stimation Block Size (x,y,z																				
Estimation Block Size X	5	5		5			5	5	5			5	5	5			5	5	5	5
Estimation Block Size Y	10	10	10			10	10	10	10		10	10	10	10		10	10	10	10	10
Estimation Block Size Z	10	10					10	10	10			10	10	10			10	10		10
Disc Point X	2	2	2	2		2	2	2	2	2		2	2	2	2	2	2	2	2	2
Disc Point Y	5	5		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
rade Dependent Paramete	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	N
Threshold Max																			3	
Search Limitation																			10	
	•																		•	
Limit Samples by Hole Id	Y	Υ	Y	Y	Y	N	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ
Hole Id D Field	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3	D3
Max Samps per Hole	5	5	5	5	5		5	5	5	5	5	5	5	5	5	5	5	5	5	5
												•					•			
Pass1	Y	Y	Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ
Min	7	5	7	1	1	7	1	1	1	5	5	1	1	1	5	1	1	5	4	4
Max	20	23	22	26	26	22	26	26	26	22	22	26	26	26	22	26	26	22	24	24
Max Search	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Major/Semi	2.5	2.0	2	1	1	2	1	1	1	1	1.5	1	1	1	2	1	1	1	3	1
Major/Minor	6	5.0	6	1	1	3	1	1	1	6	6	1	1	1	3.5	1	1	2	4	1
	-				-					•		•					•		•	
Run Pass2	Y	Υ	Y	Y	Y	Y	Υ	Υ	Y	Y	Y	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	2.5	2.0	2	1	1	2	1	1	1	1	1.5	1	1	1	2	1	1	1	3	1
Major/Minor	6	5.0	6	1	1	3	1	1	1	6	6	1	1	1	3.5	1	1	2	4	1
Min	4	2	2	2	2	5	2	2	2	2	2	2	2	2	2	2	2	2	4	4
Max	20	23	22	26	26	22	26	26	26	22	22	26	26	26	22	26	26	22	24	24
	•									•					•				•	

14.3.5.6 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-49 Prohibition block model parameters.

	Υ	Х	Z
Min	2,200	500	-300
Max	3,400	1,100	550
Extents	1,200	600	850
Parent size	10.00	5.00	10.00
Sub-Block size	1.25	1.25	0.625

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For Prohibition, all interpolation was conducted in two passes which was sufficient to fill all blocks in the estimation domains. An increased search distance either $2 \, x$, $2.5 \, x$ or $3 \, x$, a reduction of minimum informing samples, and optionally a reduction of maximum informing samples was used for the second interpolation pass.

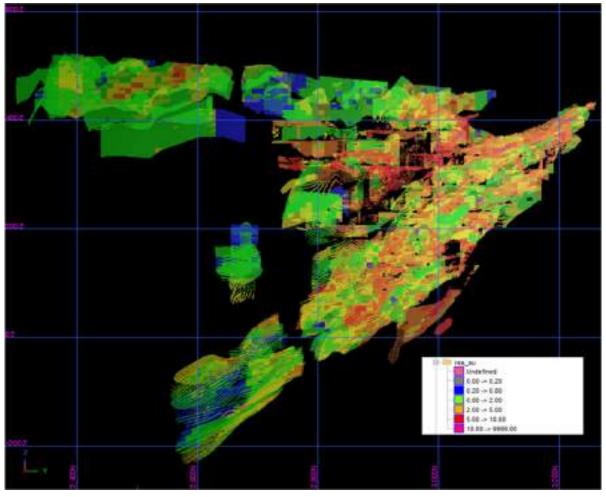


Figure 14-15 Prohibition depleted resource model, all domains - Source: Westgold.

14.3.5.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data for the Prohibition open pit, as the modelling of the Prohibition mineralisation has focused on the fresh rock resource below the historic open pit. However, over the life of the Westgold project from February 2016 to June 2023, claimed stope production (CMS survey of the mined void vs estimated model, adjusted for external dilution sources) v. mill reconciled actual stope production has been within 5% variation.

Table 14-50 Prohibition stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance				
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz		
Stoping	2,315,644	2.93	217,981	2,268,880	3.09	225,250	+2%	-5%	-3%		
Development	509,552	3.21	52,539	500,313	3.38	54,291	+2%	-5%	-3%		

14.3.5.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Prohibition Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with underground development face sampling, with the mineralisation interpretation supported by face and backs mapping and validated by face photos during mineralisation domain interpretation.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Prohibition Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

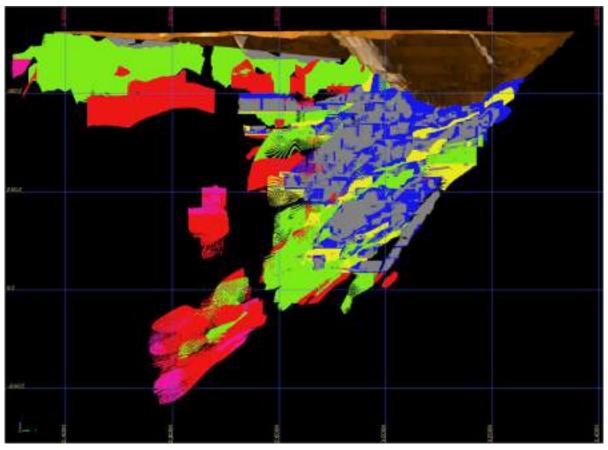


Figure 14-16 Prohibition resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted (backfilled with waste). Open pit and underground void depleted material hidden - Source: Westgold.

14.3.5.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-51 Prohibition Mineral Resources on June 30, 2024.

			Mineral	Resour	ce State	ohibition ment - F /06/2024	Rounded for F	Reporting						
	Measured Indicated Measured and Indicated Inferred													
Project	kt	kt g/t koz kt g/t koz kt g/t koz kt								g/t	koz			
Prohibition (OP)	45	2.95	4	269	2.04	18	313	2.17	22	13	2.03	1		
Prohibition (UG)	201	3.42	22	574	2.92	54	775	3.05	76	200	3.25	21		
Total	246	3.33	26	842	2.64	71	1,088	2.80	98	213	3.17	22		

The Prohibition Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.6 Vivian - Consols

14.3.6.1 Summary

The Vivian - Consols resource is located approximately 15 km north of the Bluebird mill.

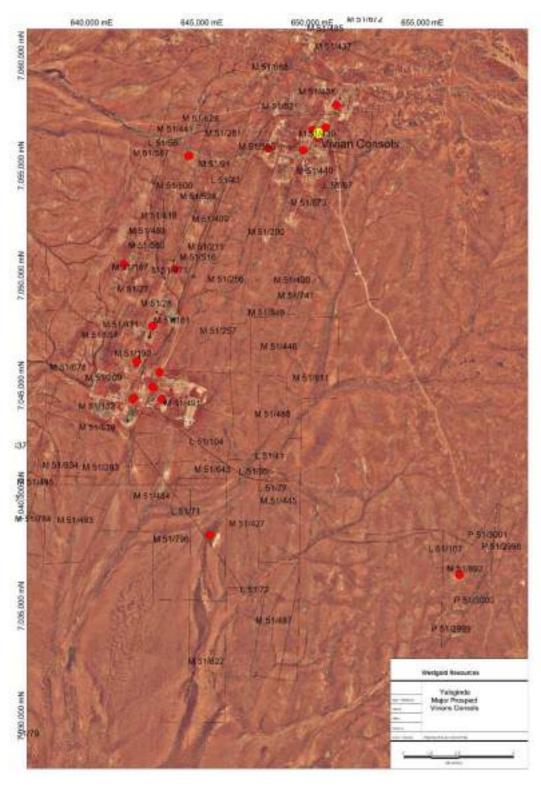


Figure 14-17 Location of the Vivian - Consols deposit - Source: Westgold.

The geology, mineralisation and pre-Westgold production information in this section is adapted from Hollingsworth (2010) and Thébaud (2007). Historic underground mine production from the quartz vein shear-hosted deposits (Consols North, Fenian, Ingliston United, and Ingliston Consols Extended) and quartz-carbonate alteration stockwork vein (Lady Central) mineralisation for these deposits from 1906 to 1953 compiled from MINDEX data is tabled below.

Table 14-52 Historic underground production to 1953 for the area encompassed by the Vivian – Consols model.

Underground	Tonnes (t)	Grade (g/t)	Gold (oz)
Consols North	750	57.65	1,400
Ingliston United	120,000	11.81	45,600
Ingliston Consols Extended	889,000	12.64	361,300
Fenian	344,000	25.34	280,400
Lady Central	5513	32.24	5,715

Production by Whim Creek Consolidated then Dominion Mining between July 1989 and June 1995 from the open pits in the area encompassed by the Vivian-Consols model is tabled below. Production from the Fenian open pit is excluded as this is covered by a separate model.

Table 14-53 Historic open pit production for the area encompassed by the Vivian – Consols model.

Pit	Tonnes (t)	Grade (g/t)	Gold (oz)
Consols	277,961	2.02	18,052
Consols Ramp	9,174	1.53	451
Vivians	67,113	1.72	3,711

Dominion Mining also dewatered the Ingliston-Albert's underground workings, rehabilitated the shaft for underground drilling, primarily for Mudlode (covered by a separate model) but also into the northern area of Vivian's. Significant surface drilling for resource definition was later conducted by Plutonic (1995-1999), Saint Barbara Mines (2003-2006), and Mercator Gold Australia (2006-2009), though no production ever commenced. Dominion Mining also established the Donovan decline in the Consols open pit in 1994 with 123 m of development before being abandoned.

Mining of the Vivian – Consols mineralisation domains by Westgold commenced in 2015 when Westgold re-established the historic decline. Production was halted during the reporting period in March 2024. For the Westgold project to date Vivian – Consols has produced 961,175 t at 4.10 g/t for 126,766 oz as of June 30, 2024.

A detailed resource report was completed by Westgold in 2018 (Zammit, 2018) where all estimation parameters were reviewed and updated. Westgold has updated the resource estimate, classification, depletion, and sterilisation annually since this 2018 report. Estimation parameters are reviewed and updated annually as required. Due to the significant strike extents of the mineralised system, and the natural geological divide of the barren dolerite dyke, the Vivian's and Consols areas are modelled in separate leapfrog mineralisation domain projects and estimated into separate block models. However, as they share a common mineralisation trend, the deposits are reported as a single reportable resource.

14.3.6.2 Modelling Domains

The mineralisation domain interpretation is based on the geology using the logged lithology code as the primary domain control. The Spur and Thrust vein modelling are supported by face and backs mapping, oriented structural measurements, and review of diamond core photos. When the lithological information is not consistent a cut-off grade of 0.8 g/t is used to set the domain boundaries, keeping the strike/dip consistent with proximal intervals. The same methodology is followed for the other sets of vein structures. For the isolated 'Channel' lodes, the interpretation follows the geological porphyry contact, but constrains the mineralisation to a 0.5 g/t wireframe cut-off grade.

The mineralisation domain modelling is conducted in Leapfrog, flagging the mineralised intervals with a unique domain code in a domain flagging merged table, then using the vein tool to implicitly model the mineralisation volume. Control points and polylines are added from mapped geological features and contacts, and manual domain boundaries are used to constrain the mineralisation volumes. The mineralisation volumes are exported to Surpac for block model flagging for estimation.

The Spur and Thrust mineralisation domains are not constrained by the lithology model, though the structures tend to pinch out into the mafic and ultramafic country rock. A dolerite dyke domain and a background PFZS alteration zone domain is also estimated, but the estimates of these domains do not form part of the reportable resource. Whilst the internal porphyry intrusive forms part of the lithology model, to date it has not been used as an estimation domain inside the FSZ as further work was required to better refine the modelled volume with the vein tool in Leapfrog rather than the intrusion tool used to date.

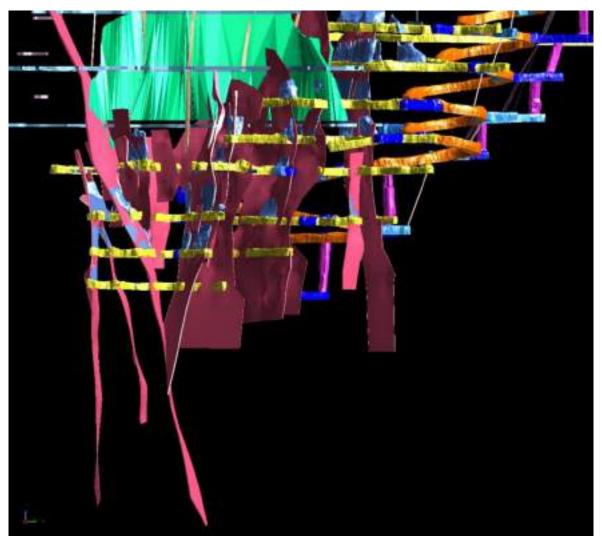


Figure 14-18 Consols mineralisation domains (pink) for the 2024 reportable resource. CON 1190 level and below. Channel lodes were mined through the historic workings (green) - Source: Westgold.

14.3.6.3 Statistical Analysis and Compositing

The domain flagging merge table intervals are exported to the Access database for sample composite creation in Surpac, marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the domain number, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Most of the Vivian and Consols domains utilise a 2D Ordinary Kriging estimation methodology where accumulation (grade x thickness) and thickness are estimated in a plane oriented appropriately for the mineralisation domain, either in Plan (XY), Cross Section (ZX) or Long Section (ZY) orientation, and then grade is back-calculated in the block model.

Statistical comparisons were completed on all the domains for top-cut analysis. For 2D OK estimated domains, only the accumulation value is cut. The top-cut values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-54 Vivian domain raw and top cut statistics for gold (3D OK) domains unchanged from 2023.

Au Raw

Domain	8207	8209	8226	8227	8229	8230	8510
Samples	34	89	17	26	31	103	68
Minimum	0.27	0.02	0.309	0.04	0.267	0.166	0.245
Maximum	13.18	22.23	290.41	106.63	91.669	128.5	8.93
Mean	2.77	3.573	34.208	12.654	11.786	14.152	2.087
Standard deviation	3.20	3.41	68.175	22.537	18.803	23.991	1.985
CV	1.16	0.95	1.99	1.78	1.60	1.70	0.95
Variance	10.25	11.625	4647.841	507.911	353.544	575.554	3.942
Skewness	1.83	2.773	3.078	3	2.812	2.729	1.673
50%	1.50	2.521	2.186	2.157	3.11	4.386	1.201
90%	8.331	8.404	59.396	25.464	28.816	36.492	5.699
95%	9.76	9.854	113.081	47.916	44.153	75.807	6.192
97.5%	10.647	12.512	201.746	73.49	60.775	87.356	7.031
99.0%	12.165	15.478	254.944	93.374	79.311	108.296	8.32

Top Cut	15	15	19	19	19	19	19

Au Cut

Domain	8207	8209	8226	8227	8229	8230	8510
Samples	34	89	17	26	31	103	68
Minimum	0.27	0.02	0.31	0.04	0.27	0.17	0.25
Maximum	13.18	15.00	19.00	19.00	19.00	19.00	8.93
Mean	2.77	3.49	8.78	7.24	7.37	7.39	2.09
Standard deviation	3.20	3.03	8.60	7.60	7.07	7.09	1.99
CV	1.16	0.87	0.98	1.05	0.96	0.96	0.95
Variance	10.25	9.17	73.99	57.71	50.04	50.29	3.94
Skewness	1.83	2.01	0.33	0.58	0.59	0.74	1.67
50%	1.50	2.52	2.19	2.16	3.11	4.39	1.20
90%	8.33	8.40	19.00	19.00	19.00	19.00	5.70
95%	9.76	9.85	19.00	19.00	19.00	19.00	6.19
97.5%	10.65	12.51	19.00	19.00	19.00	19.00	7.03
99.0%	12.17	14.68	19.00	19.00	19.00	19.00	8.32

Table 14-55 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023. Part 1.

Accumulation Raw												
Domain	8101	8102	8103	8110	8118	8121	8201	8202	8204	8206	8212	8215
Samples	84	756	67	7	18	8	39	6	17	6	11	35
Minimum	0.03	0	0	0.11	0.02	0	0.07	1.54	0.07	0.18	0.06	0
Maximum	438.82	1419.48	632.07	52.67	68.89	18.6	661.17	18.37	55.57	20.03	53.31	95.11
Mean	50.85	45.3	31.24	14.77	8.75	3.83	27.54	5.52	5.27	5.43	11.3	10.51
Standard deviation	76.99	121.4	87.55	21.41	16.04	6.09	104.47	6.01	12.7	6.84	15.63	17.23
cv	1.51	2.68	2.80	1.45	1.83	1.59	3.79	1.09	2.41	1.26	1.38	1.64
Variance	5926.92	14738.97	7665.43	458.58	257.18	37.07	10913.28	36.14	161.24	46.74	244.18	296.93
Skewness	2.35	5.43	5.26	0.98	2.95	1.68	5.72	1.48	3.63	1.47	1.79	3.58
50%	14.41	3.6	3.12	1.22	3.71	0.17	2.18	1.68	1.73	1.51	4.23	3.58
90%	144.56	117.69	68.6	46.66	15.7	9.69	38.65	11.3	5.03	11.95	28.3	21.08
95%	222.03	235.12	129.25	49.66	31.62	14.15	64.87	14.84	13.07	15.99	40.45	32.14
97.5%	238.58	387.72	212.08	51.17	50.26	16.37	101.39	16.6	34.32	18.01	46.88	50.69
99.0%	274.33	576.33	396.76	52.07	61.44	17.71	437.26	17.66	47.07	19.22	50.74	77.34
Top Cut	200	250	65	59	59	8	59	59	59	59	30	59

Accumulation Cut												
Domain	8101	8102	8103	8110	8118	8121	8201	8202	8204	8206	8212	8215
Samples	84	756	67	7	18	8	39	6	17	6	11	35
Minimum	0.03	0.00	0.00	0.11	0.02	0.00	0.07	1.54	0.07	0.18	0.06	0.00
Maximum	200.00	250.00	65.00	52.67	59.00	8.00	59.00	18.37	55.57	20.03	30.00	59.00
Mean	46.27	34.03	15.44	14.77	8.20	2.51	11.26	5.52	5.27	5.43	9.18	9.48
Standard deviation	61.63	65.13	23.07	21.41	14.01	3.20	17.47	6.01	12.70	6.84	10.54	12.59
CV	1.33	1.91	1.49	1.45	1.71	1.28	1.55	1.09	2.41	1.26	1.15	1.33
Variance	3798.17	4241.95	532.22	458.58	196.20	10.21	305.35	36.14	161.24	46.74	110.99	158.57
Skewness	1.38	2.33	1.37	0.98	2.72	0.87	1.77	1.48	3.63	1.47	1.20	2.38
50%	14.41	3.60	3.12	1.22	3.71	0.17	2.18	1.68	1.73	1.51	4.23	3.58
90%	144.56	117.69	64.43	46.66	15.70	7.57	38.65	11.30	5.03	11.95	28.30	21.08
95%	198.76	235.12	65.00	49.66	30.63	7.78	59.00	14.84	13.07	15.99	29.95	32.14
97.5%	200.00	250.00	65.00	51.17	44.82	7.89	59.00	16.60	34.32	18.01	29.98	46.18
99.0%	200.00	250.00	65.00	52.07	53.33	7.96	59.00	17.66	47.07	19.22	29.99	53.87

Table 14-56 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023. Part 2.

Accumulation Raw												
Domain	8216	8217	8219	8220	8221	8222	8224	8225	8228	8232	8233	8234
Samples	22	5	6	15	4	8	8	10	7	14	5	11
Minimum	0.11	0.98	0.57	0.05	0.06	0.10	0.02	0.04	1.19	0.05	0.29	0.63
Maximum	11.26	21.68	12.09	132.37	6.50	25.97	14.83	203.05	23.92	21.85	5.07	94.55
Mean	3.18	7.07	4.2	17.77	2.18	8.88	4.17	26.78	9.76	3.90	2.13	13.42
Standard deviation	3.4	7.66	4.72	34.44	2.53	9.64	5.04	59.30	8.53	6.66	1.60	26.34
CV	1.07	1.08	1.12	1.94	1.16	1.09	1.21	2.21	0.87	1.71	0.75	1.96
Variance	11.55	58.69	22.32	1185.89	6.39	92.90	25.39	3516.85	72.75	44.42	2.56	693.55
Skewness	1.18	1.2	0.78	2.55	1.06	0.90	1.03	2.58	0.44	1.81	0.91	2.61
50%	1.57	2.48	0.99	2.80	1.00	3.61	0.41	2.91	4.13	0.36	1.55	3.05
90%	9.34	14.69	10.53	43.75	4.35	24.06	9.36	25.21	19.23	12.72	3.64	20.98
95%	9.61	18.19	11.31	80.84	5.42	25.01	12.09	114.13	21.58	18.34	4.35	54.79
97.5%	10.35	19.94	11.7	106.60	5.96	25.49	13.46	158.59	22.75	20.10	4.71	74.67
99.0%	10.9	20.99	11.94	122.06	6.28	25.78	14.28	185.27	23.45	21.15	4.93	86.60
Ton Cut	59	59	59	59	59	15	59	59	59	10	59	59

Domain	8216	8217	8219	8220	8221	8222	8224	8225	8228	8232	8233	8234
Samples	22	5	6	15	4	8	8	10	7	14	5	11
Minimum	0.11	0.98	0.57	0.05	0.06	0.10	0.02	0.04	1.19	0.05	0.29	0.63
Maximum	11.26	21.68	12.09	59.00	6.50	15.00	14.83	59.00	23.92	10.00	5.07	59.00
Mean	3.18	7.07	4.20	12.57	2.18	6.43	4.17	12.37	9.76	2.57	2.13	10.19
Standard deviation	3.40	7.66	4.72	19.23	2.53	5.72	5.04	17.49	8.53	3.60	1.60	16.54
CV	1.07	1.08	1.12	1.53	1.16	0.89	1.21	1.41	0.87	1.40	0.75	1.62
Variance	11.55	58.69	22.32	369.65	6.39	32.76	25.39	306.07	72.75	12.99	2.56	273.60
Skewness	1.18	1.20	0.78	1.78	1.06	0.50	1.03	1.79	0.44	1.20	0.91	2.29
50%	1.57	2.48	0.99	2.80	1.00	3.61	0.41	2.91	4.13	0.36	1.55	3.05
90%	9.34	14.69	10.53	41.42	4.35	15.00	9.36	25.21	19.23	8.61	3.64	20.98
95%	9.61	18.19	11.31	59.00	5.42	15.00	12.09	42.10	21.58	10.00	4.35	38.80
97.5%	10.35	19.94	11.70	59.00	5.96	15.00	13.46	50.55	22.75	10.00	4.71	48.90
99.0%	10.90	20.99	11.94	59.00	6.28	15.00	14.28	55.62	23.45	10.00	4.93	54.96

Table 14-57 Vivan domains raw and top cut statistics for accumulation values unchanged from 2023. Part 3.

Accumulation Raw											
Domain	8240	8301	8302	8303	8305	8306	8314	8315	8316	8319	8320
Samples	28	13	155	40	60	10	80	15	20	9	26
Minimum	0.00	0.02	0.01	0.00	0.01	0.01	0.01	0.03	80.0	1.36	0.01
Maximum	86.57	14.17	65.12	9.31	44.97	43.08	65.29	45.86	36.16	20.73	37.04
Mean	9.79	2.16	7.49	0.97	3.22	13.31	9.28	4.93	5.10	7.96	7.97
Standard deviation	19.39	3.65	11.09	2.00	7.51	14.54	14.52	11.34	8.54	7.31	10.91
CV	1.98	1.69	1.48	2.07	2.33	1.09	1.56	2.30	1.67	0.92	1.37
Variance	376.10	13.32	123.06	4.01	56.45	211.56	210.70	128.61	73.01	53.44	119.03
Skewness	2.78	2.66	2.57	3.06	3.74	1.13	2.44	3.11	2.45	0.82	1.44
50%	0.72	0.82	3.02	0.20	0.22	7.28	3.29	1.01	0.83	3.95	1.94
90%	23.52	2.98	19.37	1.97	9.39	38.09	24.10	8.35	13.56	19.93	23.32
95%	46.23	6.91	27.65	5.41	16.24	40.59	44.12	20.55	14.98	20.33	32.47
97.5%	67.61	10.54	42.93	7.88	22.65	41.83	59.46	33.21	25.57	20.53	35.58
99.0%	78.99	12.72	52.27	8.74	35.16	42.58	63.33	40.80	31.92	20.65	36.45
Top Cut	59	100	50	25	30	20	59	999	59	999	59

Accumulation Cut											
Domain	8240	8301	8302	8303	8305	8306	8314	8315	8316	8319	8320
Samples	28	13	155	40	60	10	80	15	20	9	26
Minimum	0.00	0.02	0.01	0.00	0.01	0.01	0.01	0.03	0.08	1.36	0.01
Maximum	59.00	14.17	50.00	9.31	30.00	20.00	59.00	45.86	36.16	20.73	37.04
Mean	8.78	2.16	7.36	0.97	2.97	9.19	9.15	4.93	5.10	7.96	7.97
Standard deviation	15.79	3.65	10.49	2.00	6.27	7.31	14.03	11.34	8.54	7.31	10.91
CV	1.80	1.69	1.43	2.07	2.11	0.80	1.53	2.30	1.67	0.92	1.37
Variance	249.31	13.32	110.11	4.01	39.29	53.48	196.85	128.61	73.01	53.44	119.03
Skewness	2.28	2.66	2.24	3.06	2.93	0.25	2.33	3.11	2.45	0.82	1.44
50%	0.72	0.82	3.02	0.20	0.22	7.28	3.29	1.01	0.83	3.95	1.94
90%	23.52	2.98	19.37	1.97	9.39	20.00	24.10	8.35	13.56	19.93	23.32
95%	45.93	6.91	27.65	5.41	16.24	20.00	44.12	20.55	14.98	20.33	32.47
97.5%	59.00	10.54	42.93	7.88	22.65	20.00	59.00	33.21	25.57	20.53	35.58
99.0%	59.00	12.72	49.83	8.74	29.17	20.00	59.00	40.80	31.92	20.65	36.45

Table 14-58 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Part 1.

Accumulation Raw					
Domain	8107	8205	8211	8304	8308
Samples	49	17	10	18	39
Minimum	0.04	0.11	0.09	0.25	0.03
Maximum	176.21	62.34	505.61	88.56	80.91
Mean	24.82	12.21	59.85	15.54	8.95
Standard deviation	38.98	14.18	148.87	22.54	18.38
CV	1.57	1.16	2.49	1.45	2.05
Variance	1519.07	201.07	22162.09	507.96	337.72
Skewness	2.26	2.46	2.65	1.99	2.59
50%	7.01	8.86	7.29	4.13	0.94
90%	75.01	18.70	26.08	39.96	25.22
95%	95.00	28.24	265.85	47.47	53.58
97.5%	144.29	45.29	385.73	68.01	57.47
99.0%	166.38	55.52	457.66	80.34	71.54

25

80

25

Accumulation Cut					
Domain	8107	8205	8211	8304	8308
Samples	49	17	10	18	39
Minimum	0.04	0.11	0.09	0.25	0.03
Maximum	27.00	25.00	40.00	80.00	25.00
Mean	11.81	10.02	13.29	15.06	5.33
Standard deviation	11.33	7.62	12.77	21.03	8.11
CV	0.96	0.76	0.96	1.40	1.52
Variance	128.36	58.07	163.17	442.37	65.83
Skewness	0.26	0.30	0.71	1.79	1.63
50%	7.01	8.86	7.29	4.13	0.94
90%	27.00	18.70	26.08	39.96	22.74
95%	27.00	22.64	33.04	46.61	25.00
97.5%	27.00	23.82	36.52	63.31	25.00
99.0%	27.00	24.53	38.61	73.32	25.00

Top Cut

27

Table 14-59 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Part 2.

Accumulation Raw											
Domain	8108	8109	8111	8112	8113	8116	8117	8307	8318	8400	8401
Samples	56	64	23	75	219	19	41	11	173	42	7
Minimum	0.01	0.00	0.01	0.00	0.00	0.54	0.00	0.00	0.01	0.02	0.85
Maximum	125.76	54.20	169.15	130.20	618.98	112.57	405.63	9.14	428.97	61.94	7.15
Mean	11.27	6.83	18.88	15.00	16.36	17.22	17.94	3.08	26.61	8.37	2.78
Standard deviation	25.46	10.24	37.94	25.36	55.07	32.17	64.48	3.02	62.64	13.40	2.41
CV	2.26	1.50	2.01	1.69	3.37	1.87	3.60	0.98	2.35	1.60	0.87
Variance	648.22	104.88	1439.45	642.98	3032.28	1034.60	4157.61	9.09	3924.27	179.44	5.81
Skewness	3.59	3.11	3.02	2.73	7.91	2.48	5.39	0.81	4.48	2.24	0.94
50%	2.83	3.48	3.90	3.12	1.88	5.42	0.42	1.06	5.31	1.34	1.35
90%	16.05	16.26	31.84	37.83	35.93	26.03	22.53	7.49	53.30	26.17	6.25
95%	45.74	18.90	87.30	60.98	65.49	107.73	39.22	8.37	138.24	37.38	6.70
97.5%	108.86	33.17	127.51	85.70	97.44	110.15	117.87	8.75	186.16	41.32	6.92
99.0%	116.95	54.15	152.49	125.13	230.63	111.60	288.47	8.98	391.25	53.35	7.06
Top Cut	18	25	59	40	75	15	25	59	100	25	9999

Accumulation Cut											
Domain	8108	8109	8111	8112	8113	8116	8117	8307	8318	8400	8401
Samples	56	64	23	75	219	19	41	11	173	42	7
Minimum	0.01	0.00	0.01	0.00	0.00	0.54	0.00	0.00	0.01	0.02	0.85
Maximum	18.00	25.00	59.00	40.00	75.00	15.00	25.00	9.14	100.00	25.00	7.15
Mean	5.77	5.92	12.45	11.29	10.79	7.11	5.65	3.08	18.29	6.56	2.78
Standard deviation	6.31	6.66	17.11	14.28	19.08	5.10	8.38	3.02	27.30	8.48	2.41
CV	1.09	1.13	1.37	1.27	1.77	0.72	1.48	0.98	1.49	1.29	0.87
Variance	39.86	44.36	292.81	203.95	363.95	26.02	70.24	9.09	745.30	71.97	5.81
Skewness	0.82	1.15	1.72	1.06	2.28	0.31	1.37	0.81	2.01	1.18	0.94
50%	2.83	3.48	3.90	3.12	1.88	5.42	0.42	1.06	5.31	1.34	1.35
90%	16.05	16.26	31.84	37.83	35.93	15.00	22.53	7.49	53.30	24.01	6.25
95%	18.00	18.90	55.23	40.00	65.49	15.00	25.00	8.37	100.00	25.00	6.70
97.5%	18.00	21.53	59.00	40.00	75.00	15.00	25.00	8.75	100.00	25.00	6.92
99.0%	18.00	25.00	59.00	40.00	75.00	15.00	25.00	8.98	100.00	25.00	7.06

Table 14-60 Vivan domains raw and top cut statistics for accumulation values updated in 2024. Part 3.

Domain	8104	8105	8106	8114	8115	8203	8213	8317	8321
Samples	126	281	674	31	3	48	16	22	18
Minimum	0.01	0.00	0.00	0.08	1.07	0.00	0.46	0.08	0.04
Maximum	571.10	496.19	2180.94	232.79	13.33	433.38	176.10	59.42	171.93
Mean	26.04	25.57	23.59	24.22	8.89	37.67	27.57	10.65	19.45
Standard deviation	80.15	56.95	94.49	44.58	5.55	88.87	51.05	15.21	43.48
CV	3.08	2.23	4.01	1.84	0.62	2.36	1.85	1.43	2.24
Variance	6423.80	3243.55	8929.30	1986.97	30.76	7898.14	2606.59	231.32	1890.78
Skewness	5.02	4.85	18.18	3.42	-0.69	3.12	2.15	1.83	2.74
50%	4.95	5.25	4.70	7.96	6.67	2.17	5.69	2.93	2.15
90%	33.92	78.02	48.88	70.53	13.01	69.55	83.76	30.92	32.26
95%	122.22	136.86	92.71	80.41	13.17	246.76	147.95	37.57	109.65
97.5%	241.15	173.05	154.95	117.87	13.25	321.87	162.03	47.70	140.79
99.0%	458.54	252.00	226.36	186.82	13.30	386.04	170.47	54.73	159.47

100

70

96 59

40

59

Domain	8104	8105	8106	8114	8115	8203	8213	8317	8321
Samples	126	281	674	31	3	48	16	22	18
Minimum	0.01	0.00	0.00	0.08	1.07	0.00	0.46	0.08	0.04
Maximum	43.00	83.00	200.00	100.00	13.33	96.00	59.00	40.00	59.00
Mean	9.98	17.71	19.41	19.93	8.89	19.12	15.13	9.77	10.75
Standard deviation	12.74	25.48	37.20	27.40	5.55	30.14	19.84	12.71	17.66
CV	1.28	1.44	1.92	1.37	0.62	1.58	1.31	1.30	1.64
Variance	162.28	649.12	1383.90	750.61	30.76	908.61	393.60	161.58	311.94
Skewness	1.60	1.71	3.27	1.67	-0.69	1.70	1.42	1.33	2.18
50%	4.95	5.25	4.70	7.96	6.67	2.17	5.69	2.93	2.15
90%	33.92	78.02	48.88	70.53	13.01	64.67	51.00	30.92	23.51
95%	43.00	83.00	92.71	80.41	13.17	96.00	59.00	37.57	59.00
97.5%	43.00	83.00	154.95	88.00	13.25	96.00	59.00	38.96	59.00
99.0%	43.00	83.00	200.00	95.20	13.30	96.00	59.00	39.58	59.00

Top Cut

43

83 200

Table 14-61 Consols domains raw and top-cut statistics for gold (3D OK) domains unchanged from 2022.

Au raw									
Domain	3210	3219	3224	3225	3505	3522	3527	3531	3539
Samples	1	3	1	1	384	111	2	1	3
Minimum	890.00	2.83	17.92	13.12	0.005	0.06	1.207	10.478	3.516
Maximum	890.00	160	17.92	13.12	357.16	6.214	10.969	10.478	20.225
Mean	890.00	74.277	17.92	13.12	3.413	1.097	6.088	10.478	9.485
Standard deviation	0.00	64.954	0	0	20.667	0.741	4.881	0	7.61
CV	0.00	0.87	0.00	0.00	6.06	0.68	0.80	0.00	0.80
Variance	0.00	4218.98	0	0	427.124	0.549	23.826	0	57.918
Skewness	0.00	0.319	0	0	14.303	3.528	0	0	0.694
50%	890.00	31.415	17.92	13.12	0.666	0.949	1.207	10.478	4.114
90%	890	130	17.92	13.12	4.19	1.589	9.016	10.478	15.571
95%	890	145	17.92	13.12	8.111	2.089	9.993	10.478	17.898
97.5%	890	152.5	17.92	13.12	14.865	3.16	10.481	10.478	19.062
99.0%	890	157	17.92	13.12	45.732	3.321	10.774	10.478	19.76
Top Cut	9999	9999	9999	9999	17	3.5	9999	9999	9999

<u>Au cut</u>									
Domain	3210	3219	3224	3225	3505	3522	3527	3531	3539
Samples	1	3	1	1	384	111	2	1	3
Minimum	20.00	2.83	17.92	13.12	0.01	0.06	1.21	10.48	3.52
Maximum	20.00	25.00	17.92	13.12	10.00	3.50	10.97	10.48	20.23
Mean	20.00	17.61	17.92	13.12	1.53	1.07	6.09	10.48	9.49
Standard deviation	0.00	10.45	0.00	0.00	2.29	0.60	4.88	0.00	7.61
CV	0.00	0.59	0.00	0.00	1.50	0.56	0.80	0.00	0.80
Variance	0.00	109.22	0.00	0.00	5.23	0.37	23.83	0.00	57.92
Skewness	0.00	-0.71	0.00	0.00	2.62	1.73	0.00	0.00	0.69
50%	20.00	13.92	17.92	13.12	0.67	0.95	1.21	10.48	4.11
90%	20.00	25.00	17.92	13.12	4.19	1.59	9.02	10.48	15.57
95%	20.00	25.00	17.92	13.12	8.11	2.09	9.99	10.48	17.90
97.5%	20.00	25.00	17.92	13.12	10.00	3.16	10.48	10.48	19.06
99.0%	20.00	25.00	17.92	13.12	10.00	3.32	10.77	10.48	19.76

Table 14-62 Consols domains raw and top cut statistics for accumulation values unchanged from 2022. Part 1.

Accumulation Raw												
Domain	3101	3104	3106	3206	3207	3208	3209	3211	3218	3220	3221	3223
Samples	8	80	63	13	23	12	2	17	7	9	5	6
Minimum	0	0	0.01	0.05	0.03	0.01	0.91	0.04	0.08	0.36	0.15	0.66
Maximum	23.4	3.68	282.65	218.16	56.12	2.86	3.56	79.56	8.01	6.44	9.18	18.91
Mean	3.79	0.41	16.93	18.00	4.81	0.65	2.24	12.80	2.79	1.79	2.55	5.16
Standard deviation	7.67	0.72	44.77	57.82	11.86	0.88	1.32	20.15	2.88	1.80	3.42	6.22
CV	2.02	1.74	2.64	3.21	2.47	1.36	0.59	1.57	1.03	1.01	1.34	1.20
Variance	58.8	0.52	2004.76	3343.51	140.56	0.78	1.75	406.03	8.31	3.23	11.70	38.69
Skewness	2.01	2.85	4.05	3.17	3.63	1.60	0.00	2.26	0.65	1.80	1.30	1.69
50%	0.08	0.1	0.98	0.28	0.90	0.21	0.91	2.87	0.77	0.80	0.47	2.32
90%	9.6	1.31	30.54	6.63	6.04	1.91	3.03	32.65	6.14	3.11	5.84	9.75
95%	16.5	1.7	108.6	81.63	19.90	2.46	3.30	48.31	7.07	4.77	7.51	14.33
97.5%	19.95	2.66	121.79	149.90	36.67	2.66	3.43	63.94	7.54	5.61	8.35	16.62
99.0%	22.02	3.57	191.13	190.86	48.34	2.78	3.51	73.31	7.82	6.11	8.85	18.00
Top Cut	10	2.5	50	10	10	999	999	30	9999	4	5	6

Accumulation Cut												
Domain	3101	3104	3106	3206	3207	3208	3209	3211	3218	3220	3221	3223
Samples	8	80	63	13	23	12	2	17	7	9	5	6
Minimum	0.00	0.00	0.01	0.05	0.03	0.01	0.91	0.04	0.08	0.36	0.15	0.66
Maximum	10.00	2.50	50.00	10.00	10.00	2.86	3.56	30.00	8.01	4.00	5.00	6.00
Mean	2.12	0.38	8.59	1.98	2.27	0.65	2.24	9.13	2.79	1.52	1.71	3.01
Standard deviation	3.57	0.60	15.05	3.17	2.95	0.88	1.32	10.60	2.88	1.14	1.84	1.64
CV	1.69	1.56	1.75	1.60	1.30	1.36	0.59	1.16	1.03	0.75	1.08	0.54
Variance	12.77	0.36	226.54	10.04	8.67	0.78	1.75	112.26	8.31	1.30	3.40	2.68
Skewness	1.39	2.18	2.01	1.69	1.58	1.60	0.00	1.08	0.65	1.04	0.90	0.50
50%	0.08	0.10	0.98	0.28	0.90	0.21	0.91	2.87	0.77	0.80	0.47	2.32
90%	6.92	1.31	30.54	6.63	6.04	1.91	3.03	28.82	6.14	2.86	3.74	4.59
95%	8.46	1.70	50.00	8.78	9.46	2.46	3.30	30.00	7.07	3.43	4.37	5.29
97.5%	9.23	2.50	50.00	9.39	10.00	2.66	3.43	30.00	7.54	3.72	4.69	5.65
99.0%	9.69	2.50	50.00	9.76	10.00	2.78	3.51	30.00	7.82	3.89	4.87	5.86

Table 14-63 Consols domains raw and top cut statistics for accumulation values unchanged from 2022. Part 2.

Accumulation Raw											
Domain	3226	3227	3513	3514	3521	3523	3524	3526	3541	3542	3610
Samples	6	2	12	2	17	6	3	3	40	144	10
Minimum	0.00	0.35	0.21	2.02	0.01	0.55	5.08	0.00	0.00	0.00	0.16
Maximum	10.34	5.18	21.57	3.08	7.90	4.01	13.33	68.16	46.14	150.10	4.15
Mean	2.31	2.77	4.12	2.55	2.03	2.20	9.11	22.72	5.02	11.07	1.68
Standard deviation	3.72	2.42	5.39	0.53	2.49	1.30	3.37	32.13	9.86	23.98	1.38
CV	1.62	0.87	1.31	0.21	1.23	0.59	0.37	1.41	1.97	2.17	0.82
Variance	13.87	5.84	29.04	0.28	6.22	1.70	11.36	1032.06	97.32	574.95	1.91
Skewness	1.55	0.00	2.76	0.00	1.43	-0.08	0.09	0.71	2.88	3.95	0.57
50%	0.04	0.35	2.38	2.02	0.78	1.82	6.99	0.01	1.24	2.59	0.84
90%	5.80	4.22	4.39	2.87	6.23	3.52	12.00	47.71	7.28	25.69	3.69
95%	8.07	4.70	11.30	2.97	7.56	3.77	12.67	57.93	26.90	53.11	3.92
97.5%	9.21	4.94	16.43	3.03	7.73	3.89	13.00	63.05	34.70	77.37	4.04
99.0%	9.89	5.09	19.51	3.06	7.83	3.96	13.20	66.11	41.56	138.43	4.10
Top Cut	4	999	6	999	999	999	999	999	10	60	9999

Accumulation Cut											
Domain	3226	3227	3513	3514	3521	3523	3524	3526	3541	3542	3610
Samples	6	2	12	2	17	6	3	3	40	144	10
Minimum	0.00	0.35	0.21	2.02	0.01	0.55	5.08	0.00	0.00	0.00	0.16
Maximum	4.00	5.18	6.00	3.08	7.90	4.01	13.33	68.16	10.00	60.00	4.15
Mean	1.25	2.77	2.82	2.55	2.03	2.20	9.11	22.72	2.74	9.06	1.68
Standard deviation	1.57	2.42	1.51	0.53	2.49	1.30	3.37	32.13	3.12	15.14	1.38
CV	1.26	0.87	0.53	0.21	1.23	0.59	0.37	1.41	1.14	1.67	0.82
Variance	2.46	5.84	2.28	0.28	6.22	1.70	11.36	1032.06	9.75	229.26	1.91
Skewness	0.80	0.00	0.39	0.00	1.43	-0.08	0.09	0.71	1.27	2.34	0.57
50%	0.04	0.35	2.38	2.02	0.78	1.82	6.99	0.01	1.24	2.59	0.84
90%	3.26	4.22	4.39	2.87	6.23	3.52	12.00	47.71	7.28	25.69	3.69
95%	3.63	4.70	5.07	2.97	7.56	3.77	12.67	57.93	10.00	53.11	3.92
97.5%	3.82	4.94	5.53	3.03	7.73	3.89	13.00	63.05	10.00	60.00	4.04
99.0%	3.93	5.09	5.81	3.06	7.83	3.96	13.20	66.11	10.00	60.00	4.10

Table 14-64 Consols domains raw and top cut statistics for accumulation values updated for 2024. Part 1.

Accumulation Raw												
Domain	3102	3108	3109	3110	3120	3201	3202	3203	3204	3205	3212	3213
Samples	115	101	7	56	4	122	105	136	72	62	13	18
Minimum	0.00	0.00	0.02	0.03	0.30	0.00	0.00	0.00	0.00	0.02	0.27	0.00
Maximum	295.78	153.50	7.62	99.55	90.56	202.03	217.02	65.96	108.68	79.62	21.60	23.82
Mean	16.29	7.33	1.29	5.17	25.31	9.30	12.95	4.93	7.00	5.43	3.89	2.63
Standard deviation	47.80	19.40	2.60	15.73	37.84	23.89	33.34	11.62	16.72	11.78	6.44	5.69
CV	2.93	2.65	2.02	3.04	1.49	2.57	2.58	2.35	2.39	2.17	1.65	2.16
Variance	2284.39	376.43	6.76	247.57	1431.88	570.72	1111.87	135.02	279.66	138.72	41.43	32.42
Skewness	4.20	5.00	2.00	4.72	1.12	5.26	4.65	3.41	4.26	4.36	1.81	2.99
50%	0.88	0.68	0.04	0.30	0.97	0.98	1.13	0.62	1.17	1.05	0.74	0.71
90%	32.90	19.17	2.84	10.98	58.10	21.74	24.99	14.46	17.01	16.07	12.21	4.60
95%	82.96	41.68	5.23	19.64	74.33	44.28	70.40	31.23	28.42	23.46	16.50	12.23
97.5%	192.15	57.50	6.42	46.32	82.44	71.58	80.49	43.55	58.03	26.57	19.05	18.03
99.0%	259.24	64.13	7.14	78.46	87.31	92.22	209.28	58.93	81.08	47.60	20.58	21.50
Top Cut	80	33	10	35	9999	30	22	22	20	9999	9999	12

Domain	3102	3108	3109	3110	3120	3201	3202	3203	3204	3205	3212	3213
Domain												
Samples	115	101	7	56	4	122	105	136	72	62	13	18
Minimum	0.00	0.00	0.02	0.03	0.30	0.00	0.00	0.00	0.00	0.02	0.27	0.00
Maximum	80.00	33.00	7.62	35.00	90.56	30.00	22.00	22.00	20.00	79.62	21.60	12.00
Mean	9.87	5.05	1.29	3.54	25.31	5.89	5.95	3.50	4.28	5.43	3.89	1.98
Standard deviation	20.73	9.28	2.60	7.76	37.84	9.31	7.84	6.40	6.15	11.78	6.44	3.45
CV	2.10	1.84	2.02	2.19	1.49	1.58	1.32	1.83	1.44	2.17	1.65	1.75
Variance	429.71	86.10	6.76	60.18	1431.88	86.74	61.43	40.91	37.80	138.72	41.43	11.92
Skewness	2.55	2.15	2.00	2.88	1.12	1.67	1.12	2.11	1.70	4.36	1.81	2.26
50%	0.88	0.68	0.04	0.30	0.97	0.98	1.13	0.62	1.17	1.05	0.74	0.71
90%	32.90	19.17	2.84	10.98	58.10	21.74	22.00	14.46	17.01	16.07	12.21	4.60
95%	74.27	33.00	5.23	19.64	74.33	30.00	22.00	22.00	20.00	23.46	16.50	11.04
97.5%	80.00	33.00	6.42	30.19	82.44	30.00	22.00	22.00	20.00	26.57	19.05	11.52
99.0%	80.00	33.00	7.14	35.00	87.31	30.00	22.00	22.00	20.00	47.60	20.58	11.81

Table 14-65 Consols domains raw and top cut statistics for accumulation values updated for 2024. Part 2.

Accumulation Raw												
Domain	3214	3231	3233	3234	3235	3245	3246	3247	3250	3312	3320	3330
Samples	12	3	48	70	6	11	7	6	52	7	3	3
Minimum	0.13	1.39	0.00	0.00	0.13	0.29	0.43	0.03	0.00	0.02	0.94	1.00
Maximum	38.59	20.52	44.43	70.35	41.43	73.88	28.56	35.18	37.13	10.95	9.43	11.99
Mean	11.43	9.27	4.89	12.48	8.06	16.95	5.17	7.76	2.91	2.03	4.60	4.97
Standard deviation	13.17	8.16	10.80	17.37	15.00	25.01	9.57	12.67	6.87	3.68	3.57	4.98
CV	1.15	0.88	2.21	1.39	1.86	1.48	1.85	1.63	2.36	1.81	0.77	1.00
Variance	173.54	66.65	116.74	301.63	225.04	625.28	91.59	160.42	47.24	13.53	12.71	24.80
Skewness	0.92	0.55	2.67	1.62	1.75	1.53	2.02	1.57	3.43	1.96	0.45	0.69
50%	3.77	3.65	0.29	3.62	0.31	4.58	1.09	0.84	0.28	0.27	2.19	1.45
90%	30.16	16.14	13.65	35.94	19.28	58.66	10.25	19.58	7.15	4.33	7.63	8.96
95%	34.15	18.33	32.29	48.28	30.36	68.17	19.40	27.38	16.26	7.64	8.53	10.48
97.5%	36.37	19.42	41.28	55.84	35.89	71.02	23.98	31.28	23.53	9.30	8.98	11.23
99.0%	37.71	20.08	43.91	68.97	39.22	72.73	26.73	33.62	31.62	10.29	9.25	11.69
Top Cut	9999	10	20	40	35	9999	9999	9999	17	20	40	24

Accumulation Cut												
Domain	3214	3231	3233	3234	3235	3245	3246	3247	3250	3312	3320	3330
Samples	12	3	48	70	6	11	7	6	52	7	3	3
Minimum	0.13	1.39	0.00	0.00	0.13	0.29	0.43	0.03	0.00	0.02	0.94	1.00
Maximum	38.59	10.00	20.00	40.00	35.00	73.88	28.56	35.18	17.00	10.95	9.43	11.99
Mean	11.43	5.77	3.34	11.10	6.99	16.95	5.17	7.76	2.34	2.03	4.60	4.97
Standard deviation	13.17	3.52	6.11	13.94	12.62	25.01	9.57	12.67	4.61	3.68	3.57	4.98
CV	1.15	0.61	1.83	1.26	1.81	1.48	1.85	1.63	1.98	1.81	0.77	1.00
Variance	173.54	12.36	37.32	194.28	159.26	625.28	91.59	160.42	21.30	13.53	12.71	24.80
Skewness	0.92	-0.06	2.08	1.09	1.73	1.53	2.02	1.57	2.37	1.96	0.45	0.69
50%	3.77	3.65	0.29	3.62	0.31	4.58	1.09	0.84	0.28	0.27	2.19	1.45
90%	30.16	8.77	13.14	35.94	16.71	58.66	10.25	19.58	7.15	4.33	7.63	8.96
95%	34.15	9.39	20.00	40.00	25.85	68.17	19.40	27.38	16.26	7.64	8.53	10.48
97.5%	36.37	9.69	20.00	40.00	30.43	71.02	23.98	31.28	16.86	9.30	8.98	11.23
99.0%	37.71	9.88	20.00	40.00	33.17	72.73	26.73	33.62	17.00	10.29	9.25	11.69

Table 14-66 Consols domains raw and top cut statistics for accumulation values updated for 2024. Part 3.

Accumulation Raw Domain	3500	3516	3518	3520	3546	3548	3549	3550	3551	3561	3562	3575
Samples	287	19	26	74	51	48	20	72	8	136	30	2
Minimum	0.00	0.00	0.06	0.01	0.00	0.00	0.03	0.01	0.18	0.00	0.02	0.78
Maximum	598.12	32.99	39.22	120.32	10.28	96.44	3.75	70.94	17.82	855.04	98.80	2.33
Mean	18.38	2.52	3.80	4.73	0.82	5.71	0.72	4.16	3.51	19.69	4.16	1.56
Standard deviation	61.16	7.28	7.87	15.22	1.58	17.14	0.95	9.91	5.60	78.56	17.62	0.77
CV	3.33	2.89	2.07	3.22	1.93	3.00	1.32	2.38	1.60	3.99	4.24	0.50
Variance	3740.00	52.95	61.98	231.59	2.50	293.80	0.90	98.15	31.37	6172.19	310.51	0.60
Skewness	6.50	3.84	3.55	6.25	4.55	4.49	1.96	4.81	1.99	9.02	5.16	0.00
50%	2.60	0.18	0.60	0.85	0.34	1.02	0.31	0.98	0.93	1.02	0.39	0.78
90%	30.03	3.22	8.58	9.03	1.51	8.89	1.94	8.34	6.97	39.99	2.47	2.02
95%	71.26	5.80	12.43	19.06	2.47	13.03	2.40	22.21	12.40	101.75	5.03	2.18
97.5%	137.12	19.40	21.89	34.31	4.22	63.44	3.07	28.12	15.11	139.58	29.26	2.26
99.0%	399.58	27.56	32.29	63.70	7.49	86.44	3.48	40.60	16.74	159.23	70.98	2.30
	1											
Ton Cut	40		40	4.4	0000	22	0000	24		25	45	~

Accumulation Cut												
Domain	3500	3516	3518	3520	3546	3548	3549	3550	3551	3561	3562	3575
Samples	287	19	26	74	51	48	20	72	8	136	30	2
Minimum	0.00	0.00	0.06	0.01	0.00	0.00	0.03	0.01	0.18	0.00	0.02	0.78
Maximum	40.00	6.00	18.00	14.00	10.28	23.00	3.75	24.00	5.00	35.00	15.00	2.33
Mean	8.57	1.10	2.98	2.49	0.82	3.09	0.72	3.38	1.91	7.65	1.36	1.56
Standard deviation	12.27	1.64	4.56	3.88	1.58	5.11	0.95	5.98	1.86	12.03	2.84	0.77
CV	1.43	1.49	1.53	1.55	1.93	1.66	1.32	1.77	0.98	1.57	2.08	0.50
Variance	150.58	2.69	20.83	15.04	2.50	26.11	0.90	35.73	3.47	144.81	8.05	0.60
Skewness	1.67	1.79	1.95	2.06	4.55	2.77	1.96	2.61	0.57	1.50	3.84	0.00
50%	2.60	0.18	0.60	0.85	0.34	1.02	0.31	0.98	0.93	1.02	0.39	0.78
90%	30.03	3.22	8.58	9.03	1.51	8.89	1.94	8.34	4.40	35.00	2.47	2.02
95%	40.00	4.46	12.43	14.00	2.47	13.03	2.40	22.21	4.70	35.00	5.03	2.18
97.5%	40.00	5.23	14.46	14.00	4.22	21.37	3.07	24.00	4.85	35.00	8.31	2.26
99.0%	40.00	5.69	16.59	14.00	7.49	23.00	3.48	24.00	4.94	35.00	12.32	2.30

14.3.6.4 Density

Density values were allocated based on historical density test-work from Mercator and density test-work by Westgold using the immersion method. Density values are allocated by weathering. No discrimination was made between mineralised and unmineralised rock densities in the model.

For Vivian and Consols, no significant difference between fresh porphyry, mafic and ultramafic volcanic or volcaniclastic sediment was found in density test-work, nor between mineralised and unmineralised fresh rock.

Weathering Type	Density
Oxide	2.00
Transitional	2.40
Fresh	2.80
Air / Void	0.00

Table 14-67 Vivian - Consols model density values.

14.3.6.5 Variography

A geostatistical analysis of down-hole composited Vivan's and Consols data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software.

For 3D Ordinary Kriged estimated domains, gold grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are backtransformed from the Gaussian distribution using Hermite polynomials.

For 2D Ordinary Kriged estimated domains, accumulation (grade x thickness) distribution is analysed via Connelly diagrams and continuity rosettes, with the direction of maximum grade continuity selected on a 2D plane to produce a variogram model. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials. The accumulation variogram model parameters are also used to estimate the thickness attribute.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

Variogram models are reviewed annually for new or changed domains or are reviewed as required during the year for grade control estimates. Only the domains updated with new data since the 2018 resource report (Zammit, 2018) underwent geostatistical analysis. Variogram models are unchanged since reviewed for the 2023 resource model. A summary of the estimation parameters is tabled below.

Table 14-68 Vivian's estimation parameters updated for the 2023 resource model.

### Estimate* Y Y Y Y Y Y Y Y Y Y	Domain Code	8105	8108	8109	8112	8113	8117	8209	8250	8251	8318	8321
C1	Estimate	Υ				Υ					Υ	Υ
C1	# Structures	3	2	2	2	2	3	3	2	2	3	2
STATE 1.00	CO	0.66	0.60	0.50	0.57	0.75	0.54	0.49	0.61	0.62	0.54	0.54
C2	C1	0.11	0.20	0.16	0.18	0.18	0.18	0.20	0.17	0.17	0.15	0.19
Search S	a1	1.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	4.00	5.00
Color	C2	0.20	0.19	0.34	0.24	0.07	0.12	0.20	0.23	0.21	0.14	0.28
33	a2	5.00	47.00	74.00	44.00	15.00	41.00	16.00	17.00	13.00	22.00	12.00
TOTAL SILL 1.00 1	C3	0.03					0.16	0.11			0.17	
1. Major: Semi Major	a3	24.00					75.00	20.00			42.00	
1. Major: Minior	TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major: Minior												
2. Major: Seem Major	1. Major : Semi Major	1	1	1	1	1	1	1.25	1	1	1	1
2. Major: Milnor	1. Major : Minor	1	1	1	1	1	1	2.5	1	1	1	1
3. Major 1	2. Major : Semi Major	1	1	1	1	1	1	2.667	1	1	1	1
SURPAC STRIKE	2. Major : Minor	1	1	1	_	_	1		_	1	_	1
SURPAC PUINCE	3. Major : Semi Major	1			0	0	1	2	0	0	1	0
SURPAC PLUNGE	3. Major : Minor	1	0	0	0	0	1	4	0	0	1	0
SURPAC PLUNGE				•				•				
Surpactive												
Search Method ELLIPSOID ELLIPSOID												
Method	SURPAC DIP	0	0	0	0	0	0	-44.561	0	0	0	0
Method												
Estimation Block Size X												
Estimation Block Size X 5 5 5 5 5 5 5 5 5		ELLIPSOID										
Estimation Block Size Y	Estimation Block Size (x,y,z)	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 2.5	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1
Estimation Block Size Z	Estimation Block Size X	5	5	5	5	5			5	5		
Disc Point X	Estimation Block Size Y	5	5	5	5	5	5		5	5		
Disc Point Y												
Disc Point Z	Disc Point X											
Grade Dependent Parameters												
Threshold Max S0 21 20 25 20 20 20 20 50 20 Search Limitation 15 15 15 15 20 5 15 2 10 15 5 5	Disc Point Z	1	1	1	1	1	1	3	1	1	1	1
Threshold Max S0 21 20 25 20 20 20 20 50 20 Search Limitation 15 15 15 15 20 5 15 2 10 15 5 5												
Search Limitation 15 15 15 20 5 15 2 10 15 5	·	Υ						N	Υ		Υ	
Limit Samples by Hole Id												
Hole Id D Field	Search Limitation	15	15	15	20	5	15		2	10	15	5
Hole Id D Field				,				,				
Pass1												
Pass1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		D2										
Min 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2	Max Samps per Hole											
Min 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2				1								
Max 10 10 12 16 16 12 14 10 10 12 12 Max Search 50 50 54 20 20 33 18 50 50 25 25 Major/Semi 1 1 1 2 3.8 1 2 1 1 2 2 Major/Minor 1 1 1 2 1 1 4 1 1 2 2 Run Pass 2 Y </td <td></td>												
Max Search 50 50 54 20 20 33 18 50 50 25 25 Major/Semi 1 1 1 1 2 3.8 1 2 1 1 2 2 Major/Minor 1 1 1 2 1 1 4 1 1 2 2 Run Pass 2 Y <												
Major/Semi												
Major/Minor												
Run Pass 2												
Factor 2 <td>Major/Minor</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>4</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td>	Major/Minor	1	1	1	2	1	1	4	1	1	2	2
Factor 2 <td></td>												
Major/Semi 1 1 1 2 2 1 2 1 1 2 2 Major/Minor 1 1 1 2 2 1 4 1 1 2 2 Min 3 3 4 4 4 4 4 3 3 4 4 Max 10 10 12 16 16 12 16 10 10 12 12 Run Pass 3 Y <td></td>												
Major/Minor 1 1 1 2 2 1 4 1 1 2 2 Min 3 3 4 4 4 4 4 3 3 4 4 Max 10 10 12 16 16 12 16 10 10 12 12 Run Pass 3 Y												
Min 3 3 4 12 Run Pass 3 Y Y Y Y Y <												
Max 10 10 12 16 16 12 16 10 10 12 12 Run Pass 3 Y Y Y Y Y N Y												
Run Pass 3 Y Y Y Y Y Y N Y												
Factor 6 <td>Max</td> <td>10</td> <td>10</td> <td>12</td> <td>16</td> <td>16</td> <td>12</td> <td>16</td> <td>10</td> <td>10</td> <td>12</td> <td>12</td>	Max	10	10	12	16	16	12	16	10	10	12	12
Factor 6 <td></td> <td></td> <td></td> <td>T ,.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.5</td> <td></td>				T ,.							7.5	
Major/Semi 2 2 1 2 2 1 2 2 2 2 Major/Minor 2 2 1 2 2 1 2 2 2 2 Min 2 2 2 2 2 2 2 2								N				
Major/Minor 2 2 1 2 2 1 2 2 2 2 Min 2 <												
Min 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												
Max 12 12 12 12 12 12 12 12 12 12 12 12 12												
	Max	12	12	12	12	12	12		12	12	12	12

Table 14-69 Vivian's variogram models determined for the 2018 resource model.

Domain	Attribute	No Structures	Nugget	Sill 1	Range 1	Bearing 1	Plunge 1	Dip 1	Semi Ratio 1	Minor Ratio 1	Sill 2	Range 2	Bearing 2	Plunge 2	Dip 2	Semi Ratio 2	Minor Ratio 2	Sill 3	Range 3	Bearing 3	Plunge 3	Dip 3	Semi Ratio 3	Minor Ratio 3
Intercept Co	omposites - A	Accumulation	Variable Variable	е																				
8101-8102	Au_Vwidth	2	0.46	0.37	25	0	0	0	1	1	0.17	75	0	0	0	1	1							
1m Compos	ites - Au							•																
8207-8210	Au	2	0.34	0.45	8	75	0	-85	1	1.6	0.22	25	75	0	-85	1	1.4							
8215	Au	2	0.27	0.45	6	15	0	-70	1	1	0.26	40	15	0	-70	1	4							
8900	Au	3	0.66	0.23	15	0	0	0	1	1	0.08	50	0	0	0	1	1	0.04	200	0	0	0	1	1

Table 14-70 Vivian's estimation parameters for domains unchanged since the 2018 resource model, part 1.

Estimation Method	2D											
Domain Code	8201	8203	8204	8206	8211	8212	8213	8216	8217	8220	8302	8303
Sub-Domain	None											
String_Id	6001	6003		6006	6011	6012	6013			6020	7002	7003
String No.s	1;2	1;2	1;2	1;2	1;2	1;2	1;2	1;2	1;2	1;2	1;2	1;2
D Field	20						20			20	20	20
									20		20	20
# Structures	2	2	2		2	2	2	2		2		_
CO CO	0.46	0.46			0.46		0.46		0.46	0.46	0.46	0.46
C1	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
a1	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
C2	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
a2	75.00	75.00			75.00		75.00			75.00	75.00	75.00
C3	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00
a3												
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1	1	1	1	1	1	1	1	1	1	1	1
1. Major : Minor	1	1	1	1	1	1	1	1	1	1	1	1
2. Major : Semi Major	1	1	1	1			1	1	1	1	1	1
2. Major : Minor	1	1	1	1	1	1	1	1	1	1	1	1
•	1	1	1	1	1	1	1	1	1	1	1	1
3. Major : Semi Major												
3. Major : Minor												
SURPAC STRIKE	0	0	0	0	0	0	0	0	0	0	0	0
SURPAC PLUNGE	0	0	0	0			0	0	0	0	0	0
SURPAC DIP	0										0	0
JOHN AC DIF												
C				l				1		l	ı	1
Search												
Method	ELLIPSOID											
Estimation Block Size (x,y,z)	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1
Estimation Block Size X	5	5	5	5	5	5	5	5	5	5	5	5
Estimation Block Size Y	5						5				5	5
Estimation Block Size Z	1	1					1			1	1	1
Disc Point X	4						4				4	4
Disc Point Y	4						4				4	4
Disc Point Z	1	1	1	1	1	1	1	1	1	1	1	1
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max 1												
Search Limitation 1												
Threshold Max 2												
Search Limitation 2								ļ				
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field												
Max Samps per Hole												
max samps per floid	l	L	l	L	l		l	.		L	L	
David.		,,	,,	.,	.,	,,	.,	.,	,,	.,	,,	
Pass1	Y	Y	Y	Y	Y	Υ	Y	Υ	Υ	Y	Y	Υ
Min	3	3					3				3	3
Max	10						10			10	10	10
Max Search	50	50	50	50	50	50	50	50	50	50	50	50
Major/Semi	1	1					1			1	1	1
Major/Minor	1	1					1			1	1	1
major, milos	·			-				<u> </u>	-	<u> </u>	<u> </u>	
Dim Divis		,,	,,	.,	.,	,,	.,	.,	,,	.,	,,	
Run Pass2	Y	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Y	Υ
Factor	2	2					2			2	2	2
Major/Semi	1	1		1	1		1			1	1	1
Major/Minor	1	1	1	1	1	1	1	1	1	1	1	1
Min	3						3				3	3
Max	10											10
IVIGA	10	10	10	10	10	10	10	1 10	10	1 10	1 10	10
Run Pass 3	N	N	N	N	N	N	N	N	N	N	N	N
Factor												
Major/Semi												
Major/Minor												
Min		i				İ		i	İ		l	
Max												
IVIdX		l		I		1		<u> </u>	1	I	L	

Table 14-71 Vivian's estimation parameters for domains unchanged since the 2018 resource model, part 2.

Sub-Domais None None None None Sub-Domais Sub-Domais None None Sub-Domais None Sub-Domais None Sub-Domais None None None Sub-Domais None	Estimation Method	2D	2D	2D	2D	2D	2D	2D	2D	3D	3D	3D	3D
Sub-Domais None None None None Sub-Domais Sub-Domais None None Sub-Domais None Sub-Domais None Sub-Domais None None None Sub-Domais None	Domain Code	8304	8305	8306	8307	81	01	81	.02	8207	8214	8215	8900
String Max 7004 7005 7005 7007 8001 8001 8001 8002 8001 8002 8001 8													
Strong None 12 12 12 12 13 13 13 13													
Direct 20													1000
#Structures													1
CI													20
Ca	# Structures	2	2	2	2	2	2	2	2	2	2	2	3
Ca	CO	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.34	0.34	0.27	0.66
Septe Supple Carrier Supple Carrie	C1	0.37	0.37	0.37	0.37	0.37	0.37	0.37			0.45	0.45	0.23
C2													15.00
SURPACE FILINGED CLUPSOD CLUPS													0.08
Case Case													
Supple Characteristic Supp		75.00	/5.00	75.00	75.00	/5.00	75.00	75.00	75.00	25.00	25.00	40.00	50.00
TOTALSILE													0.04
1. Major: Semi Major													200.00
1. Major: Minor	TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.01	0.98	1.01
1. Major: Minor													
1. Major: Almor	1. Major : Semi Major	1	1	1	1	1.4	1.4	1.4	1.4	1	1	1	1
2. Major: Sem Major 2. Major: Sem Major 3. 1 1 1 1 1 1 1 3 3 3 3 3 3 3 1 1 1 1 1		1	1	1	1	1	1	1	1		1.6	1	1
2. Major: Minor	·	1	1			3 3	3 3	3 3	2 2			1	1
3. Major: Semi Major 3. Major: Minor 3. Major: Minor 4. Major Minor 4. Major Minor 5. SURPAC STRIKE 6. O.							3.3				_		1
SURPAC STRIKE		1	1	1	1	1	1	1	1	1.4	1.4	4	_
SURPAC STRIKE			-			-		-		-			1
SURPAC PLUNKE	3. Major : Minor							L					1
SURPAC PLUNKE													
SURPAC PLUNKE	SURPAC STRIKE	0	0	0	0	60	60	60	60	75	90	15	0
SURPAC DIP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	n	n	0								0
Search													0
Method	301 70 011			U						. 33	30	,,,	
Method	Corb	l	1			1		1	I	1			
Estimation Block Size (xy, y) 5, 5, 1 5, 5, 1 5, 5, 1 5, 5, 1 5, 5, 1 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,													
Estimation Block Size X 5 5 5 5 5 5 5 5 5		ELLIPSOID											ELLIPSOID
Estimation Block Size Y 5 5 5 5 5 5 5 5 5	Estimation Block Size (x,y,z)	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 1	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5
Estimation Block Size 2	Estimation Block Size X	5	5	5	5	5	5	5	5	5	5	5	5
Estimation Block Size 2	Estimation Block Size Y	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point X													5
Disc Point Y													4
Disc Point Z													
Grade Dependent Parameters													4
Threshold Max 2	Disc Point Z	1	1	1	1	1	1	1	1	4	4	4	4
Threshold Max 2													
Search Limitation 1	Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	Υ
Threshold Max 2 Search Limitation 2 Se	Threshold Max 1												10
Threshold Max 2 Search Limitation 2 Se													
Search Limitation 2													
Limit Samples by Hole Id													
Hole Id D Field Max Samps per Hole Max Samps	Search Limitation 2												10
Hole Id D Field Max Samps per Hole Max Samps													
Max Samps per Hole		N	N	N	N	N	N	N	N	N	N	N	N
Pass1													
Pass1	Max Samps per Hole							<u> </u>	L	L			
Min 3 3 3 3 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1		_											
Min 3 3 3 3 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1	Pass1	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Max 10 10 10 10 10 10 10 10 10 10 10 16 11 1													. 4
Max Search 50 50 50 50 75 75 75 75 25 25 25 Major/Semi 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td></td<>													20
Major/Semi													
Major/Minor						l		l		l			50
Run Pass2													
Factor 2 2 2 2 2 2 2 2 2	Major/Minor	1	1	1	1	1	1	1	1	1.4	1.4	2	1
Factor 2 2 2 2 2 2 2 2 2													
Factor 2 2 2 2 2 2 2 2 2	Run Pass2	Y	Υ	Y	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	N
Major/Semi 1													
Major/Minor											1		
Min 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4											1		
Max 10 10 10 10 10 10 10 16 16 16 16 Run Pass 3 N											_		
Run Pass 3 N													
Factor Major/Semi Major/Minor Min	Max	10	10	10	10	10	10	10	10	16	16	16	
Factor Major/Semi Major/Minor Min													
Major/Semi Major/Minor Min	Run Pass 3	N	N	N	N	N	N	N	N	N	N	N	N
Major/Semi Major/Minor Min	Factor												
Major/Minor Min			i			i		i		i			
Min			 			!		 		†			
			 			 		-		-			
Max I I I I I I I I I I I I I I I I I I I			-			-		-		-			
IVIGA	Max		I .			l .		İ		i .			

Table 14-72 Consols variogram models determined for the 2018 resource model.

Demin	Attribute	No Structures	Hoper	181	Range 1	Searing 2	Plurge 1	Dip 1	Seru Satio	Minur Ratio 1	813	Sange 2	Sering 2	Nurge 2	0+2	Servi Ratio	Minor Ratio 2
Hercept C	orquorius-A	According for the	Venteble			1			0.00	- 17				100		111	
31.02	No Venter		1.58	:0.2	6	0	0	0.	1	1.	0.22	. 55	4.	0.	0	- 1	1.5
3020	dri Verida		0.59	15.27	9.5	D.	a	D	1	1.	0.18	185	4	4	0.	-1	1.
hi timpo	oles-Av		- 1,5 5 17	- 1	10000	0.00	167	701	AS MEN		100	STILL STATE	I vertice of	0.16.7	15.60	Activities to	
2000	- Air	1:	0.65	0.49	3.	20	- 0	-65	1 1	1.0	6006	40	10	- 0	-65	1 1	2.7
3500	0.0	1	0.3	0.3	34	35:	-52	-65	1	1.6							

Table 14-73 Consols estimation parameters, part 1.

Domain	3219	3220	3221	3223	3224	3225	3226	3227	3228	3229	3230	3231	3232	3233	3234	3240	3245	3246	3247	3250
Search	3213	3220	3221	3223	3224	3223	3220	3227	3220	3223	3230	3231	3232	3233	3234	3240	3243	3240	3247	3230
Min samples	7	4	4	4	4	4	4	4	4	4	4	4	4	1	1	4	1	1	1	1
Max samples	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Search distance	60	60	35	60	60	60	60	60	35	60	60	60	35	35	35	60	35	35	25	60
Estimation Block Size (X,Y,Z)		1	_		1, 5, 2.5	1, 5, 2.5		1, 5, 2.5	10, 1, 5		10, 10, 1	1		10, 1, 5			5, 1, 2.5	1, 5, 2.5	1, 5, 2.5	5, 1, 2.5
Discretisation	1, 3, 2.3	1, 3, 2.3	10, 1, 3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	10, 1, 3	1, 3, 2.3	10, 10, 1	1, 3, 2.3	3, 1, 2.3	10, 1, 3	3, 1, 2.3	3, 1, 2.3	3, 1, 2.3	1, 3, 2.3	1, 3, 2.3	3, 1, 2.3
Discretisation X	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Y	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Z	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Structures	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
Nugget	0.79	0.79	0.58	0.79	0.79	0.79	0.79	0.79	0.58	0.79	0.74	0.79	0.58	0.424	0.339	0.79	0.471	0.456	0.613	0.584
Structure 1	0.75	0.75	0.50	0.75	0.75	0.75	0.75	0.75	0.50	0.73	0.7 .	0.75	0.50	02	0.005	0.75	02	0.150	0.025	0.50 .
Sill	0.06	0.06	0.23	0.06	0.06	0.06	0.06	0.06	0.23	0.06	0.13	0.06	0.23	0.363	0.388	0.06	0.35	0.348	0.169	0.416
Range	8	8	7	8	8	8	8	8	7	8	8	8	7	5	5	8	5	5	5	5
Bearing	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	270
Plunge	0	0	0	0	0	0	0	0	0	0	0	0	0	90	90	0	0	90	90	-75
Dip	0	0	0	0	0	0	0	0	0	0	0	0	0	-90	-90	0	o	-90	-90	90
Semi Ratio	1	1	1	1	1	1	1	1	1	1	2.7	1	1	1	1	1	1	1	1	5.6
Minor Ratio	1	1	1	1	1	1	1	1	1	1	2.7	1	1	1	1	1	1	1	1	5.6
Structure 2																				
Sill	0.15	0.15	0.19	0.15	0.15	0.15	0.15	0.15	0.19	0.15	0.13	0.15	0.19	0.213	0.273	0.15	0.179	0.195	0.218	0
Range	60	60	20	60	60	60	60	60	20	60	40	60	20	20	20	60	20	20	20	0
Bearing	0	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	0	270
Plunge	0	0	0	0	0	0	0	0	0	0	0	0	0	90	90	0	o	90	90	-75
Dip	0	0	0	0	0	0	0	0	0	0	0	0	0	-90	-90	0	o	-90	-90	90
Semi Ratio	1	1	1	1	1	1	1	1	1	1	2.7	1	1	1	1	1	1	1	1	0
Minor Ratio	1	1	1	1	1	1	1	1	1	1	2.7	1	1	1	1	1	1	1	1	0
Pass 2																				
Search Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Pass 3																				
Search Factor	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Table 14-74 Consols estimation parameters, part 2.

Domain	3269	3270	3310	3311	3312	3315	3500	3501	3502	3503	3506	3507	3509	3512	3513	3514	3516	3518	3519	3520
Search	3203	32/0	2210	2211	3312	3313	3300	2301	3302	3303	3300	3307	3303	3312	2212	3314	2210	2210	2212	3320
Min samples	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	7
Max samples	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Search distance	35	35	35	35	35	35	60	35	35	60	60	60	60	60	60	60	60	60	60	60
	10, 1, 5			10, 1, 5					10, 1, 5		1, 5, 2.5				1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	1, 5, 2.5
Discretisation	10, 1, 5	3, 1, 2.3	10, 1, 5	10, 1, 3	10, 1, 3	3, 1, 2.3	1, 3, 2.3	1, 3, 2.3	10, 1, 3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3	1, 3, 2.3
Discretisation X	2	2	2	2	2	2	2	2	3	2	3	2	3	3	3	2	2	2	2	3
Discretisation Y	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Z	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Structures	2	1	1	1	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2
Nugget	0.355	0.453	0.403	0.331	0.417	0.339	0.79	3	0.58	0.79	0.79	0.3	0.3	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Structure 1	0.555	0.433	0.403	0.551	0.417	0.555	0.73	0.444	0.30	0.73	0.73	0.5	0.5	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Sill	0.386	0.547	0.597	0.669	0.198	0.388	0.06	0.222	0.23	0.06	0.06	0.28	0.28	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Range	5	15	28	27	13	5	8	9	7	8	8	10	10	8	8	8	8	8	8	8
Bearing	0	0	90	0	90	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0
Plunge	90	90	-75	90	-50	90	0	-75	0	0	0	0	0	0	0	0	0	0	0	0
Dip	-90	-90	-90	-90	-90	-90	0	90	0	0	0	0	0	0	0	0	0	0	0	0
Semi Ratio	1	1	3.11	1	1	1	1	4.5	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	3.11	1	1	1	1	4.5	1	1	1	1	1	1	1	1	1	1	1	1
Structure 2																				
Sill	0.259	0	0	0	0.385	0.273	0.15	0.168	0.19	0.15	0.15	0.42	0.42	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Range	20	0	0	0	35	20	60	30	20	60	60	30	30	60	60	60	60	60	60	60
Bearing	0	0	90	0	90	0	0	180	0	0	0	0	0	0	0	0	0	0	0	0
Plunge	90	90	-75	90	-50	90	0	-75	0	0	0	0	0	0	0	0	0	0	0	0
Dip	-90	-90	-90	-90	-90	-90	0	90	0	0	0	0	0	0	0	0	0	0	0	0
Semi Ratio	1	0	0	0	1	1	1	5	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	0	0	0	1	1	1	5	1	1	1	1	1	1	1	1	1	1	1	1
Pass 2																				
Search Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Pass 3							_													
Search Factor	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Table 14-75 Consols estimation parameters, part 3.

Domain	3521	3523	3524	3525	3526	3527	3528	3529	3530	3531	3533	3537	3539	3540	3541	3542	3543	3544	3545	3546
Search	5521	5525	552.	5525	5520	5527	0020	5525	5550	5551	5555	0007	5555	55.0	55.12	55.2	00.0	55	55.5	55.0
Min samples	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Max samples	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Search distance	60	60	60	60	60	60	60	60	60	60	60	60	60	35	60	35	35	35	35	35
		1, 5, 2.5		1, 5, 2.5	1, 5, 2.5				1, 5, 2.5			1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	1, 5, 2.5	10, 1, 5	10, 1, 5	10, 1, 5	10, 1, 5
Discretisation	1, 0, 2.0	2, 3, 2.3	2, 3, 2.3	2, 3, 2.3	2, 3, 2.3	1, 3, 2.3	2, 3, 2.3	2, 3, 2.3	2, 3, 2.3	2, 3, 2.3	1, 0, 2.0	2, 3, 2.3	2, 3, 2.3	1, 5, 2.5	2, 3, 2.3	2, 3, 2.3	20, 2, 3	20, 2, 5	10, 1, 0	10, 1, 5
Discretisation X	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Y	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Z	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Structures	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Nugget	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.6	0.79	0.52	0.58	0.58	0.58	0.437
Structure 1																				
Sill	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.11	0.06	0.13	0.23	0.23	0.23	0.23
Range	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	14	7	7	7	7
Bearing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90
Plunge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-60
Dip	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-90
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.167
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.167
Structure 2																				
Sill	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.29	0.15	0.35	0.19	0.19	0.19	0.334
Range	60	60	60	60	60	60	60	60	60	60	60	60	60	20	60	16	20	20	20	41
Bearing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90
Plunge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-60
Dip	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-90
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.577
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.577
Pass 2																				
Search Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Pass 3																				
Search Factor	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

Table 14-76 Consols estimation parameters, part 4.

Domain	3547	3548	3549	3550	3551	3552	3554	3561	3572	3573	3574	3575	3576	3577	3578	3579	3580	3581	3582	3610
Search	3347	3340	3343	3330	3331	3332	3334	3301	3372	3373	3374	3373	3370	3377	3376	3373	3300	3301	3302	3010
Min samples	4	1	1	1	4	4	4	1	1	4	1	4	1	1	1	1	4	4	4	4
Max samples	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Search distance	35	35	35	35	35	60	35	35	60	60	60	35	35	25	25	25	60	25	25	60
Estimation Block Size (X,Y,Z)	10, 1, 5	5, 1, 2.5	10, 1, 5		10, 1, 5	1, 5, 2.5	10, 1, 5	10, 1, 5	5, 1, 2.5	10, 1, 5	10, 1, 5	10, 1, 5	10, 1, 5	5, 1, 2.5	5, 1, 2.5	5, 1, 2.5	1, 10, 5	5, 1, 2.5	5, 1, 2.5	1, 5, 2.5
Discretisation	10, 1, 3	3, 1, 2.3	10, 1, 3	3, 1, 2.3	10, 1, 3	1, 3, 2.3	10, 1, 3	10, 1, 3	3, 1, 2.3	10, 1, 3	10, 1, 3	10, 1, 3	10, 1, 3	3, 1, 2.3	3, 1, 2.3	3, 1, 2.3	1, 10, 3	3, 1, 2.3	3, 1, 2.3	1, 3, 2.3
Discretisation X	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3
Discretisation Y	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Discretisation Z	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Structures	2	2	1	1	2	2	2	2	2	2	2	2	1	2	2	2	2	1	2	2
Nugget	0.58	0.533	0.355	0.563	0.58	0.79	0.58	0.29	0.345	0.472	0.209	0.58	0.218	0.431	0.399	0.361	0.79	0.708	0.55	0.79
Structure 1	0.36	0.555	0.333	0.303	0.36	0.73	0.36	0.23	0.343	0.472	0.203	0.36	0.218	0.431	0.333	0.301	0.73	0.708	0.55	0.73
Sill	0.23	0.213	0.645	0.437	0.23	0.06	0.23	0.188	0.253	0.121	0.253	0.23	0.782	0.389	0.285	0.38	0.06	0.292	0.45	0.06
Range	7	15	19	13	7	8	7	14	12	13	13	7	48	6	5	5	8	18	25	8
Bearing	0	90	90	90	0	0	0	90	90	90	90	0	0	90	0	0	0	90	0	0
Plunge	0	-75	-80	-85	0	0	0	-30	-45	-55	-30	0	90	-30	90	90	0	-25	0	0
Dip	0	-90	-90	90	0	0	0	-90	-90	-90	-90	0	-90	-90	-90	-90	0	-90	-50	0
Semi Ratio	1	3	1	1.3	1	1	1	1	0.8	1	1	1	1	0.857	1	1	1	1	1	1
Minor Ratio	1	3	1	1.3	1	1	1	1	0.8	1	1	1	1	0.857	1	1	1	1	1	1
Structure 2	_	3	_	1.5	1		_	_	0.0	-	1	-		0.037	_		1	-	-	1
Sill	0.19	0.254	0	0	0.19	0.15	0.19	0.522	0.401	0.408	0.539	0.19	0	0.181	0.316	0.259	0.15	0	0	0.15
Range	20	37	0	0	20	60	20	70	40	50	36	20	0	38	15	15	60	0	0	60
Bearing	0	90	90	90	0	0	0	90	90	90	90	0	0	90	0	0	0	90	0	0
Plunge	0	-75	-80	-85	0	0	0	-30	-45	-55	-30	0	90	-30	90	90	0	-25	0	0
Dip	0	-90	-90	90	0	0	0	-90	-90	-90	-90	0	-90	-90	-90	-90	0	-90	0	0
Semi Ratio	1	4.11	0	0	1	1	1	2	1.905	1	1	1	0	2.11	1	1	1	0	1	1
Minor Ratio	1	4.11	0	0	1	1	1	2	1.905	1	1	1	0	2.11	1	1	1	0	1	1
Pass 2																				
Search Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Pass 3																				
Search Factor	3	6	3	3	3	3	4	6	3	3	3	3	3	3	3	3	3	3	3	3
Semi Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Minor Ratio	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min Samp	2	1	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2
Max Samp	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

14.3.6.6 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below. The Vivian's block model was extended in 2024 to capture mineralisation to the north of and below the previous model extents.

Table 14-77 Consols block model parameters.

	Υ	X	Z
Min	2,100	850	-300
Max	2,880	1,550	550
Extents	780	700	850
Parent size	10.00	10.00	5.00
Sub-Block size	0.625	0.625	0.625

Table 14-78 Vivian's block model parameters.

	Υ	Х	Z
Min	2,880	950	-600
Max	3,900	1,670	550
Extents	1,020	720	1,150
Parent size	10.00	10.00	5.00
Sub-Block size	0.625	0.625	0.625

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

Domains sufficiently wide enough to support a traditional 3D estimate with sufficient informing data were estimated by Ordinary Kriging of 1 m downhole composites. The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

For domains characterised by significantly narrow widths, it was deemed more appropriate to undertake a 2D estimation methodology based on intersection accumulation composites (width x grade) used for grade estimation. These domains are characterised by widths typically less than 2 m which do not allow for any across strike mining selectively and overcomes any bias due to non-additivity of grade from composites of unequal support (Bertoli, 2003). Top cutting was applied to the composite accumulation variable.

From Zammit (2018), the advantages of using a 2D projection method over traditional 3D block modelling include:

- Simplifies undulating vein geometry onto a 2D plane allowing improved directional variography and simplified search strategies;
- Eliminates or reduces the requirement to have multiple 'geometric domains' therefore allowing block estimations to use more informing composites;
- Estimation block size can be chosen independently from volume model requirements. Estimation block sizes can be tailored on the basis of data spacing rather than compromising the estimation block size due to volume definition requirements. This reduces over-smoothing and conditional bias introduced by estimating into small blocks relative to data spacing;
- Longitudinal presentation of modelled vein attributes such as grade and thickness assist with resource classification and engineering design evaluations. Calculated fields such as grade x thickness can be easily presented and reported.

For Vivian's, all interpolation was conducted in two passes which was sufficient to fill all blocks in the estimation domains. The second interpolation pass saw an increase in search distance and a reduction in minimum and maximum informing samples.

For Consols, all interpolation was conducted in three passes, with increased search distance 2×1 for the second pass and $3 \times 10 \times 1$ for the second pass, and a reduction of minimum and maximum informing samples for the second and third interpolation pass.

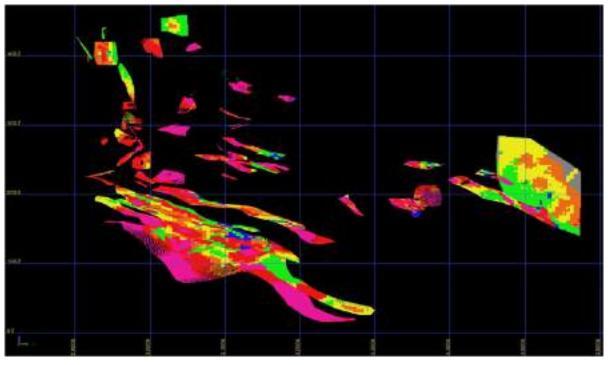


Figure 14-19 Vivian's 2024 depleted resource model, alteration domain 3900 hidden - Source: Westgold.

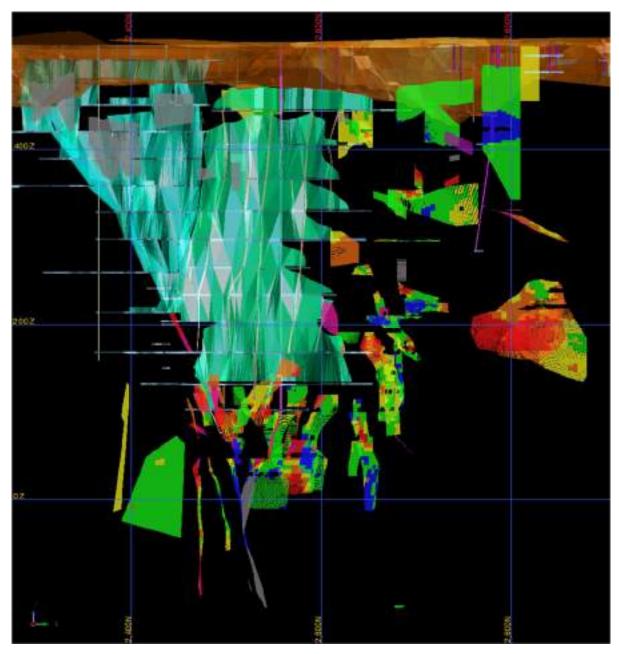


Figure 14-20 Consols 2024 depleted resource model, alteration domain 3900 hidden - Source: We st gold.

14.3.6.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data

and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data for the Vivians and Consols open pit, as the modelling of these mineralisation has focused on the fresh rock resource below the historic open pit. Over the life of the Westgold project from October 2016 to June 2024, claimed stope production (CMS survey of the mined void v. estimated model, adjusted for external dilution sources) vs mill reconciled actual stope production has been within 8% variation.

Table 14-79 Vivian's stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance				
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz		
Stoping	323,542	5.87	61,041	325,046	6.10	63,782	0%	-4%	-4%		
Development	213,088	4.53	31,014	208,977	4.83	32,454	2%	-6%	-4%		

Table 14-80 Consols stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance				
	Tonnes Grade Oz			Tonnes	Grade	Oz	Tonnes	Grade	Oz		
Stoping	143,300	3.13	14,422	139,391	3.27	14,677	3%	-4%	-2%		
Development	140,021	3.10	13,969	138,002	3.36	14,897	1%	-8%	-6%		

14.3.6.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Vivian - Consols Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with underground development face sampling, with the mineralisation interpretation supported by face and backs mapping and validated by face photos during mineralisation domain interpretation.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Vivian - Consols Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

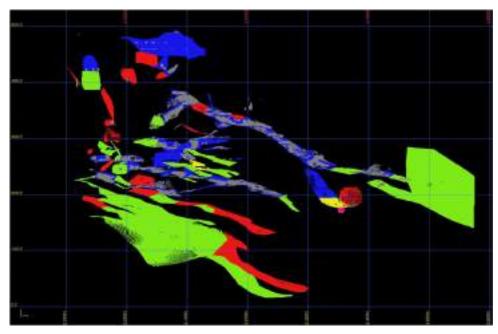


Figure 14-21 Vivian resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted. Open pit topography not shown - Source: Westgold.

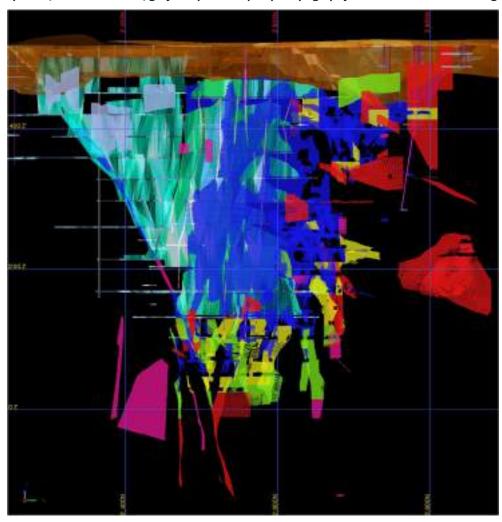


Figure 14-22 Consols resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised. Depleted material hidden - Source: Westgold.

14.3.6.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground mineral resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-81 Vivian - Consols Mineral Resources on June 30, 2024.

Vivian - Consols Mineral Resource Statement - Rounded for Reporting 30/06/2024														
Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Vivian – Consols	29	5.03	5	185	6.97	41	213	6.71	46	93	5.74	17		
Total 29 5.03 5 185 6.97 41 213 6.71 46 93 5.74 17														

>=2.0g/t Au

The Vivian - Consols Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.

- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.3.7 Mudlode - Hendrix

14.3.7.1 Summary

The Mudlode - Hendrix deposit is located approximately 15 km north of the Bluebird mill. The deposits are hosted in mafic and ultramafic volcanic and volcaniclastic rock to the east of the regional Paddy's Flat Shear Zone (PFSZ) and the porphyry hosted Vivian – Consols line-of-lode. The resource is divided by the east-west striking dolerite dyke which also intrudes and splits the Vivian – Consols porphyry host and the Prohibition BIF to the west. To the north of the dyke is the quartz-carbonate alteration stockwork veined shear-hosted Mudlode deposit, continuing south of the dyke as Mudlode East. Further south is the Hendrix deposit hosted by an intermediate dacite intruded into the Mudlode shear, a new discovery by Westgold found whilst drill testing for southern strike extents of the Mudlode shear. During the reporting period, the Fatt's North mineralisation was discovered and added to the mineral resource.

The geology, mineralisation and pre-Westgold production information in this section is adapted from Hollingsworth (2010) and Thébaud (2007). Historic underground mine production from the quartz-carbonate alteration stockwork veined shear-hosted deposit Ingliston Alberts mineralisation from 1906 to 1953 compiled from MINDEX data was 134,500 t at 17.41 g/t for 75,286 oz. Production by Whim Creek Consolidated then Dominion Mining between July 1989 and June 1995 from the Mudlode open pit was 227,745 t at 2.20 g/t for 16,109 oz.

Dominion Mining also dewatered the Ingliston-Alberts underground workings, rehabilitated the shaft for underground drilling of Mudlode, re-exposing the East, Central, and Hangingwall lode development.

Significant surface drilling for resource definition was later conducted by Plutonic (1995-1999), Saint Barbara Mines (2003-2006), and Mercator Gold Australia (2006-2009), though no production ever commenced.

Mining of the Mudlode mineralisation by Westgold commenced in December 2015 after Westgold re-established the historic decline in the Consols open pit, the Donovan decline that established in 1994 by Dominion Mining with 123 m of development before being abandoned.

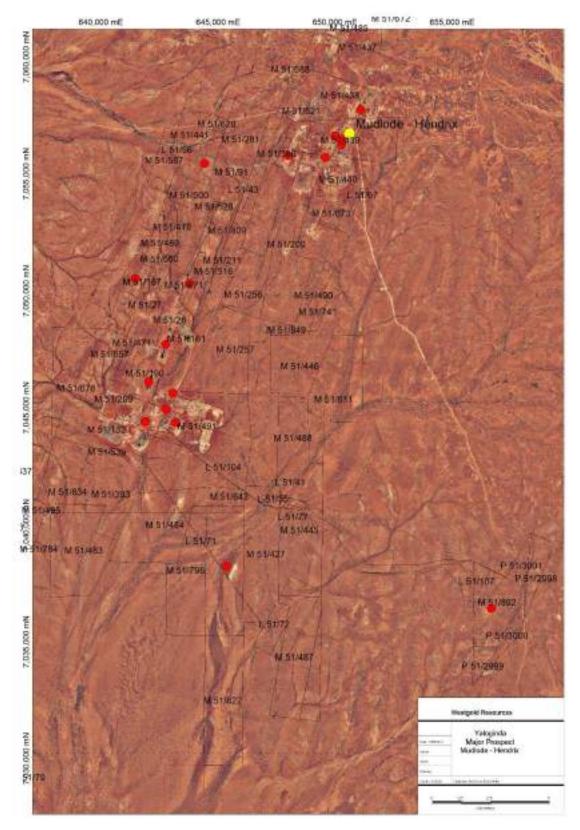


Figure 14-23 Location of the Mudlode - Hendrix deposits - Source: Westgold.

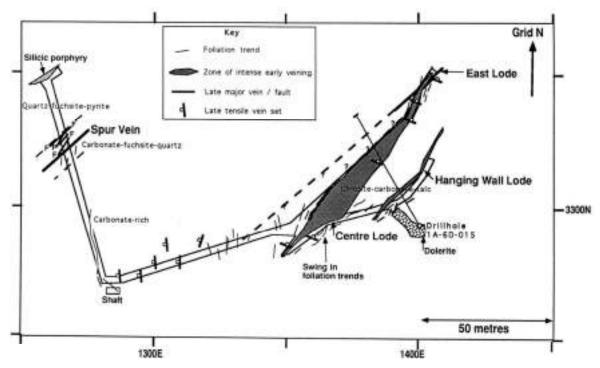


Figure 14-24 A geological sketch map of the 6 Level of the Ingliston Alberts underground mine showing the distribution of the East, Central and Hanging wall lodes - Ethridge and Henley, 1992.

The later discovery of Hendrix commenced production in June 2020. Fatts North is also included as production from the Mudlode – Hendrix project. Production for the Mudlode – Hendrix project to date by Westgold is 528,683t at 2.58g/t for 43,770oz as of June 30, 2024.

A detailed resource report for Mudlode was completed by Westgold for in 2018 (Zammit, 2018) where all estimation parameters were reviewed and updated. Westgold has updated the resource estimate, classification, depletion, and sterilisation annually since this 2018 report, and added the Hendrix mineralisation to the resource. Estimation parameters are reviewed and updated annually as required. Top-cuts and variogram models were determined for Fatts North during this reporting period.

The quartz-carbonate-sulphide stockwork vein and alteration related mineralisation is the dominant style of mineralisation evident within the ultramafic sequence to the east of the central Paddy's Flat shear zone. Ethridge and Henley (1992) used the term East Lode to describe the narrow high-grade mineralisation along the footwall contact of the stockwork vein and alteration system. Within this East Lode, narrow irregular blue-grey quartz veins contain coarse gold. Immediately to the east, the stockwork vein system, which averages 2-3 g/t was termed the Central Lode. A second area of high-grade mineralisation was located by Dominion approximately 10 m to the east of the Central Lode and this was termed the Hangingwall Lode. Westgold confirmed this structure once mining commenced beneath the historic Ingliston-Alberts underground workings.

To the south of the dyke, Mudlode East mineralisation is a single shear structure, through significant fault offsets approximately 50-80 m south of the dyke give the appearance of multiple mineralisation lodes. There is also a set of mineralized quartz shear veins to the west of Hendrix.

The Hendrix intermediate dacite intrudes the shear zone which is also significantly fault offset for approximately 100 m of strike length. Further south, the strike changes and faulting are reduced. The dacite intrusive pinches out at depth to the north but is also fault offset along strike and down dip to the south. Drill testing of the structure at depth and to the south was conducted during the reporting period, extending the fault-offset southern strike of the Hendrix intrusive. Drilling further defined the offsetting fault at depth, but the down-dip offset intrusive was not discovered, so requires deeper drill testing. Mineralisation in the intrusive is in stockwork veining and dark narrow veinlets though to be related to brittle fracturing of the intrusive host in the shear zone. The southern strike extent has a lower tenor of mineralisation.

West of the Hendrix southern strike extension, drilling during the reporting period discovered the northern strike extents of the Fatt's mineralisation. The mineralisation domains have been named Fatt's North and are included in the Mudlode – Hendrix mineral resource. The host shear structure has reduced thickness and tenor of grade immediately north of Fatt's, then the thickness and tenor of grade increases in an area of localised complex shear, faulting, and possibly folding deformation.

14.3.7.2 Modelling Domains

The mineralisation domain interpretation is based on the geology using the logged lithology code as the primary domain control. The interpretation is also guided by face and backs mapping, oriented structural measurements, and review of diamond core photos. For Mudlode, where the boundary of the mineralisation domain is masked by veining and alteration overprinting the mineralised shear zone, an 0.5 g/t wireframe cut-off grade is used.

The mineralisation domain modelling is conducted in Leapfrog, flagging the mineralised intervals with a unique domain code in a domain flagging merged table, then using the vein tool to implicitly model the mineralisation volume. Control points and polylines are added from mapped geological features and contacts, and manual domain boundaries are used to constrain the mineralisation volumes. The mineralisation volumes are exported to Surpac for block model flagging for estimation.

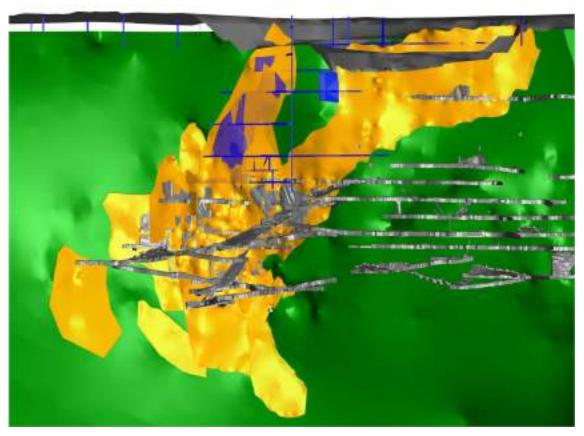


Figure 14-25 Mudlode domains (orange) north of the dolerite dyke (green). Westgold underground development grey, historic development blue - Source: Westgold.

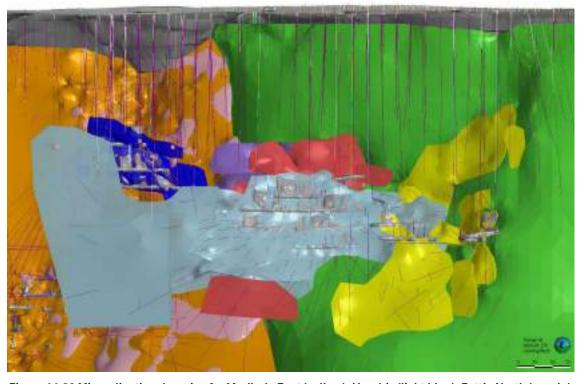


Figure 14-26 Mineralisation domains for Mudlode East (yellow), Hendrix (light blue), Fatt's North (purple), Fatt's (blue), and shear/vein/fault domains (red). Dolerite dyke (green), porphyry intrusive (pink) and the Paddy's Flat Shear Zone (PFSZ – Orange) lithology models. Westgold underground development grey - Source: Westgold.

14.3.7.3 Statistical Analysis and Compositing

The domain flagging merge table intervals are exported to the Access database for sample composite creation in Surpac, marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the domain number, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

The narrow vein shear domains west of Hendrix and one of the northern Mudlode domains utilise a 2D Ordinary Kriging estimation methodology where accumulation (grade x thickness) and thickness are estimated in a plane oriented appropriately for the mineralisation domain, either in Plan (XY), Cross Section (ZX) or Long Section (ZY) orientation, and then grade is back-calculated in the block model.

Statistical comparisons were completed on all the domains for top-cut analysis. For 2D OK estimated domains, only the accumulation value is cut. The top-cut values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Top-cuts and statistics are tabled below. The northern Mudlode domains (except for domain 5005) have seen no change since 2022. Hendrix, Mudlode East and Fatt's North mineralisation domain top-cuts were updated for new and changed domains during the reporting period.

Table 14-82 Mudlode-Hendrix domains raw and top cut statistics for accumulation values.

Accumulation Raw

Domain	5005	5032	5033
Samples	23	42	27
Minimum	0.02	0.02	0.01
Maximum	125.52	120.49	101.45
Mean	16.39	7.35	10.84
Standard deviation	30	20.13	22.13
CV	1.83	2.74	2.04
Variance	899.77	405.29	489.62
Skewness	2.54	4.59	2.97
50%	3.24	0.96	2
90%	43.32	9.78	24.4
95%	77.32	23.62	52.24
97.5%	100.7	56.02	73.89
99.0%	115.59	94.11	90.43

Top Cut	50	50	25
---------	----	----	----

Accumulation Cut

Domain	5005	5032	5033
Samples	23	42	27
Minimum	0.02	0.02	0.01
Maximum	50.00	50.00	25.00
Mean	11.70	5.49	6.26
Standard deviation	16.40	11.11	8.38
CV	1.40	2.02	1.34
Variance	269.05	123.33	70.29
Skewness	1.53	3.17	1.31
50%	3.24	0.96	2.00
90%	43.32	9.78	20.90
95%	49.82	23.62	25.00
97.5%	50.00	48.71	25.00
99.0%	50.00	50.00	25.00

Table 14-83 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) unchanged from 2023.

Au raw										
Domain	5001	5002	5003	5004	5007	5009	5018	5039	5040	5041
Samples	2049	1957	1001	114	27	73	25	27	59	7
Minimum	0.00	0.00	0.00	0.02	0.01	0.22	0.00	0.87	0.01	0.20
Maximum	616.01	209.16	240.00	27.15	9.55	30.65	4.14	11.01	17.42	17.02
Mean	4.37	4.22	5.40	2.91	3.37	4.13	1.44	3.65	3.20	5.85
Standard deviation	16.77	9.56	13.54	4.25	2.83	5.51	1.35	2.56	3.63	5.18
CV	3.84	2.27	2.51	1.46	0.84	1.33	0.94	0.70	1.13	0.89
Variance	281.18	91.46	183.19	18.05	8.03	30.39	1.83	6.53	13.17	26.85
Skewness	26.13	11.04	9.06	3.96	1.10	2.97	1.05	1.46	1.66	1.13
50%	1.65	2.05	1.85	1.98	2.46	2.32	0.87	2.86	1.82	4.14
90%	8.56	7.87	12.00	4.84	8.62	9.49	4.10	5.96	8.32	10.11
95%	15.18	14.56	19.41	8.95	9.17	14.35	4.14	9.26	10.45	13.56
97.5%	25.57	23.03	37.21	13.71	9.33	17.74	4.14	10.66	11.59	15.29
99.0%	39.16	39.60	56.70	24.00	9.46	28.46	4.14	10.87	14.05	16.33
Top Cut	45	55	65	8.4	15	16	4	12	12	20

<u>Au cut</u>										
Domain	5001	5002	5003	5004	5007	5009	5018	5039	5040	5041
Samples	2049	1957	1001	114	27	73	25	27	59	7
Minimum	0.00	0.00	0.00	0.02	0.01	0.22	0.00	0.87	0.01	0.20
Maximum	45.00	55.00	65.00	8.40	9.55	16.00	4.14	11.01	12.00	17.02
Mean	3.80	4.00	5.01	2.39	3.37	3.77	1.44	3.65	3.11	5.85
Standard deviation	6.64	6.79	9.56	2.13	2.83	4.11	1.35	2.56	3.32	5.18
CV	1.75	1.70	1.91	0.89	0.84	1.09	0.94	0.70	1.07	0.89
Variance	44.03	46.08	91.32	4.53	8.03	16.91	1.83	6.53	11.05	26.85
Skewness	3.94	4.69	4.05	1.52	1.10	1.84	1.05	1.46	1.24	1.13
50%	1.65	2.05	1.85	1.98	2.46	2.32	0.87	2.86	1.82	4.14
90%	8.56	7.87	12.00	4.84	8.62	9.49	4.10	5.96	8.32	10.11
95%	15.18	14.56	19.41	8.22	9.17	14.35	4.14	9.26	10.45	13.56
97.5%	25.57	23.03	37.21	8.40	9.33	15.70	4.14	10.66	11.59	15.29
99.0%	39.16	39.60	56.70	8.40	9.46	16.00	4.14	10.87	11.82	16.33

Table 14-84 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) updated for 2024. Part 1.

<u>Au raw</u>													
Domain	5019	5020	5021	5022	5023	5024	5025	5030	5031	5034	5035	5037	5042
Samples	52	16	15	117	60	19	60	1012	1892	79	8	6	24
Minimum	0.02	0.77	0.83	0.06	0.01	0.14	0.53	0.02	0.01	0.04	1.07	0.12	0.36
Maximum	21.51	22.03	10.61	46.30	59.48	24.30	14.90	43.73	464.70	42.73	67.77	127.16	6.21
Mean	4.14	5.77	3.64	4.46	4.07	5.27	3.35	1.83	3.73	2.52	13.58	44.67	2.38
Standard deviation	5.18	6.08	3.09	5.64	8.18	6.84	3.15	2.67	15.17	5.05	21.28	43.54	1.21
CV	1.25	1.05	0.85	1.26	2.01	1.30	0.94	1.46	4.07	2.00	1.57	0.98	0.51
Variance	26.81	36.99	9.54	31.83	66.96	46.75	9.91	7.14	230.26	25.51	452.89	1896.08	1.47
Skewness	2.12	1.54	1.28	4.50	5.58	1.74	1.89	8.17	20.74	6.59	1.96	0.84	1.44
50%	2.25	3.92	1.98	2.83	2.22	2.37	2.06	1.26	1.80	1.50	3.11	32.90	2.16
90%	10.87	15.27	8.92	8.19	5.54	16.60	7.80	3.17	5.76	3.83	27.80	92.86	3.25
95%	17.63	17.40	9.91	12.83	8.01	20.09	10.29	4.61	9.36	5.66	47.78	110.01	4.75
97.5%	20.14	19.71	10.26	16.94	18.66	22.20	12.05	6.80	15.65	12.27	57.78	118.59	5.53
99.0%	21.29	21.10	10.47	27.21	40.62	23.46	13.40	12.64	31.59	19.27	63.78	123.73	5.94
Top Cut	25	15	9999	14	10	9999	6	15	35	5	20	9999	7

<u>Au cut</u>													
Domain	5019	5020	5021	5022	5023	5024	5025	5030	5031	5034	5035	5037	5042
Samples	52	16	15	117	60	19	60	1012	1892	79	8	6	24
Minimum	0.02	0.77	0.83	0.06	0.01	0.14	0.53	0.02	0.01	0.04	1.07	0.12	0.36
Maximum	21.51	15.00	10.61	14.00	10.00	24.30	6.00	15.00	23.00	5.00	20.00	127.16	6.21
Mean	4.14	5.26	3.64	3.98	2.94	5.27	2.76	1.76	2.87	1.80	7.61	44.67	2.38
Standard deviation	5.18	4.90	3.09	3.35	2.47	6.84	1.76	1.94	3.78	1.33	7.44	43.54	1.21
cv	1.25	0.93	0.85	0.84	0.84	1.30	0.64	1.11	1.32	0.74	0.98	0.98	0.51
Variance	26.81	24.01	9.54	11.21	6.09	46.75	3.10	3.78	14.29	1.77	55.29	1896.08	1.47
Skewness	2.12	1.20	1.28	1.50	1.14	1.74	0.68	4.04	3.50	0.86	0.65	0.84	1.44
50%	2.25	3.92	1.98	2.83	2.22	2.37	2.06	1.26	1.80	1.50	3.11	32.90	2.16
90%	10.87	14.78	8.92	8.19	5.54	16.60	6.00	3.17	5.76	3.83	18.24	92.86	3.25
95%	17.63	15.00	9.91	12.83	8.01	20.09	6.00	4.61	9.36	5.00	19.12	110.01	4.75
97.5%	20.14	15.00	10.26	14.00	9.63	22.20	6.00	6.80	15.65	5.00	19.56	118.59	5.53
99.0%	21.29	15.00	10.47	14.00	10.00	23.46	6.00	12.64	23.00	5.00	19.82	123.73	5.94

Table 14-85 Mudlode-Hendrix domains raw and top-cut statistics for gold (3D OK) updated for 2024. Part 2.

Au raw					[
Domain	5043	5044	5047	5132	5133	5201	5202	5203	5204	5205	5301	5302	5303
Samples	59	15	13	17	122	532	19	215	424	25	22	27	17
Minimum	0.19	1.12	0.30	0.03	0.01	0.02	0.03	0.08	0.01	0.70	0.20	0.11	0.01
Maximum	4.82	9.40	3.54	13.55	39.11	30.76	19.90	3.34	16.63	5.52	7.43	4.58	37.42
Mean	1.42	2.79	1.74	3.11	4.93	4.99	2.04	0.75	1.64	2.35	1.75	1.34	5.24
Standard deviation	0.88	2.03	0.93	3.62	7.07	3.86	4.50	0.51	1.62	1.35	1.78	0.92	9.16
CV	0.62	0.73	0.54	1.16	1.44	0.77	2.21	0.67	0.99	0.57	1.02	0.68	1.75
Variance	0.77	4.11	0.87	13.11	49.99	14.92	20.22	0.26	2.62	1.82	3.17	0.84	83.93
Skewness	1.28	2.38	0.23	1.72	2.95	1.98	3.30	1.93	3.97	0.86	1.72	1.60	2.52
50%	1.25	2.07	1.59	1.91	2.44	4.01	0.27	0.62	1.24	1.99	0.95	1.14	0.93
90%	2.49	4.42	2.86	7.18	11.17	10.02	3.03	1.37	3.26	4.41	4.33	2.34	11.47
95%	2.62	6.45	3.13	10.81	17.96	12.29	7.11	1.64	4.07	4.85	4.47	2.54	17.04
97.5%	3.28	7.93	3.33	12.18	31.27	14.29	13.50	2.03	5.47	5.17	5.80	3.22	27.23
99.0%	4.20	8.81	3.46	13.00	36.73	18.18	17.34	2.80	7.15	5.38	6.78	4.04	33.34

20

8

9999

Au cut													
Domain	5043	5044	5047	5132	5133	5201	5202	5203	5204	5205	5301	5302	5303
Samples	59	15	13	17	122	532	19	215	424	25	22	27	17
Minimum	0.19	1.12	0.30	0.03	0.01	0.02	0.03	0.08	0.01	0.70	0.20	0.11	0.01
Maximum	4.82	9.40	3.54	13.55	22.00	20.00	8.00	3.00	5.00	5.52	7.43	4.58	13.00
Mean	1.42	2.79	1.74	3.11	4.49	4.95	1.41	0.75	1.55	2.35	1.75	1.34	3.77
Standard deviation	0.88	2.03	0.93	3.62	5.34	3.67	2.21	0.50	1.19	1.35	1.78	0.92	4.90
CV	0.62	0.73	0.54	1.16	1.19	0.74	1.57	0.67	0.77	0.57	1.02	0.68	1.30
Variance	0.77	4.11	0.87	13.11	28.55	13.48	4.90	0.25	1.42	1.82	3.17	0.84	24.00
Skewness	1.28	2.38	0.23	1.72	1.86	1.48	1.90	1.80	1.13	0.86	1.72	1.60	0.95
50%	1.25	2.07	1.59	1.91	2.44	4.01	0.27	0.62	1.24	1.99	0.95	1.14	0.93
90%	2.49	4.42	2.86	7.18	11.17	10.02	3.03	1.37	3.26	4.41	4.33	2.34	11.33
95%	2.62	6.45	3.13	10.81	17.96	12.29	6.51	1.64	4.07	4.85	4.47	2.54	13.00
97.5%	3.28	7.93	3.33	12.18	21.99	14.29	7.26	2.03	5.00	5.17	5.80	3.22	13.00
99.0%	4.20	8.81	3.46	13.00	22.00	18.18	7.70	2.80	5.00	5.38	6.78	4.04	13.00

14.3.7.4 Density

Top Cut

10

Density values were allocated based on historical density test-work from Mercator and density test-work by Westgold using the immersion method. Density values are allocated by weathering. No discrimination was made between mineralised and unmineralised rock densities in the model.

For Mudlode - Hendrix, no significant difference between fresh mafic and ultramafic volcanic or volcaniclastic sediment, or the intermediate dacite intrusive was found in density test-work, nor between mineralised and unmineralised fresh rock.

Table 14-86 Mudlode - Hendrix model density values.

Weathering Type	Density
Oxide	2.00
Transitional	2.40
Fresh	2.80
Air / Void	0.00

9999

9999

13

14.3.7.5 Variography

A geostatistical analysis of down-hole composited Mudlode - Hendrix data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software.

For 3D Ordinary Kriged estimated domains, gold grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of one to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

For 2D Ordinary Kriged estimated domains, accumulation (grade x thickness) distribution is analysed via Connelly diagrams and continuity rosettes, with the direction of maximum grade continuity selected on a 2D plane to produce a variogram model. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials. The accumulation variogram model parameters are also used to estimate the thickness attribute.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

Variogram models are reviewed annually for new or changed domains or are reviewed as required during the year for grade control estimates. A summary of the estimation parameters is tabled below.

Table 14-87 New estimation parameters for the Mudlode - Hendrix 2024 resource model.

Domain Code	5205	5301	5302	5303
Estimate	Y	Y	Y	Y
# Structures	1	1	1	1
CO	0.31	0.26	0.65	0.23
C1	0.69	0.75	0.35	0.77
a1	30.00	65.00	60.00	65.00
C2				
a2				
C3				
a3				
TOTAL SILL	1.00	1.00	1.00	1.00
		I		
1. Major : Semi Major	1	1	1	1
1. Major : Minor	1	1	1	1
2. Major : Semi Major				
2. Major : Minor				
3. Major : Semi Major				
3. Major : Minor				
CUDDAC CTDUC	_	300	300	400
SURPAC STRIKE	0	290	280	
SURPAC PLUNGE	-90		80	—
SURPAC DIP	0	-90	-90	-90
Search				
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	2.5, 5, 5	5, 10, 10	5, 10, 10	5, 10, 10
Estimation Block Size (x,y,z)	2.5, 5, 5	5, 10, 10	5, 10, 10	5, 10, 10
Estimation Block Size Y	5	10	10	10
Estimation Block Size Z	5	10	10	10
Disc Point X	2	5	5	5
Disc Point Y	4	5	5	5
Disc Point Z	4	5	5	5
Grade Dependent Parameters	N	N	N	N
Threshold Max				
Search Limitation				
	•			
Limit Samples by Hole Id	N	N	N	N
Hole Id D Field	D2	D2	D2	D2
Max Samps per Hole				
Pass1	Υ	Υ	Υ	Y
Min	4	4	4	4
Max	16	12	10	14
Max Search	30	65	60	65
Major/Semi	1	1	1	1
Major/Minor	1	1	1	1
Pure S. S.		,,		
Run Pass2	Y	Y	Y	Y
Factor Major/Comi	2	2	2	
Major/Semi	1	1	1	
Major/Minor	1 4	1 4	1 4	4
Min				
Max	16	12	10	14
Run Pass 3	Υ	Υ	Y	Υ
Factor	4	4	4	4
Major/Semi	1	1	1	1
Major/Minor	1	1	1	1
Min	2	2	2	
Max	8		6	
IVION	0	U	ı	_ ′

Table 14-88 Estimation parameters updated for the Mudlode - Hendrix 2023 resource model.

Estimate Type	2D	2D	2D	3D	3D	3D	3D	3D	3D
Domain Code	5005	5032	5033	5020	5021	5022	5031	5036	5131
# Structures	2	2	1		2	2	2		2
CO	0.46		0.38				0.30		0.46
C1	0.25	0.23	0.62		0.19		0.44	0.31	0.20
a1	5.00				5.00				5.00
C2	0.30	0.09	0 2.00	0.33	0.33	0.28	0.27	0.15	0.34
a2	20.00			20.00	20.00	23.00	37.00	22.00	28.00
C3									
a3									
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1	1	1	1	1	1.667	1.111	1	1
1. Major : Minor	1	1	1	1	1	2.5	5	1	1
2. Major : Semi Major	1	1	0	1	1	2.3	1.121	1	0
2. Major : Minor	1	1	0	1	1	5.75	3.083	1	0
3. Major : Semi Major	0	0	0	0	0	0	0	0	0
3. Major : Minor	0	0	0	0	0	0	0	0	0
SURPAC STRIKE	0				197.824		150.026		353.852
SURPAC PLUNGE	-80		-10			-68.909	-20.254	-40	22.521
SURPAC DIP	-90	-90	90	0	60.48	-44.007	52.311	90	-62.774
				1	1	1		1	
Search									
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID			ELLIPSOID
Estimation Block Size (x,y,z)	1, 5, 5	1, 5, 5	1, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5
Estimation Block Size X	1		1	2.5	2.5	2.5	2.5		2.5
Estimation Block Size Y	5		5		5	5	5	5	5
Estimation Block Size Z	5		5		5		5		5
Disc Point X	1	1	1	2		2	2		2
Disc Point Y	5		5				4		4
Disc Point Z	5	5	5	4	4	4	4	4	4
Grade Dependent Parameters	Υ	Υ	Υ	Υ	N	N	N	N	N
Threshold Max	30	13	30	10	8	IN	IN	IN	11
Search Limitation	10	10	10	15	7				
Scaren Elimeateri									
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2	D2	D2	D2	D2	D2	D2	D2	D2
Max Samps per Hole									
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8				6	6	6	6	4
Max	26		26		16	12	16	16	12
Max Search	30		30	35	35	35	20	20	12
Major/Semi	1		1	1	1	1	1	1	1
Major/Minor	2	2	2	2.5	2.5	2.5	2.5	2.5	1
				ı	ı				
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ
Factor	2	2			2	2	4	2	2
Major/Semi	1		1		1	1	1	1	1
Major/Minor	2				1	1	2	2	1
Min	8				8	8	6	8	4
Max	26	26	26	16	16	12	16	16	12
Dun Deer 2	V	\ <u>'</u>	V	V	V	V	V	\ <u>'</u>	٧/
Run Pass 3	Y	Y	Y	Y	Y	Y	Y 5	Y	Y 4
Factor	3				3	3		3	
Major/Semi Major/Minor	2	2	2	1	1	1	1	1	1
• •	2				1 2	1 2	2	2	2
Min Max	18				8	8	8	8	6
ividx	18	18	18	•				·	υ

Table 14-89 Estimation parameters unchanged since the Mudlode - Hendrix 2022 resource model - part 1.

Domain Code	2000	5001	5002	5003	5004	5007	5018	5019	5023	5030	5035
Estimate	Y	Υ	Y	Υ	Y	Y	Υ	Υ	Υ	Υ	Y
# Structures	2	2		. 2	2		2			2	
CO - NUGGET	0.60	0.55		0.56	0.55		0.57			0.62	0.52
C1 - sill of first structure	0.33	0.38		0.30	0.38		0.36			0.02	0.38
a1 - range of first structure	10.00	12.00	4.00	8.00	12.00		5.00		5.00	11.00	
											10.00
C2	0.07	0.07	0.12	0.07	0.07	0.12	0.07	0.29	0.07	0.06	0.10
a2	25.00	24.00	19.00	49.00	24.00	19.00	68.00	35.00	68.00	77.00	25.00
C3											
a3											
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.00	1.00	1.0
		,					,	1			
1. Major : Semi Major	1.5	1.5	1	1.6	1.5		1		1	1.1	
1. Major : Minor	2	2	2	4	2	2	1	4	1	2.2	
2. Major : Semi Major	1.4	1.4	1.1	2.4	1.4	1.1	1	1	1	3.1	
2. Major : Minor	1.7	1.7	4.7	16.3	1.7	4.7	1	2.5	1	12.8	
3. Major : Semi Major											
3. Major : Minor											
-	-,					•					
SURPAC STRIKE	0	227	4	24	227	4	248	35	248	340	1
SURPAC PLUNGE	0			29	48		40			0	-1
SURPAC DIP	0			-77	67		57			-65	- <u>-</u>
JOHN AC DIF	U	07	-/2	-//	. 07	-/2	37	-70	37	-05	-7
Soarch											
Search	511186618	=		=			=	511186618	511186618	=::::::::::::::::::::::::::::::::::::::	
Method				ELLIPSOID	ELLIPSOID		ELLIPSOID	ELLIPSOID			ELLIPSOID
Estimation Block Size (x,y,z)	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5		2.5, 5, 5
Estimation Block Size X	2.5	2.5		2.5	2.5		2.5			2.5	2.
Estimation Block Size Y	5	5		5	5		5			5	
Estimation Block Size Z	5	5		5	5		5			5	
Disc Point X	2	2	2	2	2	2	2	2	2	2	
Disc Point Y	4	4	4	4	4	4	4	4	4	4	
Disc Point Z	4	4	4	4	4	4	4	4	4	4	
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N
Threshold Max											
Search Limitation											
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2
Max Samps per Hole	0	0								0	
max samps per more		·	ľ	Ů	ľ	ľ	·		· ·	Ŭ	
Pass1	V	Y	Y	Y	Y	Y	Y	Υ	Y	Υ	Y
Min	8	8								8	1
										16	
Max	16	16			16						25
Max Search	25	24	19	49	24	19	68	35	68	77	25
Major/Semi	1.4	1.4	1.1	2.4	1.4	1.1	1	1	1	3.1	1
Major/Minor	1.7	1.7	4.7	16.3	1.7	4.7	1	2.5	1	12.8	1
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
4332	2	2	2	2	2	2	2	2	2	2	
Factor					1.4	1.1	1	1	1	3.1	1
	1.4	1.4	1.1	2.4			-			12.8	1
Factor Major/Semi	1.4					4.7	1	1	1 1	12.0	
Factor Major/Semi Major/Minor	1.4 1.7	1.7	4.7	16.3	1.7	4.7	1 8	1 8	1 8	0	
Factor Major/Semi Major/Minor Min	1.4 1.7 8	1.7	4.7	16.3 8	1.7	8	8	8	8	8	
Factor Major/Semi Major/Minor	1.4 1.7	1.7	4.7	16.3 8	1.7	8	8	8	8	0	
Factor Major/Semi Major/Minor Min Max	1.4 1.7 8	1.7 8 16	4.7 8 16	16.3 8 16	1.7 8 16	8 16	8 16	8 16	8 16	8 16	1
Factor Major/Semi Major/Minor Min Max Run Pass 3	1.4 1.7 8 16	1.7 8 16	4.7 8 16	16.3 8 16	1.7 8 16	8 16	8 16 Y	8 16 Y	8 16	8 16 Y	1 Y
Factor Major/Semi Major/Minor Min Max Run Pass 3 Factor	1.4 1.7 8 16	1.7 8 16 Y	4.7 8 16 Y	16.3 8 16 Y	1.7 8 16 Y	8 16 Y	8 16 Y	8 16 Y	8 16 Y	8 16 Y	Y 1
Factor Major/Semi Major/Minor Min Max Run Pass 3 Factor Major/Semi	1.4 1.7 8 16 Y	1.7 8 16 Y 3	4.7 8 16 Y 3	16.3 8 16 Y 3	1.7 8 16 Y 3	8 16 Y 3	8 16 Y 3	8 16 Y 3	8 16 Y 3	8 16 Y 3	Y 1
Factor Major/Semi Major/Minor Min Max Run Pass 3 Factor Major/Semi Major/Minor	1.4 1.7 8 16 Y	1.7 8 16 Y 3 1 1	4.7 8 16 Y 3 1 1	16.3 8 16 Y 3 1 1	1.7 8 16 Y 3 1 1	8 16 Y 3 1 1	8 16 Y 3 1 1	Y Y			
Factor Major/Semi Major/Minor Min Max Run Pass 3 Factor Major/Semi	1.4 1.7 8 16 Y	1.7 8 16 Y 3 1 1	4.7 8 16 Y 3 1 1	16.3 8 16 Y 3 1 1	1.7 8 16 Y 3 1 1 4	8 16 Y 3 1 1 4	8 16 Y 3 1 1 4	8 16 Y 3 1 1 4	8 16 Y 3 1 1 4	8 16 Y 3 1 1 4	1

Table 14-90 Estimation parameters unchanged since the Mudlode - Hendrix 2022 resource model - part 2.

Domain Code	5037	5039	5040	5041	5042	5043	5044	5047	5051	9999
Estimate	Y	Y	Y	Y	Y	Y	Y	Y	N	N
# Structures	2	2	2	2		2	2			7
CO - NUGGET	0.76		0.55		0.76		0.76			0.60
	0.78						0.78			
C1 - sill of first structure			0.38							0.33
a1 - range of first structure	17.00	12.00	12.00			17.00	17.00			10.00
C2	0.06		0.07	0.07	0.06		0.06			0.07
a2	90.00	24.00	24.00	24.00	90.00	90.00	90.00	45.00	20.00	25.00
C3										
a3										
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.1	1.5	1.5	1.5	1.1	1.1	1.1	1.8	1	1.5
1. Major : Minor	3.5	2	2	2	3.5	3.5	3.5	2.9	8	2
2. Major : Semi Major	5.7	1.4	1.4	1.4	5.7	5.7	5.7	1.7	8	1.4
2. Major : Minor	7.5	1.7	1.7	1.7	7.5	7.5	7.5	2.3		1.7
3. Major : Semi Major										
3. Major : Minor										
3. Wajor . Willion	L			l .	I	l		<u> </u>	l .	I
CLIDDAC CTRIVE	350	227	227	227	350	350	350	252	300	
SURPAC STRIKE	359		227	227	359	359	359			(
SURPAC PLUNGE	-18		48			-18	-18			(
SURPAC DIP	-64	67	67	67	-64	-64	-64	42	0	(
Search										
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	, ,	, ,
Estimation Block Size X	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5		
Estimation Block Size Y	5	5	5	5	5	5	5			
Estimation Block Size Z	5		5	5			5			
Disc Point X	2		2	2	2		2			
Disc Point Y	4		4	4			4			
Disc Point Z	4		4	4			4			
DISC POINT Z	4	4	4	4	4	4	4	4		
6 1 5 1 1 5			.,							
Grade Dependent Parameters	N	N	Y	N	N	N	N	N	N	N
Threshold Max			11							
Search Limitation			10							
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2									
Max Samps per Hole	0	0	0	0	0	0	0	0		
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	8	8	8	8	8	8	6	6	8
Max	16		16				16			16
Max Search	90	24	24	24	90	90	90	45	20	25
Major/Semi	5.7	1.4	1.4	1.4	5.7	5.7	5.7	1.7	1	1.4
-										
Major/Minor	7.5	1.7	1.7	1.7	7.5	7.5	7.5	2.3	2.5	1.7
Run Pass2	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Y
Factor	2	2	2	2	2	2	2	2	2	2
Major/Semi	5.7	1.4	1.4	1.4	5.7	5.7	5.7	1	1	1.4
Major/Minor	7.5	1.7	1.7	1.7	7.5	7.5	7.5	2	2	1.7
Min	8	8	8	8	8	8	8	8	8	8
Max	16	16	16	16	16	16	16	16	16	16
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	3		3				3			3
Major/Semi	1	1	1	1	1	1	1	1	1	1.4
• • • • • • • • • • • • • • • • • • • •										
Major/Minor	1	1	1	1	1	1	1	1	1	1.7
Min	3	4	4				4			4
Max	8	8	8	8	8	8	8	8	8	8

14.3.7.6 Block Model and Grade Estimation

The model is in Paddy's Flat local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-91 Mudlode - Hendrix block model parameters.

	Υ	X	Z
Min	2,700	1,150	-300
Max	3,600	1,750	550
Extents	900	600	850
Parent size	10.00	5.00	10.00
Sub-Block size	0.625	0.625	0.625

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

Domains sufficiently wide enough to support a traditional 3D estimate with sufficient informing data were estimated by Ordinary Kriging of 1 m downhole composites. The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

For domains characterised by significantly narrow widths, it was deemed more appropriate to undertake a 2D estimation methodology based on intersection accumulation composites (width x grade) used for grade estimation. These domains are characterised by widths typically less than 2 m which do not allow for any across strike mining selectively and overcomes any bias due to non-additivity of grade from composites of unequal support (Bertoli, 2003). Top cutting was applied to the composite accumulation variable.

From Zammit (2018), the advantages of using a 2D projection method over traditional 3D block modelling include:

- Simplifies undulating vein geometry onto a 2D plane allowing improved directional variography and simplified search strategies.
- Eliminates or reduces the requirement to have multiple 'geometric domains' therefore allowing block estimations to use more informing composites.
- Estimation block size can be chosen independently from volume model requirements. Estimation block sizes can be tailored on the basis of data spacing rather than compromising the estimation block size due to volume definition requirements. This reduces over-smoothing and conditional bias introduced by estimating into small blocks relative to data spacing.
- Longitudinal presentation of modelled vein attributes such as grade and thickness assist with resource classification and engineering design evaluations. Calculated fields such as grade x thickness can be easily presented and reported.

All interpolation was conducted in three passes, with increased search distance 2 x and 3 x for subsequent interpolation runs, and a reduction of minimum and maximum informing samples for the third interpolation pass.

Figure 14-27 Mudlode - Hendrix depleted and sterilised 2024 resource model, all mineralisation domains.

Dolerite dyke waste domain hidden - Source: Westgold.

14.3.7.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as

compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

In the tables below, Mudlode East is included with Mudlode production, whilst Hendrix and Fatts North production is reported separately. Over the life of the Westgold project from December 2015 to 30 June 2024, claimed stope production (CMS survey of the mined void vs estimated model, adjusted for external dilution sources) vs mill reconciled actual stope production has been within 5% variation for Mudlode and Hendrix. Fatts North production data is based on only the two stoping levels developed during the reporting period.

Table 14-92 Mudlode stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance			
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz	
Stoping	256,153	2.87	23,659	250,677	2.90	23,406	2%	-1%	1%	
Development	86,433	2.26	7,949	82,706	2.89	7,675	5%	-1%	4%	

Table 14-93 Hendrix stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance			
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz	
Stoping	49,045	2.27	3,573	47,745	2.38	3,647	3%	-5%	-2%	
Development	56,033	2.35	4,228	51,898	2.64	4,411	8%	-11%	-4%	

Table 14-94 Fatts North stope and high-grade development production reconciliation, project to date.

		Actual			Claimed		% Variance				
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz		
Stoping	12,989	2.71	1,130	12,425	3.11	1,242	5%	-13%	-9%		
Development	5,215	2.69	451	5,398	3.82	663	-3%	-30%	-32%		

14.3.7.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code.

The Mudlode - Hendrix Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with underground development face sampling, with the mineralisation interpretation supported by face and backs mapping and validated by face photos during mineralisation domain interpretation.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Mudlode - Hendrix Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

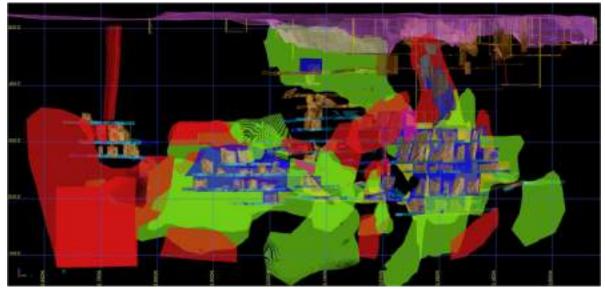


Figure 14-28 Mudlode - Hendrix resource classification. Yellow = Measured, Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted. Unreported dolerite dyke background estimate domain hidden - Source: Westgold.

14.3.7.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Mudlode - Hendrix Mineral Resource Statement - Rounded for Reporting 30/06/2024 Measured Indicated **Measured and Indicated** Inferred **Project** kt g/t koz kt g/t koz kt kt g/t koz g/t Mudlode-Hendrix 102 4.08 13 725 3.49 81 827 3.56 95 317 3.96 40 4.08 3.49 102 725 81 827 3.56 95 Total 13 317 3.96 40

Table 14-95 Mudlode-Hendrix Mineral Resources on June 30, 2024.

>=2.0g/t Au

The Mudlode - Hendrix Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.

- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4 YALOGINDA

The Yaloginda areas consists of deposits in an area of 25 km of strike, centred on the Bluebird mill and straddling the Great Northern Highway up to the Meekatharra township.

West of the highway, the area follows the Meekatharra shear zone with the line of deposits starting with the Bluebird Group (Bluebird – South Junction) in the south, then offsetting to the west to Romsey. This is followed further north by the Rhen's Group consisting of the Mystery, Rhen's, Anarchist, Gibraltar South, Gibraltar and Karangahaki open pit deposits. The Gibraltar open pit and underground is not reported. Further north again on the line is Whangamata open pit. To the west of this line lines the Batavia open pit and the Luke's Junction deposit to the north.

East of the highway, adjacent to the Bluebird mill is the Great Northern Highway deposit that includes the Bluebird East deposit. The Surprise, Surprise West, Surprise Supergene and Jess deposits are directly north of the Bluebird mill on the western side of the Great Northern Highway.

Further to the southeast is the Euro deposit between the Meekatharra Shear Zone and the Burnakura – Gabanintha splays. The Albury Heath deposit is on this splay further to the east of Euro.

- The Bluebird underground mine remains an active mining operation with ongoing exploration and resource development works occurring in parallel with mining activities.
- No further work has been undertaken on any other mineral resource estimate since last updated.

All Yaloginda deposits are reported within optimised pit shells above a likely economic cut-off grade for the open pit mineable portion of the Mineral Resource Estimate. The underground portion of the Mineral Resource Estimate are reported above a depth for which ground conditions are conducive to underground mining and above a likely economic cut-off grade.

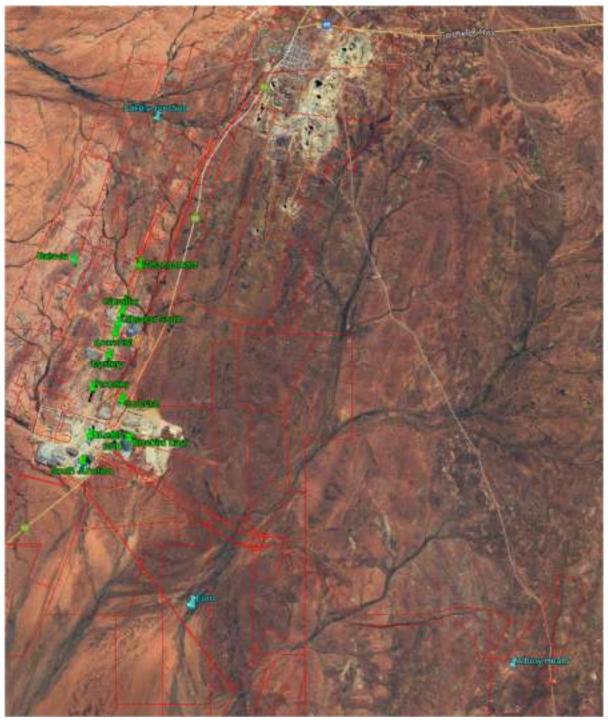


Figure 14-29 Location of deposits of the MGO Yaloginda Mineral Resources - Source: Westgold.

14.4.1 Albury Heath

14.4.1.1 Summary

The Albury Heath deposit is located approximately 17 km southeast of the Bluebird mill, and 22 km south of the Meekatharra township. Access is from the Meekatharra – Sandstone Road from Meekatharra.

Historical underground production from the Albury Heath deposit in the period from 1940 to 1957 by Mr R. Lee, then from 1975 to 1976 by Mr A. Rinaldi was 2,204 oz recovered from 1,839 t of ore at the Meekatharra State Battery, resulting in an average calculated head grade of 20.51 g/t.

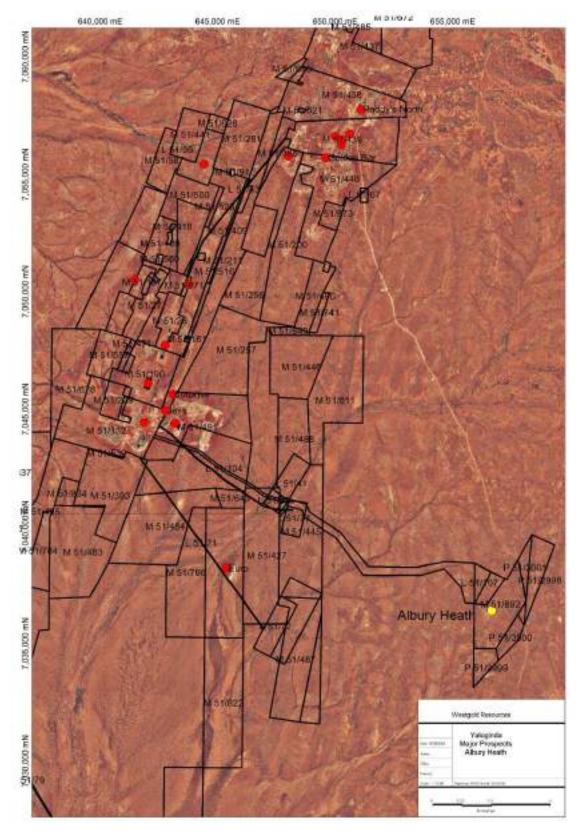


Figure 14-30 Location of the Albury Heath deposit - Source: Westgold.

14.4.1.2 Modelling Domains

Mineralisation at Albury Heath occurs primarily within quartz-pyrite veins, quartz stringers, and quartz stockworks. The wall rocks are intensely carbonate altered with fuchsite, pyrite, and minor arsenopyrite. Secondary supergene mineralisation occurs as horizontal blankets and are coincident with weathering boundaries and perched historic water table horizons.

Digitised wireframes were completed in Surpac software by snapping to drill data. Core photos and chip trays were utilised to correlate grade boundaries with the logged lithology. The geologically modelled mineralisation domains represent the quartz shear lode that hosts the gold mineralisation, generally wireframed to >10% logged quartz regardless of grade, reducing to 5% quartz if the assays were above 0.4 g/t. Secondary flat supergene lodes as also modelled using a 0.3 g/t wireframing cutoff grade or >2% logged quartz, whichever is lower.

The domains were wireframed to $0.5\,\mathrm{g/t}$ cut-off grade if the mineralisation is not constrained to the host lithology or if no geological logging is available. If required to preserve geological continuity, these wireframes continue through barren lithology using a 2 m minimum downhole width and maximum of 2 m internal dilution. In cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling domain continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure.

14.4.1.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-96 Statistics and top cuts for Albury Heath domains.

Domain	1010	1020	1025	1030	1035	1040	1050	1060	1070	2010	2020	2030	2040	2050	2060	2070	2080
Drillholes	140	71	39	12	4	12	12	9	18	73	40	34	13	10	69	10	52
Samples	638	292	158	59	11	41	30	22	89	312	154	119	52	37	175	22	144
Imported	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355
Minimum	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.01	0.00
Maximum	122.79	85.00	25.14	23.90	11.60	4.86	1.06	2.40	187.06	47.90	28.98	11.00	4.71	13.55	8.72	4.04	7.62
Mean	2.72	2.72	1.32	0.87	2.19	0.43	0.20	0.29	4.35	1.08	0.96	0.56	0.68	2.07	0.51	0.55	0.80
Standard deviation	8.05	6.91	3.18	3.16	3.80	0.89	0.31	0.56	22.10	3.42	2.48	1.34	0.85	3.34	0.96	0.86	1.21
CV	2.96	2.55	2.40	3.65	1.73	2.06	1.56	1.96	5.09	3.16	2.59	2.42	1.26	1.61	1.88	1.57	1.50
Variance	64.79	47.76	10.11	9.96	14.45	0.79	0.09	0.32	488.59	11.68	6.14	1.80	0.73	11.13	0.92	0.74	1.45
Skewness	8.33	7.29	5.18	6.95	1.98	3.73	1.95	2.95	7.35	10.50	9.68	5.65	2.92	2.50	4.83	3.50	2.98
50% (Median)	0.67	0.78	0.35	0.07	0.13	0.07	0.06	0.02	0.26	0.34	0.32	0.23	0.42	0.62	0.19	0.33	0.36
90%	5.45	6.02	3.27	1.57	6.68	0.97	0.63	1	3	2	2	1	1	6	1	1	2
95%	11.41	9.17	4.80	2.84	9.15	1.36	0.92	1.06	9.59	3.93	2.80	1.39	2.41	8.54	1.86	1.25	3.60
97.5%	17.70	22.48	8.32	3.41	10.38	2.76	1.04	1.67	15.08	5.09	3.81	3.03	2.93	13.32	3.25	2.53	4.55
99.0%	38.60	30.59	19.01	11.89	11.11	4.02	1.05	2.11	104.63	9.75	5.03	6.50	3.79	13.46	4.02	3.44	5.22
Top Cut	13.00	9.00	8.70	3.60	3.00	3.00	Х	Х	7.80	5.20	5.20	3.00	Х	7.70	4.10	х	5.40
No Values Cut	26	16	3	1	2	1			5	7	1	3		2	1		1
% Data	4.1%	5.5%	1.9%	1.7%	18.2%	2.4%			5.6%	2.2%	0.6%	2.5%		5.4%	0.6%		0.7%
% Metal	28.6%	30.9%	17.8%	39.8%	52.9%	10.5%			73.2%	24.3%	16.1%	22.7%		14.9%	5.2%		1.9%

Au_cut																	
Domain	1010	1020	1025	1030	1035	1040	1050	1060	1070	2010	2020	2030	2040	2050	2060	2070	2080
Samples	638	292	158	59	11	41	30	22	89	312	154	119	52	37	175	22	144
Imported	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355	2355
Minimum	0.002	0.002	0.003	0.003	0.01	0.003	0.002	0.001	0.002	0.003	0.003	0.003	0.019	0.01	0.001	0.01	0.003
Maximum	13	9	8.7	3.6	3	3	1.06	2.4	7.8	5.2	5.2	3	4.714	7.7	4.1	4.04	5.4
Mean	1.94	1.88	1.09	0.52	1.03	0.39	0.20	0.29	1.16	0.82	0.80	0.43	0.68	1.76	0.49	0.55	0.79
Standard deviation	3.147	2.512	1.86	0.907	1.339	0.683	0.306	0.563	2.097	1.183	1.047	0.645	0.854	2.371	0.781	0.858	1.129
CV	1.62	1.34	1.71	1.74	1.30	1.77	1.56	1.96	1.80	1.45	1.31	1.50	1.26	1.35	1.61	1.57	1.44
Variance	9.901	6.31	3.461	0.823	1.792	0.466	0.093	0.317	4.397	1.399	1.097	0.416	0.729	5.623	0.61	0.736	1.274
Skewness	2.429	1.734	2.692	2.382	0.724	2.727	1.953	2.946	2.517	2.366	2.05	2.863	2.922	1.713	2.916	3.498	2.582
50% (Median)	0.67	0.779	0.354	0.07	0.13	0.071	0.06	0.02	0.256	0.34	0.32	0.226	0.42	0.615	0.185	0.33	0.36
90%	5.452	6.024	3.27	1.571	2.944	0.973	0.63	0.904	3.315	2.114	2.146	0.957	1.478	6.073	1.32	0.89	1.903
95%	11.405	9	4.798	2.839	3	1.363	0.919	1.059	7.773	3.934	2.804	1.392	2.406	7.7	1.856	1.249	3.597
97.5%	13	9	8.317	3.41	3	2.764	1.035	1.665	7.8	5.09	3.81	2.942	2.925	7.7	3.254	2.527	4.546
99.0%	13	9	8.7	3.562	3	2.918	1.05	2.106	7.8	5.2	5.029	3	3.792	7.7	4.02	3.435	5.217

14.4.1.4 Density

Density values for oxide, transitional and fresh material were allocated based on values from other deposits in the region with equivalent lithology that have undergone density test-work. No density test-work has been conducted at Albury Heath. No discrimination was made between mineralised and unmineralised rock densities. Values used in the Albury Heath Mineral Resource estimate are given below.

Table 14-97 Albury Heath density values.

Rock Type	Density
Oxide	2.20
Transitional	2.40
Fresh	2.70
Fill	1.60
Air/Void	0.00

14.4.1.5 Variography

A geostatistical analysis of down-hole composited Albury Heath data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Domains with insufficient samples for geostatistical analysis were allocated variogram parameters of spatially and statistically similar domains for estimation.

A summary of the resulting parameters is shown in the tables below.

Table 14-98 Albury Heath variogram model and interpolation parameters, primary quartz shear domains 1010 to 1070.

Domain Code	1010	1020	1025	1030	1035	1040	1050	1060	1070
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	1	1	1	1	1	2	. 2	
CO	0.37	0.53	0.34	0.45	0.45	0.19	0.37	0.37	0.3
C1	0.36		0.66	0.55	0.55	0.81	0.36	1	
a1	20.00	22.00		140.00	140.00	28.00	20.00		
C2	0.27	0.00	0.00	0.00	0.00	0.00	0.27	0.27	0.0
a2	40.00	0.00	0.00	0.00	0.00	0.00	40.00		0.0
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
TOTAL SILL									
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
4 44-1 6		0.72	1 -			4.50			
1. Major : Semi Major	1	0.73	3		4	1.56	1	1	1.5
1. Major : Minor	2	2	6	4	4	3.11			3.1
2. Major : Semi Major	0.67	0			0	0		0.67	
2. Major : Minor	1.33	0	0	0	0	0	1.33	1.33	
3. Major : Semi Major	0	0	0		0	0	0	0	
3. Major : Minor	0	0	0	0	0	0	0	0	
			•		•	1			
SURPAC STRIKE	346.5	334	2.2	8.5	8.5	350	346.5	346.5	10
SURPAC PLUNGE	32.6	37.2	-38.4	-9.4	-9.4	0	32.6	32.6	-19
SURPAC DIP	-66	-64.6	-70.7	-69.7	-69.7	-60	-66	-66	-74
			,						
Search									
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOI
Estimation Block Size (x,y,z)	2.5, 5, 2.5	2.5, 5, 2.5	2.5, 5, 2.5	5, 10, 5	5, 10, 5	2.5, 5, 2.5	2.5, 5, 2.5	2.5, 5, 2.5	5, 10, 5
Estimation Block Size X	2.5	2.5	2.5	5	5	2.5	2.5		
Estimation Block Size Y	5	5	5	10	10	5	5		
Estimation Block Size Z	2.5	2.5	2.5	5	5	2.5	2.5	2.5	
Disc Point X	3			3	3	3	3		
Disc Point Y	5				5	5	5	1	
Disc Point Z	3			3	3	3	3		
DISC POINT 2	3	3	3	3	3	3	3	3	
Crada Danandant Baramatara	INI	In .	In .	N	N	N	N.	N	N.
Grade Dependent Parameters	N	N	N	N	N	N	N	IN	N
Threshold Max									
Search Limitation									
	1	I	I	I			I	I	I
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N
Hole Id D Field									
Max Samps per Hole									
				,					
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	4	10	8	6	6	8	4	4	
Max	20	26	26	22	22	20	20	20	:
Max Search	36	15	24	92	92	19	36	36	
Major/Semi	0.67	0.73	3	4	4	1.56	0.67	0.67	1.5
Major/Minor	1.33	2	6		4	3.11	1.33		3.:
		<u> </u>	Ī	·				1	J.,
Run Pass 2	Υ	У	Υ	γ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	1.5	1.5	2	2	. 2	
	0.67		2	1.5	1.5	1.56	0.67	1	
Major/Semi Major/Minor		0.73	3	4	4				
Major/Minor Min	1.33				4	3.11	1.33		3.
	4					8		· ·	
Max	20	26	26	22	22	20	20	20	:
	I	1	1	l			I		I
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	3				2	3			
Major/Semi	0.67	0.73			4	1.56			1.
Major/Minor	1.33	2	6		4	3.11	1.33	1.33	3.:
Min	2	5	4	3	3	4	2	2	
Max	10	13	13	11	11	10	10	10	

Table 14-99 Albury Heath variogram model and interpolation parameters, supergene domains 2010 to 2080.

Domain Code	2010	2020	2010	2040	2050	2060	2070	2000
Estimate	Y	Y	Y	Y	Y	Y	Y	٧
# Structures	-1	2	- 2	1	2	1	- 1	1
co	0.53	0.30	0.23	0.51	0.49	0.31	0.66	0.35
CL	0.47	0.49	0.44	0.49	0.37	0.69	0.34	0.65
#1	48.00	18.00	25.00	27.00	6.00	50.00	42.00	27.00
Q	6500	0.21	0.33	0.00	0.14	0.00	11/0	6.00
92	1500	30.00	60.00	CLU	16.00	 0 to 	11.11	5.0
G	1111	10.00	9.00	0.00	0.00	0.00	0.00	0.72
a3	0.00	10.00	0.00	0.00	1600	- 0.00	0.00	- 0.00
TOTAL SILL	1.00					1.00		
1. Major : Semi Major	4.8			1.5	1	1.39	2	1.5
1. Major : Minor	8	2.57	2.5	3	2	4,17	. 3	3
2. Major : Semi Major		- 1	1.5	0	1	0	- 0	0
2. Major : Minor	. 0	- 1	3	0	2		0	0 0
3. Major : Semi Major	0		. 0	0				0
3. Major : Minor	0		. 0	0	. 0			0
12000000000000000000000000000000000000								
SURPAC STRUKE	350.6							
SURPAC PILINGE	3.4							
SURPAC DIP	-19.7	-20	-10	-49.6	29.9		-18.9	-3.2
Search								
Method	ELLIPSOID	BURSON	FILIPSOID	FILIPSONO	ELLIPSOID	FILIPSOID	FILIPSOIN	FILIPSOID
	CONTRACTOR STATES		2.5, 5, 2.5	Total Control Control		25, 5, 25	The state of the s	The second second second
Estimation Block Size (k, y,z) Estimation Block Size X	2.5, 5, 2.5			2.5, 5, 2.5			-	25,5,25
Estimation Nock Size V	2,5		_					
	- 5	- 5			- 5		_	
Estimation Block Size Z	2.5							
Disc Point X	3				1	3		
Disc Point Y	- 5							5
Disc Point Z		3	3	3	1	3	3	3
Grade Dependent Parameters	N	N	N	N	N	N	N	N
Threshold Max	-				-	-	-	
Search Umitation								
				010	1011	7	1410	
Limit Samples by Hole id	N	N.	N	N	N.	N	N	N
Hole Id D Rield								
Max Samps per Hole								
	To the second	Live State		L.				
Paul 1	Y	Y	Y	γ.	Y	γ.	Y.	Y.
Min	- 8						- 6	
Max	24	20	18	28	22		18	26
Max Search	32	27	40	18	11		29	18
Major/Semi	4.8	1	1.5	1.5	1	1.39	2	
Major/Minor	8	1	3	3	2	4.37	3	3
	1							la .
Run Pass2	Y	γ	Y	V	Y	Y	ν	γ
Factor	2				200			
Major/Semi	4.8							
Major/Minor	8							3
Mn	8						_	8
Max	24	20	18	28	22	18	18	26
Run Pass 3	Y	Y	Y	Y	Y	Ÿ	Υ	Y
Factor	3	3	3	3	3	3	- 3	3
Major/Semi	4.8							1.5
Major/Minor	8							
Mn	4			3	3			
2,004			9	110				13
Max:	32			16	11	9	9	13

14.4.1.6 Block Model and Grade Estimation

The model is in Albury Heath local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below Table 14-100.

	Υ	Χ	Z
Min	19,650	9,750	360
Max	20,370	10,250	520
Extents	720	500	160
Parent size	5.00	2.50	2.50
Sub-Block size	2.50	1.25	1.25

Table 14-100 Albury Heath block model parameters.

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with increased search distance of $1.5 \times 10^{\circ} \times 10^{\circ}$ for the second interpolation pass. For the third interpolation pass there is a reduction of minimum and maximum informing samples and an increased search distance of $2 \times 10^{\circ} \times 10^{\circ}$ km s and $2 \times$



Figure 14-31 Albury Heath depleted resource model, all domains - Source: Westgold.

14.4.1.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each domain. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

There is no reliable historic production data to validate the model against.

14.4.1.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Albury Heath Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4. The model is depleted for the historic mining voids.

The Albury Heath Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

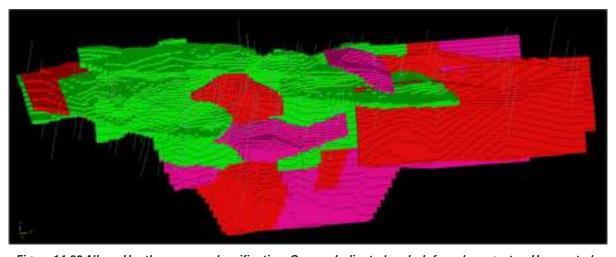


Figure 14-32 Albury Heath resource classification. Green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold.

14.4.1.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-101 Albury Heath Mineral Resources on June 30, 2024.

	Albury Heath Mineral Resource Statement - Rounded for Reporting 30/06/2024														
		Measured Indicated Measured and Indicated Inferred													
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
Albury Heath	0	0.00	0	194	1.74	11	194	1.74	11	15	3.28	2			
Total	0	0.00	0	194	1.74	11	194	1.74	11	15	3.28	2			

>=0.7g/t Au

The Albury Heath Mineral Resource estimate as set out in table is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.2 Batavia

14.4.2.1 Summary

The Batavia deposit is located approximately 7 km northwest of the Bluebird Mill.

Historical mining in the Batavia area was undertaken from 1905 until 1916, with small underground workings producing 180.6 oz from 276 t of ore. Trenching was undertaken in the 1980's to assist in tracking alluvial gold channels, but there are no production records.

A Westgold Mineral Resource Estimate and report was completed in January 2015, incorporating surface grade control drilling for the planned open pit. Open pit mining was conducted by Westgold from June 2015 to May 2016, producing 196,118 t at 1.40 g/t for 8,851 oz. The reported resource is the pre-mining 2015 resource model depleted with the final open pit void survey.

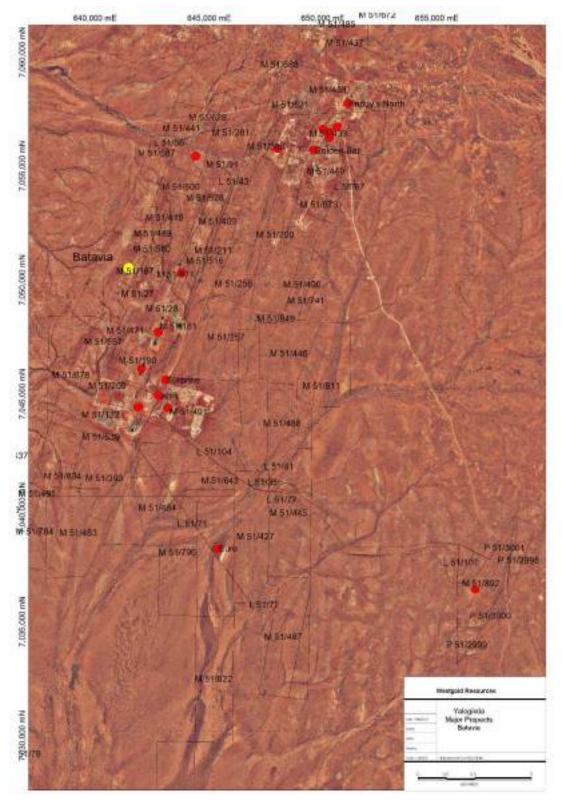


Figure 14-33 Location of the Batavia deposit - Source: Westgold.

14.4.2.2 Modelling Domains

Digitised wireframes were completed in Surpac software by snapping to drill data. Chip trays from Westgold grade control drilling were utilised to correlate grade boundaries with the logged lithology. The geologically modelled mineralisation domains represent the quartz shear lode that hosts the gold mineralisation, wireframed using a 0.5 g/t wireframing cut-off grade if the mineralisation was not constrained to the host lithology or if no geological logging is available.

If required to preserve geological continuity, these wireframes continue through barren lithology using a 2 m minimum downhole width and maximum of 2 m internal dilution. In cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling domain continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure.

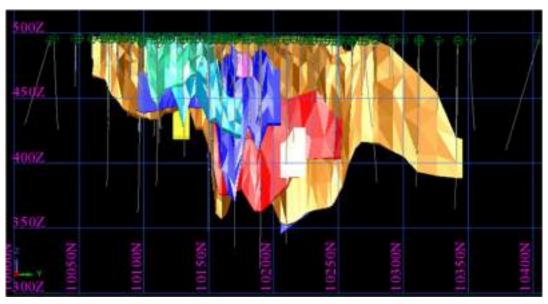


Figure 14-34 Batavia mineralisation domains, long section looking west - Source: Westgold.

14.4.2.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-102 Statistics and top cuts for Batavia domains.

848 2.63 5.82 28.26 3.02 7.22 74.83 1.06 3.05 74.40 2.58 1.11 0.56 0.005 74.40	353 3.14 6.89 47.47 2.19 6.25 34.05 1.14 1.63 81.20 2.70 1.26 0.57	251 3.01 7.65 58.49 2.34 6.91 54.62 1.09 3.424 78.153 2.4	96 2.70 10.25 105.05 3.80 9.21 88.00 0.54 2.37 100.00	39 2,22 7,10 30,47 3,20 8,32 71,97 0,82 2,52	4 11.50 12.08 145.83 1.05 0.04 -5.68 4.47	6 2.93 3.84 14.72 1.31 2.07 4.51	118 4.38 15.33 235.03 3.50 6.59 45.51	9 8 1.68 1.63 2.66 0.97 1.30	10 0.84 1.41 1.99 1.68 2.74 7.93	8 3.28 6.92 47.92 2.11 2.76
2.63 5.82 28.26 3.02 7.22 74.83 1.05 3.06 74.40 2.58 1.11 0.56 0.005	3.14 6.89 47.47 2.19 6.25 54.05 1.14 1.63 81.20 2.70 1.26	3.01 7.65 58.49 2.54 6.91 54.62 1.09 3.424 78.153 2.4	2.70 10.25 105.05 3.80 9.21 88.00 0.94 2.37 100.00	2.22 7.10 30.47 3.20 8.32 71.97 0.82	11.50 12.08 145.83 1.05 0.04 -5.68	2.93 3.84 14.72 1.31 2.07 4.51	4.38 15.33 235.03 3.50 6.59	1.68 1.63 2.66 0.97 1.30	0.84 1.41 1.99 1.68 2.74	3.28 6.92 47.92 2.11 2.76
2.63 5.82 28.26 3.02 7.22 74.83 1.05 3.06 74.40 2.58 1.11 0.56 0.005	3.14 6.89 47.47 2.19 6.25 54.05 1.14 1.63 81.20 2.70 1.26	3.01 7.65 58.49 2.54 6.91 54.62 1.09 3.424 78.153 2.4	2.70 10.25 105.05 3.80 9.21 88.00 0.94 2.37 100.00	2.22 7.10 30.47 3.20 8.32 71.97 0.82	11.50 12.08 145.83 1.05 0.04 -5.68	2.93 3.84 14.72 1.31 2.07 4.51	4.38 15.33 235.03 3.50 6.59	1.68 1.63 2.66 0.97 1.30	0.84 1.41 1.99 1.68 2.74	3.28 6.92 47.92 2.11 2.76
5.32 28.26 2.02 7.22 74.83 1.05 3.06 74.40 2.58 1.11 0.56 0.005	6.89 47.47 2.39 6.25 54.05 1.14 1.63 81.20 2.70 1.26	7.65 58.49 2.54 6.91 54.62 1.09 3.424 78.153 2.4	10.25 105.05 8.80 9.21 88.00 0.54 2.57 100.00	7.10 50.47 3.20 8.32 71.97 0.82	12,08 145,83 1.05 0.04 -5.68	3.84 14.72 1.31 2.07 4.51	15.33 235.03 3.50 6.59	1.63 2.66 0.97 1.30	1.41 1.99 1.68 2.74	6.92 47.92 2.11 2.76
28.26 2.02 7.22 74.83 1.05 3.05 74.40 2.58 1.11 0.56 0.003	47.47 2.10 6.25 54.05 1.14 1.63 81.20 2.70 1.26	58.49 2.54 6.91 54.62 1.09 3.424 78.153 2.4	105-05 8-80 9-21 88-00 0.54 2-37 100-00	3.20 8.32 71.97 0.82	145.83 1.05 0.04 -5.68	14.72 1.31 2.07 4.51	235.03 3.50 6.59	2.66 0.97 1.30	1.99 1.68 2.74	47.92 2.11 2.76
7.22 74.83 1.06 3.06 74.40 2.58 1.11 0.56 0.005	2.19 6.25 54.05 1.14 1.63 81.20 2.70 1.26	2.54 6.91 54.62 1.09 3.424 78.153 2.4	9.21 88.00 0.94 2.37 100.00	3.20 8.32 71.97 0.82	1.05 0.04 -5.68	1.31 2.07 4.51	3.50 6.59	0.97 1.30	1.68 2.74	2.11
7.22 74.83 1.05 3.06 74.40 2.58 1.11 0.56 0.005	6.25 54.05 1.14 1.65 81.20 2.70 1.26	6.91 54.62 1.09 3.424 78.153 2.4	9.21 88.00 8.94 2.37 100.00	8:32 71.97 0.82	0.04 -5.68	2.07 4.51	6.59	1.30	2.74	2.76
74.83 1.05 3.05 74.40 2.58 1.11 0.56 0.005	34.05 1.14 1.63 81.20 2.70 1.26	54.62 1.09 3.424 78.153 2.4	88.00 () 94 2.37 100.00	71.97 0.82	-5.68	4.53				
1.05 3.06 74.40 2.58 1.11 0.56 0.005	1.14 1.63 81.20 2.70 1.26	1.09 3.424 78.153 2.4	8.94 2.37 100,00	0.82			45.51	0.93	7.03	
3.06 74.40 2.58 1.11 0.56 0.003	1.63 81.20 2.70 1.26	3.424 78.153 2.4	2.37		4.47			10 THE RES	7.33	7.69
74.40 2.58 1.11 0.56 0.003	81.20 2.70 1.26	78.153 2.4	100.00	2.52		0.34	0.99	1.10	0.30	0.28
2.58 1.11 0.56 0.005	2.70 1.26	2.4			27.33	15.03	3.68	08.1	1.02	38.10
1.11 0.56 0.005	1.26			63.18	23.30	10.47	122.87	4.88	4.70	20.30
0.56		1.31	1.97	1.95	20.50	2.42	2.67	1.72	0.65	1.63
0.005	0.57		0.96	0.92	1,70	1.22	1.20	0.61	0.39	1.08
		0.58	0.45	0.54	0.49	0.53	0.59	0.45	0.06	0.01
74.40	0.005	0.005	0.005	0.010	0.490	0.010	0.005	0.367	0.040	0.005
ALCOHOLD THE	81.20	78.15	100.00	63.17	22.81	10.46	127.87	4.51	4.66	20.30
14/	-	- 41	20	-	112	191	- 20	9	10	
2.2	40	3 17	13	10	10	none	20	none	none	11
7	2	3	1	10	2	Suprie	4	nune	mane	1
0.83%	0.57%	1.20%	1.04%	1.27%	50.00%	n/a	1.39%	0.00%	0.00%	12.50%
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
848	353	251	96	79	4	- 6	118	8	10	- 8
2.43	3.02	2.36	1.81	1.55	5.55	2.93	2.54	1.68	0.84	1.99
3.67	5.76	3.33	2.49	1.77	5.17	3.84	4.09	1.63	1.41	3.33
13.49	13.22	11.12	6.19	3.14	26.68	14.72	16.69	2.66	1.99	11.09
1.51	1.91	1.41	1.37	1.77	0.93	1.31	1.61	0.97	1.68	1.67
3.13	4.16	2.88	3.06	2.93	-0.05	2.07	3.34	1.30	2.74	2.52
11.06	19.35	8.62	11.22	11.02	-5.73	4.51	11.13	0.93	7.93	6.68
1.05	1.13	1.07	0.92	0.00	3.02	0.94	0.96	1.10	0.30	0.26
2.99	2.59	3.149	2.15	2.27	8.93	16.03	4.74	1.80	1.02	23.36
22.00	40.00	17	15.00	10.00	10.00	10.47	20.00	4:88	4.70	10.00
2.58	2.70	2.4	1.97	1.96	10.00	2.42	2.67	1.72	0.65	1.63
1.11	1.25	1.30	0.96	0.92	1.70	1.22	1.20	0.61	0.39	1.08
0.56		0.58	0.45	0.54	0.49	0.53	0.59		0.06	0.01
0.005	0.005	0.005	0.005	0.010	0.490	0.010	0.005	0.367	0.040	0.005
	40.00	17.00	15.00	0.99	9.51	10.46	20.00	4.51	4.66	10.00
1	7 0.83% N/A 848 2.43 3.67 13.49 1.51 1.06 1.05 2.99 22.00 2.58 1.11 0.56	7 2 0.83% 0.57% N/A N/A 848 353 2.43 3.02 3.67 5.76 13.49 33.22 1.51 1.91 3.13 4.16 11.06 19.35 1.05 1.11 2.99 2.59 22.00 40.00 2.58 2.70 1.11 1.26 0.56 0.57 0.005 0.005	7 2 3 0.83% 0.57% 1.20% N/A N/A N/A N/A 848 353 251 2.43 3.02 2.36 3.67 5.76 3.33 13.49 33.22 11.12 1.51 1.91 1.41 3.13 4.16 2.88 11.06 19.35 8.62 1.05 1.13 1.07 2.99 2.59 3.149 22.00 40.00 17 2.58 2.70 2.4 1.11 1.26 1.30 0.56 0.57 0.58 0.005 0.005	7 2 3 1 0.83% 0.57% 1.20% 1.04% N/A N/A N/A N/A N/A N/A N/A N/A N/A 848 353 251 96 2.43 3.02 2.36 1.81 3.67 5.76 3.33 2.49 13.49 33.22 11.52 6.19 1.51 1.91 1.41 1.37 3.13 4.16 2.88 3.08 11.06 19.35 8.62 11.22 1.05 1.11 1.07 0.07 2.99 2.59 3.349 2.15 2.200 40.00 17 15.00 2.58 2.70 2.4 1.97 1.11 1.26 1.30 0.96 0.55 0.57 0.58 0.45 0.005 0.005 0.005 0.005	7 2 3 1 1 1 0.83% 0.57% 1.20% 1.04% 1.27% N/A N/A N/A N/A N/A N/A N/A 848 353 251 96 79 2.43 3.02 2.36 1.81 1.55 3.67 5.76 3.33 2.49 1.77 13.49 33.22 11.12 6.19 3.14 1.51 1.91 1.41 1.37 1.77 3.13 4.16 2.88 3.06 2.93 11.06 19.35 8.62 11.22 11.02 1.05 1.10 1.07 0.07 0.80 2.99 2.59 3.349 2.15 2.27 22.00 40.00 17 15.00 10.00 2.58 2.70 2.4 1.97 1.96 1.11 1.26 1.30 0.96 0.92 0.56 0.57 0.58 0.45 0.54 0.005 0.005 0.005 0.005	7 2 3 1 1 2 0.83% 0.57% 1.20% 1.04% 1.27% 50.00% N/A N/A N/A N/A N/A N/A N/A 848 353 251 96 79 4 2.43 3.02 2.36 1.81 3.55 5.55 3.67 5.76 3.33 2.49 1.77 5.17 13.49 33.22 11.12 6.19 3.14 26.68 1.51 1.91 1.41 1.37 1.77 0.93 3.13 4.16 2.88 3.08 2.93 0.05 11.06 19.35 8.62 11.22 11.02 5.73 1.05 1.13 1.07 0.97 0.80 3.07 2.99 2.59 3.349 2.15 2.27 8.93 22.00 40.00 17 15.00 10.00 10.00 2.58 2.70 2.4 1.97 1.96 10.00 1.11 1.26 1.30 0.96 0.92 1.70 0.56 0.57 0.58 0.45 0.54 0.49 0.005 0.005 0.005 0.005 0.010 0.490	7 2 3 1 1 2 0.83% 0.57% 1.20% 1.04% 1.27% 50.00% n/A n/A N/A N/A N/A N/A N/A N/A N/A N/A 848 353 251 96 79 4 6 2.43 3.02 2.36 1.81 2.55 5.55 2.93 3.67 5.76 3.33 2.49 1.77 5.17 3.84 13.49 33.22 11.12 6.19 3.14 26.68 14.72 1.51 1.51 1.41 1.37 1.77 0.93 1.38 3.13 4.16 2.88 3.06 2.93 -0.05 2.07 11.06 19.35 8.62 11.22 11.02 -5.73 4.51 1.05 1.18 1.07 0.92 0.80 3.02 0.94 2.99 2.59 3.349 2.15 2.27 8.93 18.03 22.00 40.00 17 15.00 10.00 10.00 10.47 2.58 2.70 2.4 1.97 1.96 10.00 2.42 1.11 1.26 1.30 0.96 0.92 1.70 1.22 0.56 0.57 0.58 0.45 0.54 0.49 0.53 0.005 0.005 0.005 0.005 0.010 0.490 0.010	7 2 3 1 1 2 4 0.83% 0.57% 1.20% 1.04% 1.27% 50.00% 1/A 1.39% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 848 353 251 96 79 4 6 118 2.43 3.02 2.36 1.81 1.55 5.55 2.93 2.54 3.67 5.76 3.33 2.49 1.77 5.17 3.84 4.09 13.49 33.22 11.12 6.19 3.14 26.68 14.72 16.69 1.51 1.91 1.41 1.37 1.77 0.93 1.38 1.61 3.13 4.16 2.88 3.08 2.93 -0.05 2.07 3.34 11.06 19.35 8.62 11.22 11.02 5.73 4.51 11.13 1.05 1.14 1.07 0.07 0.80 1.02 0.94 0.96 2.299 2.59 3.349 2.15 2.27 8.93 18.03 4.74 2.200 40.00 17 15.00 10.00 10.00 10.47 20.00 2.58 2.70 2.4 1.97 1.96 10.00 2.42 2.67 1.11 1.26 1.30 0.96 0.92 1.70 1.22 1.20 0.56 0.57 0.58 0.45 0.54 0.49 0.53 0.59 0.005 0.005 0.005 0.005 0.000 0.010 0.490 0.010 0.005	7 2 3 1 1 2 4 0.83% 0.57% 1.20% 1.04% 1.27% 50.00% 6/A 1.39% 0.00% 6/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N	7 2 3 1 1 2 4 0.83% 0.57% 1.20% 1.04% 1.27% 50.00% 1/A 1.39% 0.00% 0.00% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

14.4.2.4 Density

Density values for oxide, transitional and fresh material were allocated based on values from other deposits in the region with equivalent lithology that have undergone density test-work. No density test-work has been conducted at Batavia. No discrimination was made between mineralised and unmineralised rock densities for oxide and transitional rock, but for fresh rock the mineralised density was reduced compared to the unmineralised fresh amphibolite to account for the lower density value of the quartz hasted mineralisation.

The model has also been flagged with in-pit fill and the waste rock landform constructed during mining by Westgold. Backfill density has been updated with a value of 70% of unmineralised fresh rock density representing the dominant composition of the backfill material.

Values used in the Batavia resource model in the table below.

Table 14-103 Batavia density values.

Rock Type	Oxide	Transitional	Fresh
Amphibolite	2.20	2.40	2.90
Mineralised quartz shear in amphibolite	2.20	2.45	2.80
Backfill	2.10		
Air/Void	0.00		

14.4.2.5 Variography

A geostatistical analysis of down-hole composited Batavia data as part of the resource estimation process This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are backtransformed from the Gaussian distribution using Hermite polynomials.

Only the primary mineralisation domain 1 had significant population for variogram modelling. The remaining domains with insufficient samples for geostatistical analysis were allocated variogram parameters of the spatially and statistically similar primary domain for estimation.

A summary of the resulting parameters is shown in the table below.

Table 14-104 Batavia variogram model and interpolation parameters.

Domain	1	2	3	4	5	6	7	8	9	10	11
Comp File	cut10	cut20	cut30	cut40	cut50	cut60	cut70	cut80	cut90	cut100	cut110
# comps	848	353	251	96	79	4	6	118	8	10	8
Est Method	ОК	OK	OK	OK	ОК	OK	ОК	OK	ОК	ОК	ОК
250 111001100		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Pass 1											
Range	30	30	30	30	30	30	30	30	30	30	30
Min Sample	8	8	8	8	8	8	8	8	8	8	8
Max Sample	20	20	20	20	20	20	20	20	20	20	20
Semi Major	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Minor	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75
Total Volume	53337	16665	9083	3102	2593	367	1041	17208	342	324	1302
Volume not Est.	2977	450	0	17	0	367	1041	2182	0	0	837
% Est.	94%	97%	100%	99%	100%	0%	0%	87%	100%	100%	<u>36%</u>
Estimation Run	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Pass 2											
Range	30	30	30	30	30	30	30	30	30	30	30
Min Sample	4	4	4	4	4	4	4	4	4	4	4
Max Sample	20	20	20	20	20	20	20	20	20	20	20
Semi Major	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Minor	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75
Total Volume	53337	16665	9083	3102	2593	367	1041	17208	342	324	1302
Volume not Est.	461	71	0	0	0	0	6	14	0	0	0
% Est.	99%	100%	100%	100%	100%	100%	99%	100%	100%	100%	<u>100%</u>
Estimation Run	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Pass 3											
Range	60	60	60	60	60	60	60	60	60	60	60
Min Sample	4	4	4	4	4	4	4	4	4	4	4
Max Sample	20	20	20	20	20	20	20	20	20	20	20
Semi Major	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Minor	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75
Total Volume	53337	16665	9083	3102	2593	367	1041	17208	342	324	1302
Volume not Est.	0	0	0	0	0		0	0			0
% Est.	<u>100%</u>	100%	100%	<u>100%</u>	100%	<u>100%</u>	<u>100%</u>	<u>100%</u>	<u>100%</u>	<u>100%</u>	<u>100%</u>
Estimation Run	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Brg	0	0	0	0	0	0	0	0	0	0	0
Plunge	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Dip	-80	-80	-80	-80	-80	-80	-80	-80	-80	-80	-80
Nugget	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Sill 1	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Range 1	11	11	11	11	11	11	11	11	11	11	11
Sill 2	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Range 2	54	54	54	54	54	54	54	54	54	54	54
Sill 3											
Range 3											
Total Sil	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discretisation	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3	3x3x3

14.4.2.6 Block Model and Grade Estimation

The model is in Batavia local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-105 Batavia block model parameters.

	Υ	Χ	Z
Min	9,950	69,800	300
Max	10,450	71,100	550
Extents	500	300	250
Parent size	5.00	2.50	2.50
Sub-Block size	1.25	0.625	0.625

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with a reduction of minimum and maximum informing samples for the second and third interpolation pass. For the third interpolation pass there is also an increased search distance of $2 \times 99\%$ of domain blocks were filled by the second estimation pass.

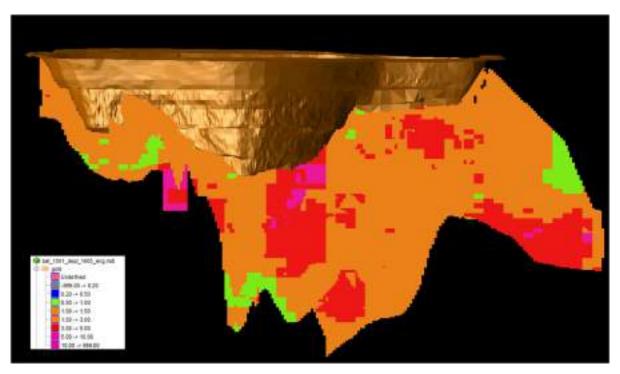


Figure 14-35 Batavia depleted resource model, all domains - Source: Westgold.

14.4.2.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each domain. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

Over the life of the Westgold open pit from January 2016 to September 2017, claimed production vs mill reconciled production has been within 5% variation of ounces, but excessive dilution from blasting during mining and poor reconciliation of trucked tonnage compared to planned one tonnage from dig blocks led to significant underestimation of claimed tonnes.

Table 14-106 Batavia open pit production reconciliation, project to date.

		Actual		C	Claimed		% Variance			
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz	
Open Pit	195,949	1.32	8,317	167,009	1.63	8,779	+17% -20% -5			

14.4.2.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Batavia Mineral Resource was classified in the model on the following basis:

- (1) The Measured category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, where the deposit is drilled to a grade control drill spacing density of 10 m or less.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

The Batavia Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

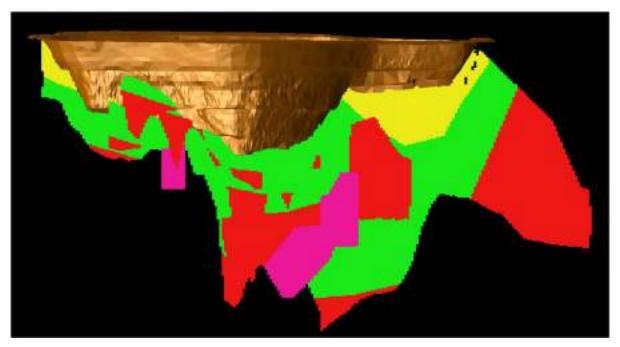


Figure 14-36 Batavia resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold.

14.4.2.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-107 Batavia Mineral Resources on June 30, 2024.

	Batavia Mineral Resource Statement - Rounded for Reporting 30/06/2024													
		Measured Indicated Measured and Indicated Inferred												
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Batavia	11	2.70	1	99	2.30	7	109	2.35	8	41	2.28	3		
Total	11	11 2.70 1 99 2.30 7 109 2.35 8 41 2.28 3												

>=0.7g/t Au

The Batavia Mineral Resource estimate as set out in table is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.3 Bluebird Group

14.4.3.1 Summary

The Bluebird Group resource consists of the mineralisation within Bluebird and South Junction open pits and incorporates the Iron Bar deposit to the southwest. Westgold is currently mining Bluebird mineralisation underground and is developing towards the South Junction mineralisation. The underground portal is established in the South Junction open pit. The deposits are located directly adjacent to the Bluebird mill.



Figure 14-37 Location of the Bluebird Group deposits - Source: Westgold.

The Bluebird deposit contains the East, West and Central lodes, continuing north to the Bluebird North lodes. South Junction consists of the Archenar, Polar Star, South Junction an Edin Hope lodes.

The Bluebird Group deposits have been mined at various stages historically. Production occurred between 1910-1911 and 1935-1936 as small underground operations that yielded approximately 5,000 oz. A small open pit was mined by Endeavour Resources at Bluebird and Bluebird North between 1980 and 1981, producing approximately 61,000 oz and a further 18,000 oz contained within a low-grade ore stockpile. Endeavour Resources brought a further material to reserve status in 1983 however it is unclear how much of this reserve was mined. Saint Barbara produced ore from the South Junction open pit from 1989 to 1993. Reed Resources produced commenced a cutback for the Bluebird open pit before going into administration.

Westgold continued the open pit cutback of the combined Bluebird and Bluebird North open pit from February 2016 to November 2016, producing 401,938 t at 1.40 g/t for 18,095 oz reconciled. Westgold later commenced the underground mine from December 2019 to March 2020. After a production pause, underground mining resumed in June 2020 and has produced 750,256 t at 3.05 g/t for 73,611 oz as of March 31, 2023.

Total combined production for historic and Westgold open pit mining is summarised in the table below, compiled by Hollingsworth (2022) from historic and current Westgold production records. South Junction production also includes minor production (<4,000 t) from Ascot, a wholly depleted deposit located to the east of the open pit, now under the waste rock landform.

Table 14-108 Total open pit production for the Bluebird Group mines to October 31, 2022.

Mine	Tonnes (t)	Grade (g/t)	Gold (oz)
South Junction open pit	6,766,346	1.69	367,242
Bluebird and Bluebird North open pit	2,987,444	1.56	149,937

Westgold first created a Mineral Resource Estimate for the Bluebird Group in October 2015 to use as the basis for the Bluebird open pit cutback design. The report was finalised in June 21016 (Hunt, 2016a). Westgold updated the Bluebird portion of the Mineral Resource Estimate in 2019 prior to developing the underground mine, incorporating all Westgold open pit grade control drilling data (Stanley, 2019c). Westgold has updated the Mineral Resource Estimate, classification, depletion, and sterilisation annually since this 2019 report.

A review of estimation parameters for the actively developing mineralisation domains was conducted for the reportable resource in June 2023, coinciding in a change from Surpac to Leapfrog for the mineralisation domain interpretation (Evans, 2023).

In 2024, a surface drill program commenced to test the South Junction, Polar Star and Archenar mineralisation at depth. 2024 saw two resource model updates to incorporate the results from this drill program, leading to a significant increase in the reportable resource. This work also included interpretation updates the Bluebird, Bluebird North, and Edin Hope mineralisation domains. A new geological model has been constructed modelling the intrusives, alteration zones, and stratigraphic sediments. A comprehensive review and update of top-cuts and estimation parameters for all mineralisation domains was conducted. The block model parent cell and sub cell size has been changed, though the model extents remain the same.

14.4.3.2 Modelling Domains

The mineralisation domains are primarily driven by the logged geology and represent the alteration and structures that host the gold mineralisation. Where a geological control was not clear, particularly for historic RC drill data though the depleted open pits, or for historic drilling with no geological logs, a nominal cut-off grade of 0.5 g/t Au was applied to the interpretation.

The domain modelling is conducted in Leapfrog, flagging the mineralised intervals with a unique domain code in a domain flagging merged table, then using the vein tool to implicitly model the mineralisation volume. Control points and polylines are added from mapped geological features and contacts, and manual domain boundaries are used to constrain the mineralisation volumes. The mineralisation volumes are exported to Surpac for block model flagging for estimation.

Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure.

The following is adapted from Timms (2011), Hunt (2016a) and Stanley (2019c), and from the 2024 resource model updates (Witten 2024a, Witten 2024b).

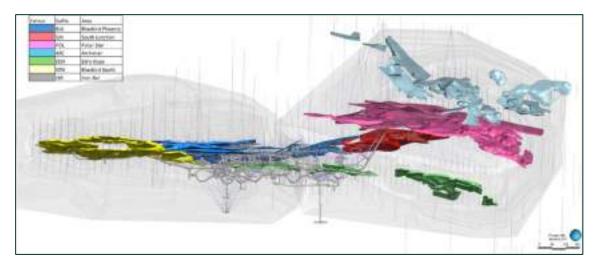


Figure 14-38 Bluebird group mineralisation domain groups - Source: Westgold.

Gold mineralisation at Bluebird is related to the development of north-northeast - northeast, steep east dipping shear zones which have undergone alteration. Distal to the lodes is a quartz-carbonate (iron dolomite) alteration. Proximal siderite alteration is seen which defines the mineralisation envelope of the East and West Lodes. Within the southern portion of these lodes, high grade gold is directly related to the euhedral pyrite mineralisation. The Central Lode is characterised by brecciated fuchsite alteration hosting quartz veins. The East and West lode pinch out towards the north and the Central lode is the dominant structure.

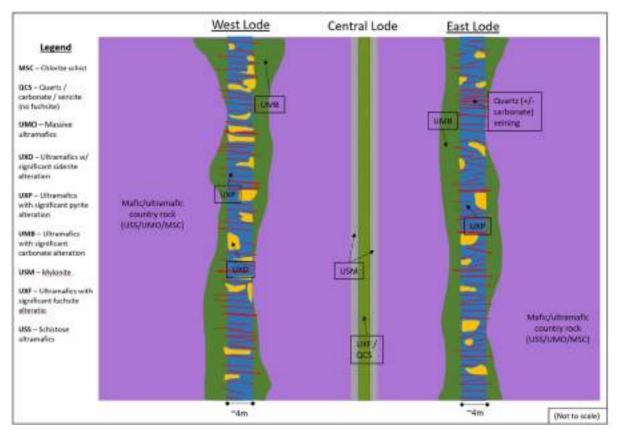


Figure 14-39 Bluebird mine sequence mineralisation interpretation - Source: Westgold.

The Bluebird mineralisation domain mining areas have been divided into north and south zones corresponding to the separate north Bluebird (BLU) and south Phoenix (PHO) declines, though the mineralisation strike is continuous throughout the area.

In 2024, a new 'stockpile' alteration zone has been identified proximal to West Lode. This alteration is thought to be analogous to the South Junction alteration, albeit with a narrowing structure, reduction of fuchsite alteration and reduced tenor of grade heading north. Major faults that offset the Bluebird mineralisation also offset the Stockpile alteration.

The Stockpile alteration and South Junction alteration appear to be associated with the major shear modelled though the Bluebird and South Junction mineralisation domain areas. This major shear cuts though the West Lode mineralisation in multiple locations.

Figure 14-40 Major shear model (purple) crosscutting PHO 1135 ACC and PHO 1135 WS1 - Source: Westgold.

A new lithology model contains key features relating to mineralisation such as the Polar Star, Central and Southeast Porphyry intrusive lithologies, the major shear model, major and minor faults, alteration zones, and stratigraphic modelling of western footwall volcaniclastic sediments, central mafic and ultramafic lithologies, and eastern hangingwall mafic lithologies and volcaniclastic sediments.

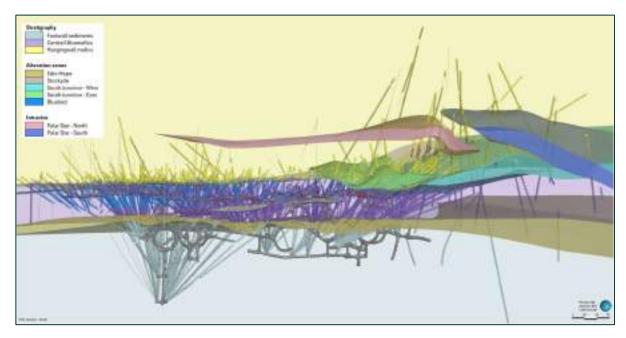


Figure 14-41 Bluebird group lithology model - Source: Westgold.

A complex distribution of a broad range of lithotypes occur at South Junction, including ultramafic and mafic schists, undeformed metabasalt, metasediments, a variety of felsic and intermediate intrusive rocks, and unmetamorphosed sediments. Gold mineralisation is not limited to a particular rock type at South Junction. Instead, the location of mineralisation is structurally or rheologically controlled. Mineralisation fit into either shear or vein related styles.

South Junction hosts numerous mineralised zones broadly located on sub-parallel north-northeast-trending structures. These zones from west to east are Edin Hope, South Junction, Polar Star (includes Polar Star Porphyry, Polar Star East and West ultramafic shear lodes, Central and South ultramafic shear and porphyry lodes) and Archenar (East and Camp lodes).

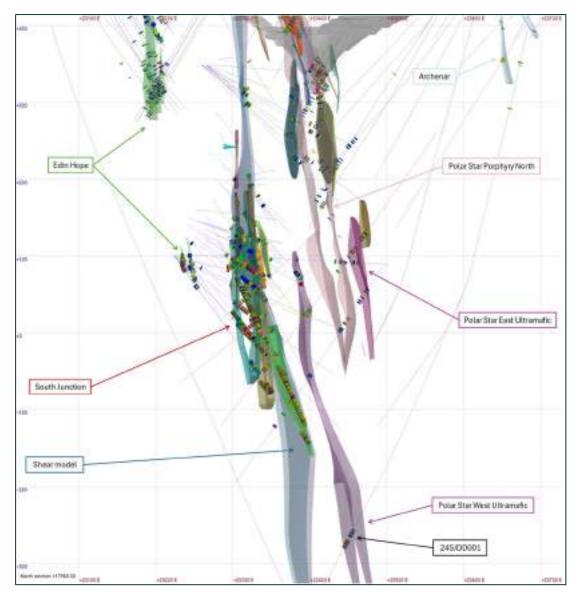


Figure 14-42 Cross section (17960n +/-50m) of Edin Hope, South Junction, Polar Star and Archenar mineralisation domains. - Source: Westgold.

Mineralisation around the Edin Hope deposit consists of a sub-vertical, 35 m wide potassic alteration zone which thickens to the south and is bounded by talc chlorite schist. The Iron Bar deposit is dominated by foliated parallel quartz feldspar porphyry bounded by talc chlorite schist, after high Mg basalt and basalt. Mineralisation is characterised by flat lying, brittle veins within the porphyry, with iron carbonate-quartz-fuchsite-sericite-pyrite alteration. The deposit is structurally complex and is believed to be the dextral offset of the Edin Hope mineralisation in the South Junction pit.

The South Junction mineralisation domains capture the broad zones of varying fuchsite and sericite alteration, sulphides, quartz and quartz carbonate veining, and varying tenor of mineralisation. Increased gold grade is loosely associated with increased sulphides, though sulphide percentage logging is too inconsistent and subjective to make any direct correlation. Where the alteration is clearly barren marks the boundaries of the modelled ore domains, which is generally coincident with a reduction in sulphides, veining and alteration intensity, but may also be related to a change in the underlying protolith. The conceptual mineralisation control is thought to be a dilation jog between a major eastern shear and a weaker western shear, with the Bluebird mineralisation domains merging into the South Junction alteration.

The Polar Star West Ultramafic mineralisation is characterised by the dominance of sericite alteration, predominantly absent or limited weak fuchsite alteration, discordant quartz-carbonate +/-ankerite veining, and a moderate to strong foliation. There is a correlation between sulphides and gold grade.

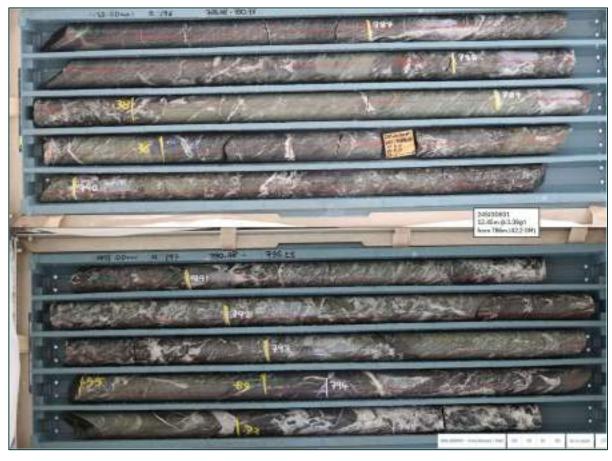


Figure 14-43 Polar Star West Ultramafic mineralisation - Source: Westgold.

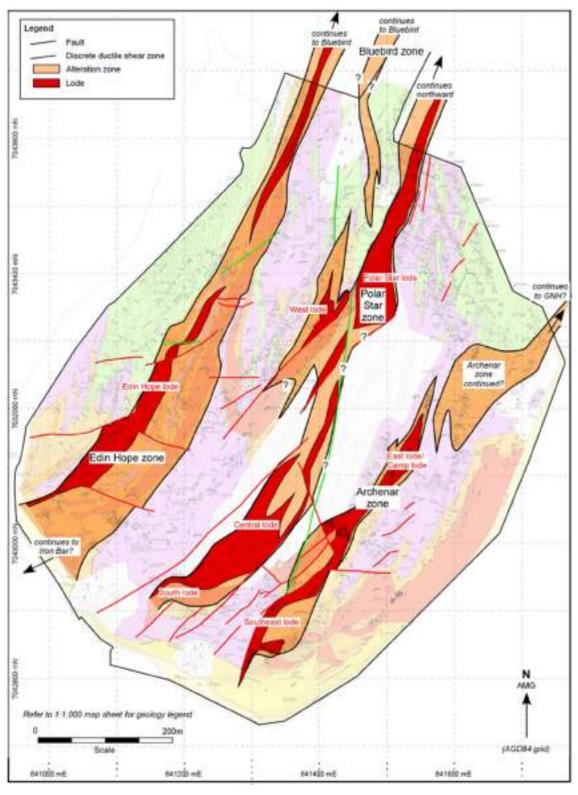


Figure 14-44 Mineralisation zones within the South Junction open pit. Mapping by Timms (2011) - Source: Westgold.

It is unclear what the mineralisation control is inside the Polar Star Porphyry.

Anomalous grade is loosely but not consistently associated with small dark veinlets, bleaching, and silicification. Mineralisation appears unrelated to disseminated pyrite presence or intensity and appears unrelated to foliation intensity.

Polar Star Eastern Ultramafic mineralisation domains are generally parallel with but not necessarily contacting the Polar Star porphyry. These are characterised by varying discordant quartz carbonate veining overprinting a variable foliated talc-carbonate altered ultramafic rock. Sulphide species are typically pyrite, but form and percentage are variable.

It may be that a single shear system controls both the Polar Star Porphyry and East Ultramafic mineralisation domains, but further infill drilling is required to increase confidence in the shared mineralisation control.

The Archenar domains are dominantly defined by historic RC drilling and are generally constrained to the depleted open pit. All domains have been reinterpreted, with the pit mapping used as a guide to domain orientation. Some of these domains have been intersected in the surface diamond drilling, but further work is required on the interpretation of these domains.

14.4.3.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

For the 2024 resource model, top-cuts for all domains in the Bluebird (BLU), Bluebird North (NTH), Edin Hope (EDH), South Junction (SJN), Polar Star (POL), and Archenar (ARC) areas have been reviewed and updated. The Iron Bar (IBR) domains are unchanged since the 2015 reportable resource. Domain statistics and top-cut values area tabled below.

Table 14-109 Bluebird (BLU) domains statistics and top-cuts. Part 1.

Au raw - Domain	1112	1113	1114	1115	1117	1119	1120	1121	1122	1123	1212	1213	1214
Samples	93	5083	126	1295	39	81	79	8	155	72	30	2152	40
Minimum	0.03	0.00	0.03	0.01	0.55	0.01	0.01	0.59	0.01	0.01	0.01	0.00	0.01
Maximum	23.10	403.20	36.40	152.25	12.96	48.64	5.23	2.11	37.30	5.10	7.05	201.00	7.66
Mean	2.93	5.50	5.52	7.82	3.96	5.20	0.78	1.16	1.21	0.78	1.39	2.10	2.19
Standard deviation	4.21	9.85	6.32	10.27	3.11	8.86	1.03	0.49	3.39	0.93	1.65	5.46	2.03
CV	1.44	1.79	1.15	1.31	0.79	1.70	1.32	0.42	2.80	1.20	1.19	2.60	0.93
Variance	17.76	96.97	39.93	105.40	9.65	78.50	1.07	0.24	11.51	0.87	2.71	29.79	4.11
Skewness	2.77	18.84	2.54	4.63	0.98	3.46	2.03	0.59	8.61	2.36	1.89	24.91	1.02
50% (Median)	1.40	3.00	3.44	4.74	2.68	2.45	0.29	0.92	0.47	0.42	0.86	1.14	1.34
90%	7.44	12.93	12.24	18.10	8.66	9.62	2.06	1.63	2.19	2.01	3.53	4.31	5.34
95%	11.69	18.32	16.00	25.54	9.44	19.76	2.94	1.87	3.12	2.45	4.63	5.86	6.00
97.5%	16.03	24.57	26.11	33.05	10.28	39.77	3.58	1.99	4.71	2.92	5.85	8.84	6.45
99.0%	20.02	34.11	31.70	46.90	11.89	45.45	4.16	2.06	12.09	4.38	6.57	13.22	7.17
Top Cut	13	23	14	26	10	13.5	6	5	7.5	6	7	6	7
A													
Au cut - Domain	1112	1113	1114	1115	1117	1119	1120	1121	1122	1123	1212	1213	1214
Au cut - Domain Samples	93	1113 5083	1114 126	1115 1295	1117 39	1119 81	1120 79	1121 8	1122 155	1123 72	1212 30	1213 2152	1214 40
Samples Minimum	93	5083	126	1295	39	81	79	8	155	72	30	2152	40
Samples	93 0.026	5083 0.001	126 0.027	1295 0.005	39 0.546	81 0.005	79 0.005	8 0.589	155 0.005	72 0.005	30 0.005	2152 0.001	40 0.005
Samples Minimum Maximum	93 0.026 13	5083 0.001 23	126 0.027 14	1295 0.005 26	39 0.546 10	81 0.005 13.5	79 0.005 5.228	8 0.589 2.11	155 0.005 7.5	72 0.005 5.104	30 0.005 7	2152 0.001 6	40 0.005 7
Samples Minimum Maximum Mean Standard deviation	93 0.026 13 2.69	5083 0.001 23 5.05	126 0.027 14 4.84	1295 0.005 26 7.11	39 0.546 10 3.88	81 0.005 13.5 3.84	79 0.005 5.228 0.78	8 0.589 2.11 1.16	155 0.005 7.5 0.95	72 0.005 5.104 0.78	30 0.005 7 1.38	2152 0.001 6 1.73	40 0.005 7 2.17
Samples Minimum Maximum Mean	93 0.026 13 2.69 3.329	5083 0.001 23 5.05 5.538	126 0.027 14 4.84 4.157	1295 0.005 26 7.11 6.978	39 0.546 10 3.88 2.904	81 0.005 13.5 3.84 4.001	79 0.005 5.228 0.78 1.033	8 0.589 2.11 1.16 0.488	155 0.005 7.5 0.95 1.314	72 0.005 5.104 0.78 0.931	30 0.005 7 1.38 1.64	2152 0.001 6 1.73 1.616	40 0.005 7 2.17 1.986
Samples Minimum Maximum Mean Standard deviation CV	93 0.026 13 2.69 3.329 1.24	5083 0.001 23 5.05 5.538 1.10	126 0.027 14 4.84 4.157 0.86	1295 0.005 26 7.11 6.978 0.98	39 0.546 10 3.88 2.904 0.75	81 0.005 13.5 3.84 4.001 1.04	79 0.005 5.228 0.78 1.033 1.32	8 0.589 2.11 1.16 0.488 0.42	155 0.005 7.5 0.95 1.314 1.38	72 0.005 5.104 0.78 0.931 1.20	30 0.005 7 1.38 1.64 1.19	2152 0.001 6 1.73 1.616 0.94	40 0.005 7 2.17 1.986 0.92
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness	93 0.026 13 2.69 3.329 1.24 11.085	5083 0.001 23 5.05 5.538 1.10 30.666	126 0.027 14 4.84 4.157 0.86 17.28	1295 0.005 26 7.11 6.978 0.98 48.697	39 0.546 10 3.88 2.904 0.75 8.435	81 0.005 13.5 3.84 4.001 1.04 16.005	79 0.005 5.228 0.78 1.033 1.32 1.068	8 0.589 2.11 1.16 0.488 0.42 0.238	155 0.005 7.5 0.95 1.314 1.38 1.728	72 0.005 5.104 0.78 0.931 1.20 0.867	30 0.005 7 1.38 1.64 1.19 2.689	2152 0.001 6 1.73 1.616 0.94 2.61	40 0.005 7 2.17 1.986 0.92 3.944
Samples Minimum Maximum Mean Standard deviation CV Variance	93 0.026 13 2.69 3.329 1.24 11.085 1.987	5083 0.001 23 5.05 5.538 1.10 30.666 1.671	126 0.027 14 4.84 4.157 0.86 17.28 0.904	1295 0.005 26 7.11 6.978 0.98 48.697 1.368	39 0.546 10 3.88 2.904 0.75 8.435 0.725	81 0.005 13.5 3.84 4.001 1.04 16.005 1.227	79 0.005 5.228 0.78 1.033 1.32 1.068 2.029	8 0.589 2.11 1.16 0.488 0.42 0.238 0.593	155 0.005 7.5 0.95 1.314 1.38 1.728 2.967	72 0.005 5.104 0.78 0.931 1.20 0.867 2.362	30 0.005 7 1.38 1.64 1.19 2.689 1.87	2152 0.001 6 1.73 1.616 0.94 2.61 1.307	40 0.005 7 2.17 1.986 0.92 3.944 0.945
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	93 0.026 13 2.69 3.329 1.24 11.085 1.987 1.404	5083 0.001 23 5.05 5.538 1.10 30.666 1.671 3.002	126 0.027 14 4.84 4.157 0.86 17.28 0.904 3.439	1295 0.005 26 7.11 6.978 0.98 48.697 1.368 4.738	39 0.546 10 3.88 2.904 0.75 8.435 0.725 2.684	81 0.005 13.5 3.84 4.001 1.04 16.005 1.227 2.454	79 0.005 5.228 0.78 1.033 1.32 1.068 2.029 0.287	8 0.589 2.11 1.16 0.488 0.42 0.238 0.593 0.916	155 0.005 7.5 0.95 1.314 1.38 1.728 2.967 0.472	72 0.005 5.104 0.78 0.931 1.20 0.867 2.362 0.418	30 0.005 7 1.38 1.64 1.19 2.689 1.87 0.864	2152 0.001 6 1.73 1.616 0.94 2.61 1.307	40 0.005 7 2.17 1.986 0.92 3.944 0.945 1.34
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	93 0.026 13 2.69 3.329 1.24 11.085 1.987 1.404 7.441	5083 0.001 23 5.05 5.538 1.10 30.666 1.671 3.002 12.925	126 0.027 14 4.84 4.157 0.86 17.28 0.904 3.439 12.243	1295 0.005 26 7.11 6.978 0.98 48.697 1.368 4.738 18.102	39 0.546 10 3.88 2.904 0.75 8.435 0.725 2.684 8.664	81 0.005 13.5 3.84 4.001 1.04 16.005 1.227 2.454 9.619	79 0.005 5.228 0.78 1.033 1.32 1.068 2.029 0.287 2.063	8 0.589 2.11 1.16 0.488 0.42 0.238 0.593 0.916 1.63	155 0.005 7.5 0.95 1.314 1.38 1.728 2.967 0.472 2.189	72 0.005 5.104 0.78 0.931 1.20 0.867 2.362 0.418 2.013	30 0.005 7 1.38 1.64 1.19 2.689 1.87 0.864 3.534	2152 0.001 6 1.73 1.616 0.94 2.61 1.307 1.14	40 0.005 7 2.17 1.986 0.92 3.944 0.945 1.34 5.34

Table 14-110 Bluebird (BLU) domains statistics and top-cuts. Part 2.

Au raw - Domain	1215	1216	1217	1218	1222	1223	1224	1225	1313	1314	1323	1333	1341
Samples	62	14	25	73	52	861	60	57	2725	123	177	16	36
Minimum	0.19	0.04	0.01	0.01	0.05	0.00	0.04	0.04	0.00	0.01	0.01	0.06	0.01
Maximum	13.05	3.09	9.73	16.19	14.87	165.00	12.81	5.31	292.00	26.01	134.32	43.26	16.75
Mean	2.59	0.92	4.14	1.43	1.51	2.17	2.19	0.70	4.65	2.65	9.73	4.87	2.64
Standard deviation	2.57	0.80	2.36	2.30	2.23	7.86	2.53	0.81	9.86	3.78	18.79	10.63	3.46
CV	0.99	0.87	0.57	1.61	1.47	3.62	1.16	1.16	2.12	1.42	1.93	2.18	1.31
Variance	6.60	0.63	5.57	5.30	4.95	61.77	6.42	0.66	97.28	14.27	353.14	113.04	11.99
Skewness	1.74	1.49	0.16	4.17	4.41	13.42	2.61	3.38	14.66	3.95	4.28	2.98	2.42
50% (Median)	1.29	0.66	3.84	0.82	0.93	0.86	1.36	0.40	2.27	1.40	4.34	1.04	1.61
90%	6.04	1.80	7.06	3.32	2.52	3.56	4.93	1.41	10.35	6.23	16.70	9.42	5.93
95%	7.55	2.40	7.47	4.32	4.06	4.96	5.59	1.72	15.73	7.97	41.58	21.81	7.98
97.5%	8.34	2.75	8.38	6.43	5.96	8.00	10.79	2.06	24.19	9.24	68.49	32.53	12.39
99.0%	10.70	2.95	9.19	10.56	10.49	37.56	12.13	3.59	36.14	22.41	97.82	38.97	15.00
Ton Cut	7	5	7	6	5	11	5	6	16	10	17	5	7
Top Cut	/	5		6	<u> </u>	11	5		10	10	1/	<u> </u>	
Au cut - Domain	1215	1216	1217	1218	1222	1223	1224	1225	1313	1314	1323	1333	1341
Au cut - Domain	1215	1216	1217	1218	1222	1223	1224	1225	1313	1314	1323	1333	1341
Au cut - Domain Samples	1215 62	1216 14	1217 25	1218 73	1222 52	1223 861	1224 60	1225 57	1313 2725	1314 123	1323 177	1333 16	1341 36
Au cut - Domain Samples Minimum	1215 62 0.194	1216 14 0.04	1217 25 0.005	1218 73 0.005	52 0.047	861 0.003	60 0.039	1225 57 0.04	1313 2725 0.001	1314 123 0.005	1323 177 0.005	1333 16 0.06	1341 36
Au cut - Domain Samples Minimum Maximum	62 0.194 7	1216 14 0.04 3.091	25 0.005 7	73 0.005 6	52 0.047 5	861 0.003 11	60 0.039 5	57 0.04 5.308	2725 0.001 16	1314 123 0.005 10	1323 177 0.005 17	1333 16 0.06 5	36 0.005 7
Au cut - Domain Samples Minimum Maximum Mean	62 0.194 7 2.43	1216 14 0.04 3.091 0.92	25 0.005 7 4.00	73 0.005 6 1.25	52 0.047 5 1.29	861 0.003 11 1.54	60 0.039 5 1.84	57 0.04 5.308 0.70	2725 0.001 16 3.85	1314 123 0.005 10 2.35	1323 177 0.005 17 6.07	1333 16 0.06 5 1.76	36 0.005 7 2.23
Au cut - Domain Samples Minimum Maximum Mean Standard deviation	62 0.194 7 2.43 2.12	1216 14 0.04 3.091 0.92 0.796	25 0.005 7 4.00 2.107	73 0.005 6 1.25 1.475	52 0.047 5 1.29 1.213	861 0.003 11 1.54 1.977	60 0.039 5 1.84 1.474	57 0.04 5.308 0.70 0.811	2725 0.001 16 3.85 4.211	1314 123 0.005 10 2.35 2.387	1323 177 0.005 17 6.07 5.428	1333 16 0.06 5 1.76 1.708	36 0.005 7 2.23 2.229
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV	62 0.194 7 2.43 2.12 0.87	1216 14 0.04 3.091 0.92 0.796 0.87	25 0.005 7 4.00 2.107 0.53	73 0.005 6 1.25 1.475 1.18	52 0.047 5 1.29 1.213 0.94	861 0.003 11 1.54 1.977 1.28	60 0.039 5 1.84 1.474 0.80	57 0.04 5.308 0.70 0.811 1.16	2725 0.001 16 3.85 4.211 1.09	1314 123 0.005 10 2.35 2.387 1.01	1323 177 0.005 17 6.07 5.428 0.89	1333 16 0.06 5 1.76 1.708 0.97	36 0.005 7 2.23 2.229 1.00
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance	62 0.194 7 2.43 2.12 0.87 4.493	1216 14 0.04 3.091 0.92 0.796 0.87 0.633	25 0.005 7 4.00 2.107 0.53 4.441	73 0.005 6 1.25 1.475 1.18 2.177	52 0.047 5 1.29 1.213 0.94 1.47	861 0.003 11 1.54 1.977 1.28 3.91	60 0.039 5 1.84 1.474 0.80 2.174	57 0.04 5.308 0.70 0.811 1.16 0.658	2725 0.001 16 3.85 4.211 1.09 17.729	1314 123 0.005 10 2.35 2.387 1.01 5.7	1323 177 0.005 17 6.07 5.428 0.89 29.459	1333 16 0.06 5 1.76 1.708 0.97 2.917	36 0.005 7 2.23 2.229 1.00 4.969
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness	62 0.194 7 2.43 2.12 0.87 4.493 1.006	1216 14 0.04 3.091 0.92 0.796 0.87 0.633 1.487	25 0.005 7 4.00 2.107 0.53 4.441 -0.316	73 0.005 6 1.25 1.475 1.18 2.177 1.779	52 0.047 5 1.29 1.213 0.94 1.47 1.688	861 0.003 11 1.54 1.977 1.28 3.91 2.924	60 0.039 5 1.84 1.474 0.80 2.174 1.023	57 0.04 5.308 0.70 0.811 1.16 0.658 3.382	2725 0.001 16 3.85 4.211 1.09 17.729 1.619	1314 123 0.005 10 2.35 2.387 1.01 5.7 1.544	1323 177 0.005 17 6.07 5.428 0.89 29.459 0.818	1333 16 0.06 5 1.76 1.708 0.97 2.917 0.918	36 0.005 7 2.23 2.229 1.00 4.969 1.004
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	1215 62 0.194 7 2.43 2.12 0.87 4.493 1.006 1.29	1216 14 0.04 3.091 0.92 0.796 0.87 0.633 1.487 0.66	25 0.005 7 4.00 2.107 0.53 4.441 -0.316 3.837	73 0.005 6 1.25 1.475 1.18 2.177 1.779 0.816	52 0.047 5 1.29 1.213 0.94 1.47 1.688 0.93	861 0.003 11 1.54 1.977 1.28 3.91 2.924 0.855	60 0.039 5 1.84 1.474 0.80 2.174 1.023 1.36	57 0.04 5.308 0.70 0.811 1.16 0.658 3.382 0.4	2725 0.001 16 3.85 4.211 1.09 17.729 1.619 2.267	1314 123 0.005 10 2.35 2.387 1.01 5.7 1.544 1.404	1323 177 0.005 17 6.07 5.428 0.89 29.459 0.818 4.335	1333 16 0.06 5 1.76 1.708 0.97 2.917 0.918 1.04	1341 36 0.005 7 2.23 2.229 1.00 4.969 1.004 1.606
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	1215 62 0.194 7 2.43 2.12 0.87 4.493 1.006 1.29 6.037	1216 14 0.04 3.091 0.92 0.796 0.87 0.633 1.487 0.66 1.799	25 0.005 7 4.00 2.107 0.53 4.441 -0.316 3.837 6.971	73 0.005 6 1.25 1.475 1.18 2.177 1.779 0.816 3.32	52 0.047 5 1.29 1.213 0.94 1.47 1.688 0.93 2.52	861 0.003 11 1.54 1.977 1.28 3.91 2.924 0.855 3.558	1224 60 0.039 5 1.84 1.474 0.80 2.174 1.023 1.36 4.933	57 0.04 5.308 0.70 0.811 1.16 0.658 3.382 0.4 1.407	2725 0.001 16 3.85 4.211 1.09 17.729 1.619 2.267 10.348	1314 123 0.005 10 2.35 2.387 1.01 5.7 1.544 1.404 6.225	1323 177 0.005 17 6.07 5.428 0.89 29.459 0.818 4.335 16.7	1333 16 0.06 5 1.76 1.708 0.97 2.917 0.918 1.04 4.84	36 0.005 7 2.23 2.229 1.00 4.969 1.004 1.606 5.925

Table 14-111 Bluebird (BLU) domains statistics and top-cuts. Part 3.

Au raw - Domain	1342	1343	1344	1346	1610	1611	1612	1613	1614	1615	1616	1617	1618
Samples	37	74	242	93	83	223	212	246	366	156	267	67	50
Minimum	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Maximum	9.60	3.98	48.00	110.76	17.70	12.64	3.46	42.49	142.30	8.13	93.08	16.23	5.42
Mean	1.63	0.62	6.23	7.08	0.65	0.85	0.42	1.80	1.96	0.74	1.35	2.93	0.75
Standard deviation	1.89	0.76	7.45	12.96	1.95	1.39	0.55	5.65	7.96	1.29	6.34	4.02	1.14
CV	1.16	1.23	1.20	1.83	3.00	1.63	1.30	3.15	4.06	1.76	4.69	1.37	1.52
Variance	3.59	0.58	55.53	167.85	3.80	1.93	0.30	31.92	63.39	1.68	40.21	16.14	1.30
Skewness	2.44	2.05	2.96	5.98	8.07	5.34	2.64	5.53	15.15	2.94	11.99	2.01	2.51
50% (Median)	0.90	0.36	3.95	3.90	0.27	0.43	0.25	0.32	0.50	0.18	0.26	1.20	0.27
90%	3.10	1.65	13.08	14.76	1.19	1.85	1.09	2.97	4.24	2.14	1.89	6.49	1.89
95%	5.46	2.15	19.09	22.83	1.74	2.62	1.39	5.28	8.11	3.47	4.19	13.89	3.13
97.5%	6.28	2.62	27.92	24.92	1.80	3.83	2.02	16.27	12.68	4.92	9.28	14.76	4.33
99.0%	8.27	3.10	40.07	54.36	5.13	5.40	2.73	36.98	15.85	5.74	18.05	15.35	4.98
Top Cut	6	5	20	25	5	5	5	10	10	6	6	7	6
Au cut - Domain	1342	1343	1344	1346	1610	1611	1612	1613	1614	1615	1616	1617	1618
Samples	37	74	242	93	83	223	212	246	366	156	267	67	50
Minimum	0.042	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.006	0.01
Maximum	6	3.979	20	25	5	5	3.457	10	10	6	6	7	5.422
Mean	1.54	0.62	5.62	5.88	0.50	0.78	0.42	1.14	1.44	0.72	0.76	2.28	0.75
Standard deviation	1.541	0.764	5.192	6.142	0.709	0.953	0.549	2.149	2.388	1.226	1.324	2.363	1.14
CV	1.00	1.23	0.92	1.04	1.42	1.22	1.30	1.89	1.66	1.70	1.74	1.04	1.52
Variance	2.374	0.583	26.957	37.729	0.502	0.908	0.301	4.62	5.7	1.503	1.752	5.582	1.3
Skewness	1.596	2.05	1.408	1.81	3.637	2.266	2.635	3.067	2.493	2.594	2.746	0.941	2.512
	0.903	0.359	3.946	3.901	0.265	0.426	0.245	0.322	0.502	0.177	0.264	1.195	0.265
50% (Median)	0.903	0.000	0.0.0	0.001	0.200								
50% (Median) 90%	3.1	1.65	13.084	14.762	1.185	1.854	1.085	2.971	4.239	2.14	1.892	6.493	1.893
` ,							1.085 1.389	2.971 5.279	4.239 8.111	2.14 3.47	1.892 4.185	6.493 7	1.893 3.133
90%	3.1	1.65	13.084	14.762	1.185	1.854							

Table 14-112 Bluebird (BLU) domains statistics and top-cuts. Part 4.

		Table 1											
Au raw - Domain	1619	1620	1621	1622	1623	1624	1625	1626	1801	1802	1803	1805	1807
Samples	15	25	427	119	22	20	213	76	4	4	21	8	8
Minimum	0.05	0.01	0.01	0.01	0.11	0.02	0.01	0.02	0.19	0.07	0.12	0.57	1.10
Maximum	2.73	2.16	74.00	17.55	5.40	2.73	43.51	8.67	8.00	3.54	22.38	4.95	8.00
Mean	0.76	0.42	1.10	1.18	1.36	1.02	1.19	1.33	2.57	1.64	5.74	2.28	2.49
Standard deviation	0.76	0.50	4.25	2.29	1.28	0.84	3.25	1.48	3.19	1.29	6.63	1.50	2.24
CV	1.00	1.21	3.86	1.94	0.94	0.82	2.72	1.11	1.24	0.79	1.15	0.66	0.90
Variance	0.58	0.25	18.06	5.26	1.65	0.70	10.55	2.20	10.17	1.67	43.92	2.26	5.00
Skewness	1.60	2.29	13.47	5.11	1.62	0.68	10.82	2.32	1.04	0.32	1.15	0.54	1.79
50% (Median)	0.42	0.29	0.52	0.64	0.94	0.53	0.57	0.72	0.37	0.95	1.62	1.71	1.44
90%	1.77	0.70	1.73	1.87	3.10	2.27	2.52	3.01	5.48	2.92	16.07	4.23	4.62
95%	2.41	1.51	2.34	3.24	3.42	2.52	3.01	4.13	6.74	3.23	17.16	4.59	6.31
97.5%	2.57	1.92	3.57	6.74	4.32	2.62	3.91	4.75	7.37	3.39	19.66	4.77	7.15
99.0%	2.67	2.06	12.67	13.01	4.97	2.69	10.17	6.45	7.75	3.48	21.29	4.87	7.66
Top Cut	5	5	8	7	6	5	5	6	8	5	13	5	8
Au cut - Domain	1619	1620	1621	1622	1623	1624	1625	1626	1801	1802	1803	1805	1807
Samples	15	25	427	119	22	20	213	76	4	4	21	8	8
Minimum	0.049	0.005	0.005	0.005	0.112	0.02	0.005	0.02	0.191	0.07	0.122	0.568	1.095
Maximum	2.733	2.158	8	7	5.4	2.73	5	6	7.996	3.54	13	4.946	8
Mean	0.76	0.42	0.81	1.01	1.36	1.02	0.94	1.30	2.57	1.64	4.93	2.28	2.49
Standard deviation	0.758	0.504	1.145	1.338	1.284	0.836	1.027	1.332	3.19	1.292	5.092	1.504	2.236
CV	1.00	1.21	1.41	1.33	0.94	0.82	1.09	1.03	1.24	0.79	1.03	0.66	0.90
Variance	0.575	0.254	1.311	1.789	1.65	0.699	1.055	1.773	10.174	1.668	25.931	2.263	4.999
	4 505					0.681	1.929	1.64	1.044	0.319	0.784	0.544	1.787
Skewness	1.595	2.287	4.06	3.174	1.615	0.001							
Skewness 50% (Median)	0.42	0.289	4.06 0.52	3.174 0.639	1.615 0.943	0.53	0.573	0.717	0.368	0.95	1.623	1.71	1.444
									0.368 5.481	0.95 2.92	1.623 12.99	1.71 4.23	1.444 4.616
50% (Median)	0.42	0.289	0.52	0.639	0.943	0.53	0.573	0.717					
50% (Median) 90%	0.42 1.772	0.289 0.695	0.52 1.732	0.639 1.866	0.943 3.104	0.53 2.267	0.573 2.524	0.717 3.009	5.481	2.92	12.99	4.23	4.616

Table 14-113 Edin Hope (EDH) domains statistics and top-cuts. Part 1.

Au raw - Domain	2010	2110	2111	2112	2113	2114	2115	2116	2151	2152	2153	2154
Samples	45	115	73	644	154	99	250	200	112	143	216	317
Minimum	0.01	0.06	0.02	0.04	0.04	0.01	0.01	0.01	0.05	0.01	0.02	0.01
Maximum	7.48	8.86	5.89	49.90	38.70	11.20	13.50	23.70	13.50	21.85	24.10	51.90
Mean	1.55	1.51	1.43	2.83	2.41	1.15	2.13	2.25	1.24	1.00	1.48	2.28
Standard deviation	2.15	1.62	1.36	5.72	4.48	1.77	2.60	3.73	1.82	2.33	2.22	5.46
CV	1.39	1.07	0.95	2.02	1.86	1.53	1.22	1.66	1.47	2.33	1.51	2.40
Variance	4.62	2.62	1.86	32.67	20.08	3.12	6.77	13.93	3.31	5.41	4.94	29.83
Skewness	1.53	2.05	1.42	6.03	5.18	3.50	2.02	3.43	4.15	6.99	5.84	6.08
50% (Median)	0.64	0.96	0.94	1.23	1.03	0.58	0.99	0.95	0.74	0.54	0.80	0.84
90%	5.66	3.71	3.73	6.49	4.40	2.25	5.71	5.49	2.58	1.66	3.23	4.23
95%	6.16	5.06	4.29	10.20	5.68	5.33	7.97	8.77	4.29	2.54	4.00	8.24
97.5%	6.84	5.96	4.54	14.17	12.84	6.27	9.21	14.20	6.33	3.99	7.24	12.93
99.0%	7.23	6.97	5.71	33.24	22.43	8.97	12.15	20.50	8.93	11.88	9.22	31.48
Top Cut	99	99	99	20	6.2	6.4	99	9.2	4.4	6.7	7.7	11
Au cut - Domain	2010	2110	2111	2112	2113	2114	2115	2116	2151	2152	2153	2154
Samples	45	115	73	644	154	99	250	200	112	143	216	317
Minimum	0.005	0.06	0.02	0.04	0.04	0.01	0.01	0.01	0.05	0.005	0.02	0.01
Maximum	7.476	8.86	5.89	20	6.2	6.4	13.5	9.2	4.4	6.7	7.7	11
Mean	1.55	1.51	1.43	2.52	1.80	1.08	2.13	1.93	1.07	0.83	1.38	1.75
Standard deviation	2.149	1.618	1.364	3.563	1.73	1.425	2.603	2.439	1.072	1.124	1.552	2.413
CV	1.39	1.07	0.95	1.42	0.96	1.32	1.22	1.27	1.00	1.36	1.13	1.38
Variance	4.62	2.616	1.861	12.694	2.994	2.031	6.773	5.949	1.148	1.263	2.408	5.821
Skewness	1.533	2.047	1.422	2.899	1.212	2.612	2.019	1.867	1.89	3.581	2.299	2.539
50% (Median)	0.636	0.96	0.935	1.23	1.03	0.58	0.99	0.95	0.74	0.535	0.8	0.835
90%	5.655	3.705	3.726	6.486	4.398	2.251	5.71	5.49	2.578	1.66	3.226	4.226
95%	6.159	5.06	4.293	10.2	5.683	5.327	7.965	8.77	4.294	2.54	3.996	8.242
95%												
97.5%	6.841	5.959	4.543	14.17	6.2	6.27	9.213	9.2	4.4	3.992	7.236	11

Table 14-114 Edin Hope (EDH) domains statistics and top-cuts. Part 2.

Au raw - Domain	2155	2156	2253	2254	2255	2256	2257	2260	2261	2262	2270
Samples	647	204	25	156	21	59	40	83	22	16	100
Minimum	0.00	0.07	0.01	0.01	0.14	0.01	0.09	0.03	0.08	0.04	0.01
Maximum	101.84	32.90	6.45	18.10	9.20	4.19	50.01	55.50	8.40	12.00	52.11
Mean	1.75	1.52	1.93	2.01	1.88	0.94	3.50	3.07	2.01	2.72	2.57
Standard deviation	4.86	2.74	1.70	2.58	2.50	0.80	7.75	6.88	2.13	3.21	7.00
CV	2.77	1.80	0.88	1.28	1.33	0.85	2.22	2.24	1.06	1.18	2.72
Variance	23.60	7.52	2.89	6.65	6.25	0.64	60.08	47.35	4.55	10.28	48.94
Skewness	14.76	8.08	1.18	3.25	2.01	1.92	5.39	6.37	1.75	1.76	5.42
50% (Median)	0.79	0.90	1.33	1.19	0.62	0.62	1.65	1.59	1.16	1.56	0.81
90%	3.54	3.06	4.21	4.11	4.52	2.00	5.03	4.30	4.13	6.49	4.10
95%	5.35	4.47	5.46	6.96	8.22	2.40	7.95	5.88	6.80	9.17	6.63
97.5%	8.58	5.44	5.96	9.23	8.78	3.06	9.21	6.81	7.67	10.58	20.90
99.0%	13.63	9.46	6.25	13.03	9.03	3.72	33.69	37.28	8.11	11.43	36.91
Top Cut	15	5.6	99	9	5	99	10	7	99	99	7
Au cut - Domain	2155	2156	2253	2254	2255	2256	2257	2260	2261	2262	2270
Samples	647	204	25	156	21	59	40	83	22	16	100
Samples Minimum					21 0.143		40 0.09				
	647	204	25	156		59		83	22	16	100
Minimum	647 0.002	204 0.07	25 0.011	156 0.009	0.143	59 0.01	0.09	83 0.03	22 0.08	16 0.039	100 0.005
Minimum Maximum	647 0.002 15	204 0.07 5.6	25 0.011 6.45	156 0.009 9	0.143 5	59 0.01 4.191	0.09	83 0.03 7	22 0.08 8.4	16 0.039 12	100 0.005 7
Minimum Maximum Mean	647 0.002 15 1.54	204 0.07 5.6 1.31	25 0.011 6.45 1.93	156 0.009 9 1.88	0.143 5 1.51	59 0.01 4.191 0.94	0.09 10 2.50	83 0.03 7 2.17	22 0.08 8.4 2.01	16 0.039 12 2.72	100 0.005 7 1.55
Minimum Maximum Mean Standard deviation	647 0.002 15 1.54 2.234	204 0.07 5.6 1.31 1.29	25 0.011 6.45 1.93 1.7	156 0.009 9 1.88 2.021	0.143 5 1.51 1.571	59 0.01 4.191 0.94 0.798	0.09 10 2.50 2.462	83 0.03 7 2.17 1.611	22 0.08 8.4 2.01 2.134	16 0.039 12 2.72 3.206	100 0.005 7 1.55 1.865
Minimum Maximum Mean Standard deviation CV	647 0.002 15 1.54 2.234 1.45	204 0.07 5.6 1.31 1.29 0.98	25 0.011 6.45 1.93 1.7 0.88	156 0.009 9 1.88 2.021 1.07	0.143 5 1.51 1.571 1.04	59 0.01 4.191 0.94 0.798 0.85	0.09 10 2.50 2.462 0.99	83 0.03 7 2.17 1.611 0.74	22 0.08 8.4 2.01 2.134 1.06	16 0.039 12 2.72 3.206 1.18	100 0.005 7 1.55 1.865 1.21
Minimum Maximum Mean Standard deviation CV Variance	647 0.002 15 1.54 2.234 1.45 4.989	204 0.07 5.6 1.31 1.29 0.98 1.664	25 0.011 6.45 1.93 1.7 0.88 2.889	156 0.009 9 1.88 2.021 1.07 4.083	0.143 5 1.51 1.571 1.04 2.467	59 0.01 4.191 0.94 0.798 0.85 0.637	0.09 10 2.50 2.462 0.99 6.061	83 0.03 7 2.17 1.611 0.74 2.595	22 0.08 8.4 2.01 2.134 1.06 4.552	16 0.039 12 2.72 3.206 1.18 10.276	100 0.005 7 1.55 1.865 1.21 3.48
Minimum Maximum Mean Standard deviation CV Variance Skewness	647 0.002 15 1.54 2.234 1.45 4.989 3.548	204 0.07 5.6 1.31 1.29 0.98 1.664 1.821	25 0.011 6.45 1.93 1.7 0.88 2.889 1.176	156 0.009 9 1.88 2.021 1.07 4.083 1.981	0.143 5 1.51 1.571 1.04 2.467 1.298	59 0.01 4.191 0.94 0.798 0.85 0.637 1.919	0.09 10 2.50 2.462 0.99 6.061 1.524	83 0.03 7 2.17 1.611 0.74 2.595 1.382	22 0.08 8.4 2.01 2.134 1.06 4.552 1.749	16 0.039 12 2.72 3.206 1.18 10.276 1.759	100 0.005 7 1.55 1.865 1.21 3.48 1.656
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	647 0.002 15 1.54 2.234 1.45 4.989 3.548 0.79	204 0.07 5.6 1.31 1.29 0.98 1.664 1.821 0.898	25 0.011 6.45 1.93 1.7 0.88 2.889 1.176 1.327	156 0.009 9 1.88 2.021 1.07 4.083 1.981 1.193	0.143 5 1.51 1.571 1.04 2.467 1.298 0.616	59 0.01 4.191 0.94 0.798 0.85 0.637 1.919 0.62	0.09 10 2.50 2.462 0.99 6.061 1.524 1.645	83 0.03 7 2.17 1.611 0.74 2.595 1.382 1.591	22 0.08 8.4 2.01 2.134 1.06 4.552 1.749	16 0.039 12 2.72 3.206 1.18 10.276 1.759	100 0.005 7 1.55 1.865 1.21 3.48 1.656 0.813
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	647 0.002 15 1.54 2.234 1.45 4.989 3.548 0.79 3.543	204 0.07 5.6 1.31 1.29 0.98 1.664 1.821 0.898 3.056	25 0.011 6.45 1.93 1.7 0.88 2.889 1.176 1.327 4.213	156 0.009 9 1.88 2.021 1.07 4.083 1.981 1.193 4.112	0.143 5 1.51 1.571 1.04 2.467 1.298 0.616 4.52	59 0.01 4.191 0.94 0.798 0.85 0.637 1.919 0.62 2.002	0.09 10 2.50 2.462 0.99 6.061 1.524 1.645 5.025	83 0.03 7 2.17 1.611 0.74 2.595 1.382 1.591 4.298	22 0.08 8.4 2.01 2.134 1.06 4.552 1.749 1.16 4.127	16 0.039 12 2.72 3.206 1.18 10.276 1.759 1.56 6.492	100 0.005 7 1.55 1.865 1.21 3.48 1.656 0.813 4.097

Table 14-115 South Junction (EDH) domains statistics and top-cuts.

Au raw - Domain	1347	1381	1382	3201	3202	3203	3204	3205	3206	3220	3221	3222	3251	3253	3254
Samples	127	167	83	1071	441	320	230	42	88	39	8	23	87	288	21
Minimum	0.02	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.61	0.01	0.01	0.01	0.06
Maximum	214.00	63.58	26.80	50.83	43.20	20.90	18.52	4.04	9.26	12.18	3.78	2.59	17.20	25.40	14.86
Mean	7.78	8.47	5.33	2.01	2.63	2.30	1.18	0.53	0.81	1.56	1.86	0.20	2.05	2.20	2.07
Standard deviation	20.40	9.65	5.30	3.59	3.81	3.12	2.49	0.97	1.45	2.62	1.19	0.52	3.14	3.18	3.13
CV	2.62	1.14	1.00	1.79	1.45	1.36	2.12	1.84	1.78	1.68	0.64	2.65	1.53	1.45	1.51
Variance	416.22	93.20	28.06	12.88	14.51	9.72	6.19	0.95	2.09	6.84	1.40	0.27	9.84	10.14	9.78
Skewness	8.36	2.94	1.81	5.32	4.57	2.72	4.51	2.52	3.11	2.95	0.61	4.17	3.40	4.39	3.03
90%	16.73	18.80	13.09	5.03	6.07	5.26	3.12	1.56	2.29	3.33	3.60	0.28	4.20	4.43	4.14
95%	22.52	22.80	15.06	7.71	8.22	8.65	4.94	2.79	3.63	5.74	3.69	0.42	7.86	9.35	5.21
97.5%	33.57	38.39	19.82	11.02	11.88	11.54	6.79	3.83	4.62	11.03	3.73	1.35	14.16	9.61	9.40
99.0%	57.55	48.75	24.18	17.32	19.07	14.27	14.05	3.97	5.57	11.72	3.76	2.09	15.33	17.00	12.68
Top Cut	25	26	14	26	16.5	12	7	9999	6	6	9999	9999	12	13	8
Au cut - Domain	1347	1381	1382	3201	3202	3203	3204	3205	3206	3220	3221	3222	3251	3253	3254
Au cut - Domain Samples	1347 127	1381 167	1382 83	3201 1071	3202 441	3203 320	3204 230	3205 42	3206 88	3220 39	3221 8	3222 23	3251 87	3253 288	3254 21
Samples	127	167	83	1071	441	320	230	42	88	39	8	23	87	288	21
Samples Minimum	127 0.02	167 0.005	83 0.026	1071 0.005	441 0.005	320 0.005	230 0.005	42 0.005	88 0.005	39 0.005	8 0.61	23 0.005	87 0.06	288 0.005	21 0.06
Samples Minimum Maximum	127 0.02 25	167 0.005 26	83 0.026 14	1071 0.005 26	441 0.005 16.5	320 0.005 12	230 0.005 7	42 0.005 4.035	88 0.005 6	39 0.005 6	8 0.61 3.777	23 0.005 2.585	87 0.06 12	288 0.005 13	21 0.06 8
Samples Minimum Maximum Mean	127 0.02 25 5.70	167 0.005 26 7.72	83 0.026 14 4.94	1071 0.005 26 1.98	441 0.005 16.5 2.52	320 0.005 12 2.21	230 0.005 7 1.00	42 0.005 4.035 0.53	88 0.005 6 0.78	39 0.005 6 1.27	8 0.61 3.777 1.86	23 0.005 2.585 0.20	87 0.06 12 2.02	288 0.005 13 2.08	21 0.06 8 1.77
Samples Minimum Maximum Mean Standard deviation	127 0.02 25 5.70 6.619	167 0.005 26 7.72 6.812	83 0.026 14 4.94 4.203	1071 0.005 26 1.98 3.289	441 0.005 16.5 2.52 3.102	320 0.005 12 2.21 2.735	230 0.005 7 1.00 1.601	42 0.005 4.035 0.53 0.972	88 0.005 6 0.78 1.259	39 0.005 6 1.27 1.611	8 0.61 3.777 1.86 1.185	23 0.005 2.585 0.20 0.521	87 0.06 12 2.02 1.941	288 0.005 13 2.08 2.437	21 0.06 8 1.77 2.026
Samples Minimum Maximum Mean Standard deviation CV	127 0.02 25 5.70 6.619 1.16	167 0.005 26 7.72 6.812 0.88	83 0.026 14 4.94 4.203 0.85	1071 0.005 26 1.98 3.289 1.66	441 0.005 16.5 2.52 3.102 1.23	320 0.005 12 2.21 2.735 1.24	230 0.005 7 1.00 1.601 1.60	42 0.005 4.035 0.53 0.972 1.84	88 0.005 6 0.78 1.259 1.63	39 0.005 6 1.27 1.611 1.27	8 0.61 3.777 1.86 1.185 0.64	23 0.005 2.585 0.20 0.521 2.65	87 0.06 12 2.02 1.941 0.96	288 0.005 13 2.08 2.437 1.18	21 0.06 8 1.77 2.026 1.14
Samples Minimum Maximum Mean Standard deviation CV Variance	127 0.02 25 5.70 6.619 1.16 43.811	167 0.005 26 7.72 6.812 0.88 46.406	83 0.026 14 4.94 4.203 0.85 17.667	1071 0.005 26 1.98 3.289 1.66 10.816	441 0.005 16.5 2.52 3.102 1.23 9.625	320 0.005 12 2.21 2.735 1.24 7.48	230 0.005 7 1.00 1.601 1.60 2.562	42 0.005 4.035 0.53 0.972 1.84 0.945	88 0.005 6 0.78 1.259 1.63 1.585	39 0.005 6 1.27 1.611 1.27 2.596	8 0.61 3.777 1.86 1.185 0.64 1.404	23 0.005 2.585 0.20 0.521 2.65 0.271	87 0.06 12 2.02 1.941 0.96 3.768	288 0.005 13 2.08 2.437 1.18 5.939	21 0.06 8 1.77 2.026 1.14 4.105
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness	127 0.02 25 5.70 6.619 1.16 43.811 1.693	167 0.005 26 7.72 6.812 0.88 46.406 1.176	83 0.026 14 4.94 4.203 0.85 17.667 0.953	1071 0.005 26 1.98 3.289 1.66 10.816 3.807	441 0.005 16.5 2.52 3.102 1.23 9.625 2.362	320 0.005 12 2.21 2.735 1.24 7.48 1.993	230 0.005 7 1.00 1.601 1.60 2.562 2.325	42 0.005 4.035 0.53 0.972 1.84 0.945 2.517	88 0.005 6 0.78 1.259 1.63 1.585 2.161	39 0.005 6 1.27 1.611 1.27 2.596 1.735	8 0.61 3.777 1.86 1.185 0.64 1.404 0.614	23 0.005 2.585 0.20 0.521 2.65 0.271 4.172	87 0.06 12 2.02 1.941 0.96 3.768 2.329	288 0.005 13 2.08 2.437 1.18 5.939 2.591	21 0.06 8 1.77 2.026 1.14 4.105 1.716
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 90%	127 0.02 25 5.70 6.619 1.16 43.811 1.693 16.732	167 0.005 26 7.72 6.812 0.88 46.406 1.176 18.801	83 0.026 14 4.94 4.203 0.85 17.667 0.953 13.092	1071 0.005 26 1.98 3.289 1.66 10.816 3.807 5.031	441 0.005 16.5 2.52 3.102 1.23 9.625 2.362 6.065	320 0.005 12 2.21 2.735 1.24 7.48 1.993 5.259	230 0.005 7 1.00 1.601 1.60 2.562 2.325 3.123	42 0.005 4.035 0.53 0.972 1.84 0.945 2.517 1.56	88 0.005 6 0.78 1.259 1.63 1.585 2.161 2.293	39 0.005 6 1.27 1.611 1.27 2.596 1.735 3.326	8 0.61 3.777 1.86 1.185 0.64 1.404 0.614 3.604	23 0.005 2.585 0.20 0.521 2.65 0.271 4.172 0.284	87 0.06 12 2.02 1.941 0.96 3.768 2.329 4.204	288 0.005 13 2.08 2.437 1.18 5.939 2.591 4.425	21 0.06 8 1.77 2.026 1.14 4.105 1.716 4.139

Table 14-116 Polar Star (POL) domains statistics and top-cuts. Part 1.

Au raw - Domain	3101	3102	3103	3104	3105	3106	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124
Samples	172	1020	526	91	164	57	34	61	31	946	256	659	246	489	47	97
Minimum	0.01	0.01	0.01	0.01	0.01	0.02	0.04	0.11	0.02	0.01	0.01	0.01	0.01	0.01	0.07	0.04
Maximum	37.20	116.00	95.00	341.72	740.00	78.20	28.50	78.80	31.40	460.00	124.00	137.03	27.40	34.20	5.40	34.20
Mean	3.85	2.66	2.08	4.51	15.36	4.13	3.51	2.94	4.22	4.18	2.41	1.59	1.31	0.92	1.27	1.66
Standard deviation	6.60	6.18	5.55	25.90	87.01	13.80	5.90	9.99	8.47	26.08	11.69	7.20	2.15	2.09	1.19	3.27
cv	1.72	2.33	2.67	5.75	5.67	3.35	1.68	3.40	2.01	6.24	4.86	4.54	1.64	2.28	0.94	1.97
Variance	43.58	38.14	30.82	670.80	7570.81	190.42	34.83	99.73	71.79	680.13	136.60	51.82	4.60	4.39	1.42	10.70
Skewness	3.03	8.73	9.63	12.23	7.34	4.64	2.90	6.19	2.57	13.64	9.41	15.24	7.28	13.72	1.94	6.86
90%	10.20	5.61	3.72	6.13	8.15	2.48	7.20	3.19	6.30	4.24	2.26	2.25	2.87	1.37	2.75	3.01
95%	20.91	8.72	6.48	9.75	21.11	18.07	15.68	5.71	26.90	9.63	4.88	4.24	3.57	1.96	3.95	6.74
97.5%	23.58	15.20	11.08	15.06	71.49	47.08	21.43	19.26	29.15	27.89	10.98	7.26	5.17	2.90	4.63	8.27
99.0%	32.31	29.40	21.34	51.26	433.15	65.75	25.67	54.62	30.50	61.91	19.06	9.92	9.92	5.39	5.10	10.63
Top Cut	9999	50	33	60	90	45	9999	25	15	80	20	25	13	11	9999	13
Au cut - Domain	3101	3102	3103	3104	3105	3106	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124
Samples	172	1020	526	91	164	57	34	61	31	946	256	659	246	489	47	97
Minimum	0.01	0.005	0.01	0.005	0.01	0.02	0.04	0.11	0.02	0.005	0.005	0.005	0.01	0.01	0.07	0.04
Maximum	37.2	50	33	60	90	45	28.5	25	15	80	20	25	13	11	5.4	13
Mean	3.85	2.58	1.92	2.96	5.35	3.19	3.51	2.02	2.81	2.84	1.47	1.25	1.26	0.84	1.27	1.53
Standard deviation	6.602	5.191	3.825	7.72	15.625	9.084	5.902	4.294	4.346	9.247	3.178	2.471	1.668	1	1.19	2.176
cv	1.72	2.02	1.99	2.61	2.92	2.84	1.68	2.12	1.55	3.26	2.17	1.97	1.32	1.19	0.94	1.43
Variance	43.582	26.952	14.627	59.601	244.138	82.51	34.832	18.439	18.886	85.515	10.102	6.106	2.782	0.999	1.415	4.734
Skewness	3.027	5.82	5.215	5.973	4.5	3.927	2.896	4.493	2.095	6.287	4.703	6.626	3.933	5.805	1.938	3.029
90%	10.204	5.608	3.718	6.131	8.149	2.481	7.198	3.192	6.295	4.239	2.26	2.254	2.866	1.37	2.752	3.013
95%	20.913	8.718	6.479	9.75	21.109	18.07	15.683	5.714	15	9.627	4.884	4.242	3.571	1.956	3.947	6.743
1																
97.5%	23.584	15.202	11.078	15.062	71.487	43.467	21.43	19.255	15	27.889	10.978	7.256	5.169	2.901	4.632	8.272

Table 14-117 Polar Star (POL) domains statistics and top-cuts. Part 2.

Au raw - Domain	3125	3140	3141	3142	3143	3144	3145	3150	3151	3152	3170	3171	3172	3256	3260
Samples	136	459	95	23	325	36	97	20	185	101	267	101	267	22	178
Minimum	0.06	0.01	0.01	0.06	0.01	0.01	0.01	0.11	0.01	0.01	0.01	0.01	0.01	0.10	0.01
Maximum	8.85	60.25	78.35	18.36	32.72	12.03	43.04	30.55	38.45	9.16	11.63	9.16	11.63	3.25	46.80
Mean	1.12	3.87	2.96	2.55	1.84	1.08	2.55	2.54	1.54	0.86	0.96	0.86	0.96	0.98	1.80
Standard deviation	1.08	7.26	7.83	4.04	3.61	2.29	7.02	6.55	3.42	1.38	1.52	1.38	1.52	0.77	5.20
CV	0.97	1.88	2.64	1.59	1.97	2.13	2.76	2.58	2.22	1.60	1.58	1.60	1.58	0.79	2.90
Variance	1.17	52.72	61.26	16.34	13.03	5.26	49.34	42.90	11.72	1.91	2.31	1.91	2.31	0.60	27.03
Skewness	4.15	4.07	7.12	3.03	3.91	3.39	4.13	3.89	7.49	3.75	3.88	3.75	3.88	1.46	6.15
90%	1.99	9.34	7.59	6.00	5.52	2.45	4.70	2.92	3.19	1.88	2.26	1.88	2.26	1.91	3.64
95%	2.42	16.47	10.67	6.53	8.42	5.30	16.82	5.42	4.64	2.41	3.38	2.41	3.38	2.56	5.83
97.5%	3.22	28.91	16.70	12.44	12.42	6.42	26.16	17.98	9.59	5.86	4.56	5.86	4.56	2.90	11.52
99.0%	6.43	36.20	26.12	15.99	17.53	9.79	36.17	25.52	12.58	6.38	7.86	6.38	7.86	3.11	31.35
Top Cut	9999	9999	30	10	12	6	10	9999	9999	6	5.5	3	5	9999	7.4
Au cut - Domain	3125	3140	3141	3142	3143	3144	3145	3150	3151	3152	3170	3171	3172	3256	3260
Samples								3130				31/1	31/2	3256	3200
Samples	136	459	95	23	325	36	97	20	185	101	267	101	267	22	178
Minimum	136 0.06	459 0.01	95 0.005	23 0.06	325 0.005	36 0.005				101 0.005					
·							97	20	185		267	101	267	22	178
Minimum	0.06	0.01	0.005	0.06	0.005	0.005	97 0.005	20 0.114	185 0.005	0.005	267 0.005	101 0.005	267 0.005	22 0.101	178 0.005
Minimum Maximum	0.06 8.85	0.01 60.25	0.005 30	0.06 10	0.005 12	0.005	97 0.005 10	20 0.114 6	185 0.005 5.5	0.005	267 0.005 5	101 0.005 3	267 0.005 5	22 0.101 3.252	178 0.005 7.4
Minimum Maximum Mean	0.06 8.85 1.12	0.01 60.25 3.87	0.005 30 2.61	0.06 10 2.13	0.005 12 1.67	0.005 6 0.91	97 0.005 10 1.47	20 0.114 6 1.31	185 0.005 5.5 1.19	0.005 3 0.71	267 0.005 5 0.88	101 0.005 3 0.71	267 0.005 5 0.88	22 0.101 3.252 0.98	178 0.005 7.4 1.18
Minimum Maximum Mean Standard deviation	0.06 8.85 1.12 1.082	0.01 60.25 3.87 7.261	0.005 30 2.61 4.939	0.06 10 2.13 2.53	0.005 12 1.67 2.808	0.005 6 0.91 1.604	97 0.005 10 1.47 2.698	20 0.114 6 1.31 1.664	185 0.005 5.5 1.19 1.393	0.005 3 0.71 0.764	267 0.005 5 0.88 1.116	101 0.005 3 0.71 0.764	267 0.005 5 0.88 1.116	22 0.101 3.252 0.98 0.773	178 0.005 7.4 1.18 1.824
Minimum Maximum Mean Standard deviation CV	0.06 8.85 1.12 1.082 0.97	0.01 60.25 3.87 7.261 1.88	0.005 30 2.61 4.939 1.90	0.06 10 2.13 2.53 1.19	0.005 12 1.67 2.808 1.68	0.005 6 0.91 1.604 1.77	97 0.005 10 1.47 2.698 1.83	20 0.114 6 1.31 1.664 1.27	185 0.005 5.5 1.19 1.393 1.17	0.005 3 0.71 0.764 1.07	267 0.005 5 0.88 1.116 1.27	101 0.005 3 0.71 0.764 1.07	267 0.005 5 0.88 1.116 1.27	22 0.101 3.252 0.98 0.773 0.79	178 0.005 7.4 1.18 1.824 1.54
Minimum Maximum Mean Standard deviation CV Variance	0.06 8.85 1.12 1.082 0.97 1.172	0.01 60.25 3.87 7.261 1.88 52.718	0.005 30 2.61 4.939 1.90 24.389	0.06 10 2.13 2.53 1.19 6.402	0.005 12 1.67 2.808 1.68 7.885	0.005 6 0.91 1.604 1.77 2.574	97 0.005 10 1.47 2.698 1.83 7.278	20 0.114 6 1.31 1.664 1.27 2.77	185 0.005 5.5 1.19 1.393 1.17 1.939	0.005 3 0.71 0.764 1.07 0.583	267 0.005 5 0.88 1.116 1.27 1.246	101 0.005 3 0.71 0.764 1.07 0.583	267 0.005 5 0.88 1.116 1.27 1.246	22 0.101 3.252 0.98 0.773 0.79 0.597	178 0.005 7.4 1.18 1.824 1.54 3.329
Minimum Maximum Mean Standard deviation CV Variance Skewness	0.06 8.85 1.12 1.082 0.97 1.172 4.145	0.01 60.25 3.87 7.261 1.88 52.718 4.067	0.005 30 2.61 4.939 1.90 24.389 3.379	0.06 10 2.13 2.53 1.19 6.402 1.889	0.005 12 1.67 2.808 1.68 7.885 2.359	0.005 6 0.91 1.604 1.77 2.574 2.177	97 0.005 10 1.47 2.698 1.83 7.278 2.394	20 0.114 6 1.31 1.664 1.27 2.77 1.812	185 0.005 5.5 1.19 1.393 1.17 1.939 1.741	0.005 3 0.71 0.764 1.07 0.583 1.544	267 0.005 5 0.88 1.116 1.27 1.246 2.081	101 0.005 3 0.71 0.764 1.07 0.583 1.544	267 0.005 5 0.88 1.116 1.27 1.246 2.081	22 0.101 3.252 0.98 0.773 0.79 0.597 1.464	178 0.005 7.4 1.18 1.824 1.54 3.329 2.24
Minimum Maximum Mean Standard deviation CV Variance Skewness 90%	0.06 8.85 1.12 1.082 0.97 1.172 4.145 1.99	0.01 60.25 3.87 7.261 1.88 52.718 4.067 9.34	0.005 30 2.61 4.939 1.90 24.389 3.379 7.593	0.06 10 2.13 2.53 1.19 6.402 1.889 6.004	0.005 12 1.67 2.808 1.68 7.885 2.359 5.523	0.005 6 0.91 1.604 1.77 2.574 2.177 2.445	97 0.005 10 1.47 2.698 1.83 7.278 2.394 4.699	20 0.114 6 1.31 1.664 1.27 2.77 1.812 2.922	185 0.005 5.5 1.19 1.393 1.17 1.939 1.741 3.19	0.005 3 0.71 0.764 1.07 0.583 1.544 1.875	267 0.005 5 0.88 1.116 1.27 1.246 2.081 2.255	101 0.005 3 0.71 0.764 1.07 0.583 1.544 1.875	267 0.005 5 0.88 1.116 1.27 1.246 2.081 2.255	22 0.101 3.252 0.98 0.773 0.79 0.597 1.464 1.907	178 0.005 7.4 1.18 1.824 1.54 3.329 2.24 3.644

Table 14-118 Archenar (ARC) domains statistics and top-cuts. Part 1.

Au raw - Domain	3501	3502	3503	3504	3505	3506	3510	3511	3521	3522	3523	3524	3525
Samples	68	351	124	69	45	106	36	92	86	26	21	143	77
Minimum	0.09	0.07	0.08	0.12	0.02	0.01	0.39	0.14	0.07	0.06	0.04	0.01	0.11
Maximum	4.78	78.90	19.30	11.60	12.67	13.10	41.10	17.20	5.62	2.06	4.02	74.30	16.90
Mean	1.43	1.45	2.17	1.21	1.35	1.25	4.42	1.89	0.94	0.55	1.05	1.80	1.64
Standard deviation	1.15	4.53	3.35	1.62	2.46	1.88	8.88	3.03	0.97	0.48	1.06	6.76	2.31
CV	0.80	3.13	1.54	1.33	1.83	1.51	2.01	1.61	1.04	0.88	1.01	3.77	1.41
Variance	1.33	20.56	11.23	2.61	6.07	3.53	78.92	9.18	0.94	0.23	1.12	45.76	5.33
Skewness	1.15	14.49	3.18	4.35	3.53	4.49	3.34	4.23	2.51	1.55	1.29	9.32	4.33
50% (Median)	0.93	0.74	0.87	0.77	0.66	0.74	1.36	1.03	0.59	0.34	0.45	0.67	0.92
90%	3.08	2.25	5.66	2.26	2.71	2.39	8.55	3.38	2.16	1.12	2.67	2.35	3.34
95%	3.51	3.33	8.48	3.99	4.58	3.26	19.08	4.38	2.86	1.49	2.74	3.96	4.92
97.5%	4.55	6.96	12.58	4.92	10.17	5.62	37.41	13.98	3.55	1.79	3.35	6.69	7.65
99.0%	4.75	12.25	17.94	7.23	11.89	11.32	39.62	17.20	4.61	1.95	3.75	22.30	10.02
Top Cut	5	15	20	6	5	12	6	5	6	5	5	8	8
Au cut - Domain	3501	3502	3503	3504	3505	3506	3510	3511	3521	3522	3523	3524	3525
Samples	68	351	124	69	45	106	36	92	86	26	21	143	77
Minimum	0.09	0.07	0.08	0.12	0.02	0.01	0.39	0.14	0.07	0.06	0.036	0.01	0.11
Maximum													
Maximum	4.78	15	19.3	6	5	12	6	5	5.62	2.06	4.02	8	8
Mean	4.78 1.43	15 1.27	19.3 2.17	6 1.13	5 1.04	12 1.24	6 2.19	5 1.47	5.62 0.94	2.06 0.55	4.02 1.05	8 1.16	8 1.52
				-			-	-				-	-
Mean	1.43	1.27	2.17	1.13	1.04	1.24	2.19	1.47	0.94	0.55	1.05	1.16	1.52
Mean Standard deviation	1.43 1.153	1.27 1.991	2.17 3.35	1.13 1.17	1.04 1.295	1.24 1.816	2.19 1.864	1.47 1.245	0.94 0.968	0.55 0.483	1.05 1.059	1.16 1.492	1.52 1.678
Mean Standard deviation CV	1.43 1.153 0.80	1.27 1.991 1.57	2.17 3.35 1.54	1.13 1.17 1.04	1.04 1.295 1.24	1.24 1.816 1.47	2.19 1.864 0.85	1.47 1.245 0.85	0.94 0.968 1.04	0.55 0.483 0.88	1.05 1.059 1.01	1.16 1.492 1.29	1.52 1.678 1.10
Mean Standard deviation CV Variance	1.43 1.153 0.80 1.328	1.27 1.991 1.57 3.962	2.17 3.35 1.54 11.225	1.13 1.17 1.04 1.37	1.04 1.295 1.24 1.676	1.24 1.816 1.47 3.299	2.19 1.864 0.85 3.474	1.47 1.245 0.85 1.55	0.94 0.968 1.04 0.937	0.55 0.483 0.88 0.234	1.05 1.059 1.01 1.121	1.16 1.492 1.29 2.227	1.52 1.678 1.10 2.817
Mean Standard deviation CV Variance Skewness	1.43 1.153 0.80 1.328 1.152	1.27 1.991 1.57 3.962 4.692	2.17 3.35 1.54 11.225 3.176	1.13 1.17 1.04 1.37 2.502	1.04 1.295 1.24 1.676 2.094	1.24 1.816 1.47 3.299 4.325	2.19 1.864 0.85 3.474 1.191	1.47 1.245 0.85 1.55 1.388	0.94 0.968 1.04 0.937 2.511	0.55 0.483 0.88 0.234 1.547	1.05 1.059 1.01 1.121 1.287	1.16 1.492 1.29 2.227 2.948	1.52 1.678 1.10 2.817 2.421
Mean Standard deviation CV Variance Skewness 50% (Median)	1.43 1.153 0.80 1.328 1.152 0.93	1.27 1.991 1.57 3.962 4.692 0.735	2.17 3.35 1.54 11.225 3.176 0.87	1.13 1.17 1.04 1.37 2.502 0.77	1.04 1.295 1.24 1.676 2.094 0.655	1.24 1.816 1.47 3.299 4.325 0.74	2.19 1.864 0.85 3.474 1.191 1.36	1.47 1.245 0.85 1.55 1.388 1.03	0.94 0.968 1.04 0.937 2.511 0.59	0.55 0.483 0.88 0.234 1.547 0.34	1.05 1.059 1.01 1.121 1.287 0.449	1.16 1.492 1.29 2.227 2.948 0.665	1.52 1.678 1.10 2.817 2.421 0.92
Mean Standard deviation CV Variance Skewness 50% (Median) 90%	1.43 1.153 0.80 1.328 1.152 0.93 3.08	1.27 1.991 1.57 3.962 4.692 0.735 2.248	2.17 3.35 1.54 11.225 3.176 0.87 5.664	1.13 1.17 1.04 1.37 2.502 0.77 2.257	1.04 1.295 1.24 1.676 2.094 0.655 2.705	1.24 1.816 1.47 3.299 4.325 0.74 2.392	2.19 1.864 0.85 3.474 1.191 1.36 6	1.47 1.245 0.85 1.55 1.388 1.03 3.376	0.94 0.968 1.04 0.937 2.511 0.59 2.156	0.55 0.483 0.88 0.234 1.547 0.34 1.124	1.05 1.059 1.01 1.121 1.287 0.449 2.668	1.16 1.492 1.29 2.227 2.948 0.665 2.353	1.52 1.678 1.10 2.817 2.421 0.92 3.337

Table 14-119 Archenar (ARC) domains statistics and top-cuts. Part 2.

Au raw - Domain	3526	3530	3531	3532	3533	3534	3541	3542	3543	3561	3562	3563	3564
Samples	147	408	42	368	473	55	198	21	43	151	81	33	39
Minimum	0.06	0.04	0.03	0.03	0.01	0.10	0.01	0.23	0.10	0.04	0.10	0.36	0.19
Maximum	5.97	215.70	5.31	79.60	86.30	54.40	8.21	4.10	3.18	9.39	13.10	2.19	4.33
Mean	1.09	2.72	1.92	1.63	2.56	3.31	0.90	1.27	1.04	1.25	1.26	0.83	0.88
Standard deviation	1.10	13.07	1.62	4.46	6.94	9.47	1.27	0.92	0.78	1.37	1.83	0.44	0.77
CV	1.01	4.80	0.84	2.73	2.71	2.86	1.41	0.73	0.75	1.10	1.45	0.53	0.88
Variance	1.20	170.69	2.62	19.86	48.18	89.66	1.62	0.85	0.62	1.87	3.35	0.20	0.60
Skewness	2.16	13.35	0.60	14.75	8.46	4.35	3.43	1.38	1.05	3.41	4.53	1.35	2.65
50% (Median)	0.69	0.76	1.21	0.85	0.99	0.82	0.53	1.10	0.76	0.84	0.68	0.67	0.67
90%	2.44	3.18	4.61	3.06	4.20	2.79	1.87	2.41	2.30	2.58	2.03	1.38	1.75
95%	3.80	6.97	4.61	5.69	9.34	10.64	3.67	2.58	2.52	3.06	3.02	1.73	2.22
97.5%	4.31	18.76	4.61	6.86	15.70	36.03	5.40	3.31	2.75	3.82	7.50	1.85	2.47
99.0%	4.95	24.40	5.02	9.11	23.86	47.80	6.70	3.78	3.00	7.81	9.17	2.06	3.59
Top Cut	6	16	6	10	20	6	9	5	5	10	10	5	5
Au cut - Domain	3526	3530	3531	3532	3533	3534	3541	3542	3543	3561	3562	3563	3564
Au cut - Domain Samples	3526 147	3530 408	3531 42	3532 368	3533 473	3534 55	3541 198	3542 21	3543 43	3561 151	3562 81	3563 33	3564 39
Samples	147	408	42	368	473	55	198	21	43	151	81	33	39
Samples Minimum	147 0.06	408 0.04	42 0.03	368 0.03	473 0.01	55 0.1	198 0.005	21 0.23	43 0.1	151 0.04	81 0.1	33 0.36	39 0.19
Samples Minimum Maximum	147 0.06 5.97	408 0.04 16	42 0.03 5.31	368 0.03 10	473 0.01 20	55 0.1 6	198 0.005 8.21	21 0.23 4.1	43 0.1 3.18	151 0.04 9.39	81 0.1 10	33 0.36 2.19	39 0.19 4.33
Samples Minimum Maximum Mean	147 0.06 5.97 1.09	408 0.04 16 1.77	42 0.03 5.31 1.92	368 0.03 10 1.42	473 0.01 20 2.14	55 0.1 6 1.42	198 0.005 8.21 0.90	21 0.23 4.1 1.27	43 0.1 3.18 1.04	151 0.04 9.39 1.25	81 0.1 10 1.22	33 0.36 2.19 0.83	39 0.19 4.33 0.88
Samples Minimum Maximum Mean Standard deviation	147 0.06 5.97 1.09	408 0.04 16 1.77 3.142	42 0.03 5.31 1.92 1.619	368 0.03 10 1.42 1.753	473 0.01 20 2.14 3.476	55 0.1 6 1.42 1.537	198 0.005 8.21 0.90 1.274	21 0.23 4.1 1.27 0.924	43 0.1 3.18 1.04 0.784	151 0.04 9.39 1.25 1.368	81 0.1 10 1.22 1.6	33 0.36 2.19 0.83 0.443	39 0.19 4.33 0.88 0.772
Samples Minimum Maximum Mean Standard deviation CV	147 0.06 5.97 1.09 1.095 1.01	408 0.04 16 1.77 3.142 1.78	42 0.03 5.31 1.92 1.619 0.84	368 0.03 10 1.42 1.753 1.23	473 0.01 20 2.14 3.476 1.62	55 0.1 6 1.42 1.537 1.08	198 0.005 8.21 0.90 1.274 1.41	21 0.23 4.1 1.27 0.924 0.73	43 0.1 3.18 1.04 0.784 0.75	151 0.04 9.39 1.25 1.368 1.10	81 0.1 10 1.22 1.6 1.31	33 0.36 2.19 0.83 0.443 0.53	39 0.19 4.33 0.88 0.772 0.88
Samples Minimum Maximum Mean Standard deviation CV Variance	147 0.06 5.97 1.09 1.095 1.01 1.199	408 0.04 16 1.77 3.142 1.78 9.873	42 0.03 5.31 1.92 1.619 0.84 2.621	368 0.03 10 1.42 1.753 1.23 3.074	473 0.01 20 2.14 3.476 1.62 12.079	55 0.1 6 1.42 1.537 1.08 2.362	198 0.005 8.21 0.90 1.274 1.41 1.622	21 0.23 4.1 1.27 0.924 0.73 0.853	43 0.1 3.18 1.04 0.784 0.75 0.615	151 0.04 9.39 1.25 1.368 1.10 1.87	81 0.1 10 1.22 1.6 1.31 2.561	33 0.36 2.19 0.83 0.443 0.53 0.197	39 0.19 4.33 0.88 0.772 0.88 0.596
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness	147 0.06 5.97 1.09 1.095 1.01 1.199 2.158	408 0.04 16 1.77 3.142 1.78 9.873 3.559	42 0.03 5.31 1.92 1.619 0.84 2.621 0.602	368 0.03 10 1.42 1.753 1.23 3.074 2.705	473 0.01 20 2.14 3.476 1.62 12.079 3.523	55 0.1 6 1.42 1.537 1.08 2.362 1.948	198 0.005 8.21 0.90 1.274 1.41 1.622 3.429	21 0.23 4.1 1.27 0.924 0.73 0.853 1.376	43 0.1 3.18 1.04 0.784 0.75 0.615 1.05	151 0.04 9.39 1.25 1.368 1.10 1.87 3.414	81 0.1 10 1.22 1.6 1.31 2.561 3.864	33 0.36 2.19 0.83 0.443 0.53 0.197 1.352	39 0.19 4.33 0.88 0.772 0.88 0.596 2.648
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	147 0.06 5.97 1.09 1.095 1.01 1.199 2.158 0.69	408 0.04 16 1.77 3.142 1.78 9.873 3.559 0.76	42 0.03 5.31 1.92 1.619 0.84 2.621 0.602 1.21	368 0.03 10 1.42 1.753 1.23 3.074 2.705 0.85	473 0.01 20 2.14 3.476 1.62 12.079 3.523 0.985	55 0.1 6 1.42 1.537 1.08 2.362 1.948 0.82	198 0.005 8.21 0.90 1.274 1.41 1.622 3.429 0.53	21 0.23 4.1 1.27 0.924 0.73 0.853 1.376 1.095	43 0.1 3.18 1.04 0.784 0.75 0.615 1.05 0.76	151 0.04 9.39 1.25 1.368 1.10 1.87 3.414 0.835	81 0.1 10 1.22 1.6 1.31 2.561 3.864 0.68	33 0.36 2.19 0.83 0.443 0.53 0.197 1.352 0.67	39 0.19 4.33 0.88 0.772 0.88 0.596 2.648 0.665
Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	147 0.06 5.97 1.09 1.095 1.01 1.199 2.158 0.69 2.435	408 0.04 16 1.77 3.142 1.78 9.873 3.559 0.76 3.18	42 0.03 5.31 1.92 1.619 0.84 2.621 0.602 1.21 4.61	368 0.03 10 1.42 1.753 1.23 3.074 2.705 0.85 3.064	473 0.01 20 2.14 3.476 1.62 12.079 3.523 0.985 4.195	55 0.1 6 1.42 1.537 1.08 2.362 1.948 0.82 2.785	198 0.005 8.21 0.90 1.274 1.41 1.622 3.429 0.53 1.87	21 0.23 4.1 1.27 0.924 0.73 0.853 1.376 1.095 2.412	43 0.1 3.18 1.04 0.784 0.75 0.615 1.05 0.76 2.297	151 0.04 9.39 1.25 1.368 1.10 1.87 3.414 0.835 2.58	81 0.1 10 1.22 1.6 1.31 2.561 3.864 0.68 2.034	33 0.36 2.19 0.83 0.443 0.53 0.197 1.352 0.67 1.381	39 0.19 4.33 0.88 0.772 0.88 0.596 2.648 0.665 1.752

14.4.3.4 Density

Density laboratory test-work of oxide, transitional and fresh rock was undertaken by Saint Barbara Mines from diamond drilling. Mercator tested oxide and transitional grab samples from the open pits to support previous test work, with samples submitted to AMDEL laboratories for wax and immersion method test work (Cuplan, 2006). Further density test-work was conducted by Westgold during open pit mining at Bluebird by wax and immersion method, confirming previous results. Density values from this test-work has been adopted for the Bluebird Group resource model.

Table 14-120 Bluebird Group model density values.

Material Type	Density
Oxide	1.90
Transitional	2.30
Fresh	2.80
Backfill	1.76
Air / Void	0.00

14.4.3.5 Variography

A geostatistical analysis of down-hole composited data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Domains with insufficient data for variogram modelling use variogram models from geologically equivalent domains that have been re-scaled for the variance of the minor domains.

Domains that are majority or wholly depleted in the existing open pits have been estimated using Inverse Distance Squared (ID2) using a spherical search ellipse. The in-situ material for these domains is either classified Inferred, Unclassified, or Sterilised.

QKNA was conducted on all domains with variogram models to determine appropriate estimate block size, search distance, minimum sample and maximum sample parameters for the estimate.

For the 2024 reportable resource model, estimation parameters for all domains in the Bluebird (BLU), Bluebird North (NTH), Edin Hope (EDH), South Junction (SJN), Polar Star (POL), and Archenar (ARC) areas have been reviewed and updated. The Iron Bar (IBR) domains are unchanged since the 2015 reportable resource. Summaries of the parameters are tabled below.

Table 14-121 Bluebird (BLU) domain estimation parameters. Part 1.

Domain Code	1112	1113	1114	1115	1117	1119	1120	1121	1122	1123	1212	1213
Estimate	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ
#Structures	3	3	1	2	3	3	1	1	1	. 2	2	2
CO	0.165	0.137	0.106	0.363	0.142	0.154	0.333	0.292	0.674	0.166	0.187	0.178
C1	0.446	0.445	0.894	0.391	0.433	0.450	0.667	0.708	0.326	0.690	0.581	0.583
a1	10.00	10.00	72.00	6.00	10.00	10.00	22.00	22.00	70.00			15.00
C2	0.242	0.260	0.000	0.246	0.260	0.248	0.000	0.000	0.000	0.144	0.232	0.239
a2	30.00	30.00	0.00	20.00	30.00	30.00	0.00	0.00	0.00	24.00	100.00	100.00
СЗ	0.147	0.158	0.000	0.000	0.165	0.148	0.000	0.000	0.000	0.000	0.000	0.000
a3	125.00	125.00	0.00	0.00	125.00	125.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1. Major : Semi Major	1	1	2.4	1	1	1	1	1	2	1	1	1
1. Major : Minor	5	5	24	2	5	5	2	2	7	2	7.5	7.5
2. Major : Semi Major	1	1		1	1	1				1	3.33	3.33
2. Major : Minor	2	2		1	2	2				2	33.3	33.3
3. Major : Semi Major	1	1			1	1						
3. Major : Minor	5	5			5	5						
			!									
SURPAC STRIKE	166.5	166.5	0	0.9	166.5	166.5	0	0	90	355	2.9	2.9
SURPAC PLUNGE	-69.4	-69.4	-30	-10	-69.4	-69.4	0		85			-29.9
SURPACDIP	75.7	75.7	-90		75.7	75.7	-85		0			-84.2
Search												
Method	ELLIPSOID	ELLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID	FLLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	2.5, 5, 5	2.5, 5, 5		1.25, 2.5, 2.		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	10, 20, 20	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5
Estimation Block Size X	2.5	2.5	1.25	1.25	2.5		2.5	2.5	10			
Estimation Block Size Y	5	5	2.5	2.5	5		5	5	20			5
Estimation Block Size Z	5	5	2.5	2.5	5				20			5
Disc Point X	3			2.0					5			
Disc Point Y	5								5			
Disc Point Z	5								5			
			,							1		
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max												
Search Limitation												
		l	l				l	l				
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field												
Max Samps per Hole												1
										!		
Pass1	Υ	Υ	Υ	γ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	6	4	6	6		. 6	6	. 6	6		. 8
Max	20		18	20			20	20	20			
MaxSearch	80	80	50	18	80		22	22	70			
Major/Semi	1		2.4	1	1			1	2			
Major/Minor	5								7			
			<u> </u>						· · · · · ·	-		
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2		2	. 2	2			2
Major/Semi	1	1	2.4	1	1		1	1	2			3
Major/Minor	5							2	7			
Min	6								,			
Max	20								20			
			, 10	. 20			. 20				. 20	
Run Pass 3	Υ	γ	Y	Υ	γ	Υ	γ	γ	γ	γ	Υ	γ
Factor	5	5	5	10			5	5	5	•		5
Major/Semi	1	1	2.4	1				1	2			
Major/Minor	5							2	7			
Min	2								2			
Max	10								10			
1,1qY	10	10	. 8	10	10	10	10	10	10	1 10	10	10

Table 14-122 Bluebird (BLU) domain estimation parameters. Part 2.

Domain Code	1214	1215	1216	1217	1218	1222	1223	1224	1225	1313	1314	1323
Estimate	Υ	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ
#Structures	2	2	2	2	2	2	2	2	2	3	1	2
C0	0.180	0.202	0.187	0.163	0.193	0.109	0.112	0.102	0.112	0.154	0.432	0.125
C1	0.582	0.572	0.582	0.578	0.585	0.476	0.510	0.461	0.510	0.318	0.568	0.575
a1	15.00	15.00	15.00	15.00	15.00	12.00	12.00	12.00			45.00	4.00
C2	0.238	0.226	0.231	0.259	0.222	0.415	0.378	0.437	0.378	0.359	0.000	0.300
a2	100.00	100.00	100.00	100.00	100.00	40.00	40.00	40.00			0.00	40.00
C3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.169		0.000
a3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	70.00	0.000	0.000
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.000
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1. Major: Semi Major	1	1	1	1	1	1	1	1	1	1.5	1.5	1
	1	_		_			1 2	2	1	1.5	1.5	1
1. Major : Minor	7.5	7.5	7.5	7.5	7.5	2	_		2	. 5	3	
2. Major : Semi Major	3.33	3.33	3.33	3.33	3.33	1	1	1	1	1		1
2. Major : Minor	33.3	33.3	33.3	33.3	33.3	2	2	2	2	. 5		4
3. Major : Semi Major										1		
3. Major : Minor										4.67		
		,										
SURPACSTRIKE	2.9	2.9	2.9	2.9	2.9		275	275			270	5
SURPAC PLUNGE	-29.9	-29.9	-29.9	-29.9	-29.9	85	85	85			85	0
SURPAC DIP	-84.2	-84.2	-84.2	-84.2	-84.2	0	0	0	0	-83.5	0	-90
Search												
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	2.5, 5, 5		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	1.25, 2.5, 2.
Estimation Block Size X	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	1.25
Estimation Block Size Y	5	5		5	5			5		5		2.5
Estimation Block Size Z	5			5	5			5				
Disc Point X	3	3		3	3			3				
Disc Point Y	5			5	5			5				
Disc Point Z	5	5		5	5			5		5		
DISCIPLINE	J	3	J	J	J	3	J		J			
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max	IN											
Search Limitation												
Search Limitation												
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field												
Max Samps per Hole												
											1	
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8			8	8			8				
Max	20	20		20	20	20	20	20			20	20
Max Search	70	70	70	70	70		40	40	40	48	30	30
Major/Semi	3	3	3	3	3			1		1	1.5	1
Major/Minor	10	10	10	10	10	2	2	2	2	5	3	4
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	3	3	3	3	3	1	1	1	1	1	1.5	1
Major/Minor	10	10		10	10			2				4
Min	8			8	8			8				_
Max	20			20	20			20				20
. 7.07	20						20	20			. 20	20
Run Pass 3	γ	γ	Y	Υ	γ	Υ	γ	Υ	γ	γ	Υ	γ
Factor	5	5	5	5	5	5	5	5	5	5	5	5
Major/Semi	3	3		3	3			1				1
Major/Minor	10			10	10			2				
Min												2
	2	2		2	2			2				
Max	10	10	10	10	10	10	10	10	10	10	10	10

Table 14-123 Bluebird (BLU) domain estimation parameters. Part 3.

Domain Code	1333	1341	1342	1343	1344	1346	1610	1611	1612	1613	1614
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
#Structures	2	3	3	1	. 2	1	. 1	. 2	. 2	1	1
C0	0.131	0.155	0.174	0.128	0.296	0.060	0.351	0.320	0.304	0.387	0.445
C1	0.571	0.316	0.309	0.872	0.413	0.940	0.649	0.207	0.204	0.613	0.555
a1	4.00	15.00	15.00	90.00	5.00	42.00	52.00	20.00	20.00	52.00	90.00
C2	0.298	0.360		0.000	0.291	0.000	0.000	0.473			0.000
a2	40.00	25.00		0.00	22.00		0.00	74.00			0.00
C3	0.000	0.169		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
a3	0.00	70.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.000	1.000	1.000	1.000							1.000
	2,000	1,000	1,000	2.000	2.000	2.000	2,000	2.000	1.000	2.000	2.000
1. Major : Semi Major	1	1.5	1.5	2	. 1	. 6	5 2	. 1	. 1	. 2	3
1. Major : Minor	2	5	5	3	1.67	6					6
2. Major : Semi Major	1	1	1		1.07		-	2			
2. Major : Minor	4		5		5.5			2		 	
· · · · · · · · · · · · · · · · · · ·	4	3	Ŭ		5.5		 			-	\vdash
3. Major : Semi Major		1	1							-	
3. Major : Minor		4.67	4.67	L							
0.1801	_										
SURPAC STRIKE	5		4.2	0							265
SURPAC PLUNGE	0			90							70
SURPAC DIP	-90	-83.5	-83.5	80	-85	0	0	85	85	0	0
Search		<u> </u>	L	<u> </u>		<u> </u>	<u> </u>	<u> </u>			
Method	ELLIPSOID	ELLIPSOID				ELLIPSOID		ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	1.25, 2.5, 2.	2.5, 5, 5	2.5, 5, 5	10, 20, 20	1.25, 2.5, 2.	1.25, 2.5, 2.	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	5, 10, 10
Estimation Block Size X	1.25	2.5	2.5	10	1.25	1.25	2.5	2.5	2.5	2.5	5
Estimation Block Size Y	2.5	5	5	20	2.5	2.5	5	5	5	5	10
Estimation Block Size Z	2.5	5	5	20	2.5	2.5	5	5	5	5	10
Disc Point X	2	3	3	5	2	2	. 3	3	3	3	5
DiscPointY	3	5	5	5				5	5	5	
DiscPointZ	3	5	5	5	3	3	5	5	5	5 5	5
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N
Threshold Max											
Search Limitation											
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field						i		<u> </u>	<u> </u>		
Max Samps per Hole										+	
T ax campo por rioto											
Pass1	V	v	v	v	v	Υ	Υ	γ	Υ	Υ	v
Min	6	8	8	6	8				·	·	4
Max	20	22	22	20							
Max Search	30	48		90							
	30	1	1	2							
Major/Semi Major/Minor	4		-								
Major/Minor	4	5	5	3	5		4	2	2	4	6
Pun Page 2	Ιγ	Υ	Ιγ	v	Υ	Υ	Υ	Υ	ΙΥ	v	γ
Run Pass2			•	Υ				1.		Y	
Factor	2										
Major/Semi		1	1	2							3
Major/Minor	4										
Min	6										
Max	20	22	22	20	20	20	20	18	18	20	16
		I		I			T				
Run Pass 3	Υ			Υ			Υ		Υ	1.	Υ
Factor	5										
Major/Semi	1	1									
Major/Minor	4										
Min	2	2	2	2	2	2	. 2	. 2	. 2	2	2
Max											
I IUA	10	10	10	10	10	10	10		8		8

Table 14-124 Bluebird (BLU) domain estimation parameters. Part 4.

Domain Code	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
#Structures	1	1	1	1	2	2	2	1	1	1	1	1
C0	0.351	0.278	0.377	0.351	0.326	0.312	0.489		0.317	0.302	0.333	0.333
C1	0.649	0.722	0.623	0.649	0.196	0.206	0.239		0.683	0.698	0.667	0.667
a1	52.00	56.00	52.00	52.00	20.00	20.00	25.00			40.00		25.00
C2	0.000	0.000		0.000	0.478	0.482	0.272	0.000	0.000	0.000	0.000	0.000
a2	0.00	0.00		0.00	74.00	74.00	60.00		0.00	0.00	0.00	0.00
C3	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
a3	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4 Mais and a situation		-					_				4.05	4.05
1. Major : Semi Major	2	2	2	2	1 2	1	8.33	2	2	2	1.25 2.5	1.25
1. Major : Minor 2. Major : Semi Major	4	4	4	4	2	2	8.33	4	4	4	2.5	2.5
2. Major : Minor					2	2	10					
3. Major : Semi Major							10					
3. Major : Minor												
3. Pajor . Pilitor												
SURPAC STRIKE	265	265	265	265	0	0	270	190	190	190	0	0
SURPAC PLUNGE	85			85	90	90	85		50			90
SURPAC DIP	0.00					85				-90		-80
				<u>`</u>	- 50	30	·				. 50	30
Search												
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)		2.5, 5, 5		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5
Estimation Block Size X	2.5				2.5	2.5	2.5		2.5			2.5
Estimation Block Size Y	5		5	5	5	5	5	5	5	5	5	5
Estimation Block Size Z	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point X	3	3	3	3	3	3	3	3	3	3	3	3
Disc Point Y	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max												
Search Limitation												
				1					1			
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field												
MaxSamps per Hole									,			
	l.,	.,	.,	l.,		.,		l.,	l.,	l.,	h.,	.,
Pass1		Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Y
Min	6		6		4	4						6
Max MaxSearch	20		20	20	18	18	20 40					18
MaxSearch Major/Semi	35 2		35 2	35 2	50 2	50 2			30			20 1.25
Major/Semi Major/Minor	4					2						2.5
r-iajot/i*IIIIOI	4	4	4	4	1 2	2	10	. 4	1 4	. 4	∠.5	2.5
Run Pass2	Y	Υ	v	v	v	V	v	v	v	v	v	v
Factor	2	-	2	' '	2	2	2	, ,	, ,	2	່ າ	1 2
Major/Semi	2				2	2	4		2		1.25	1.25
Major/Minor	4		4	4	2	2	10		4			2.5
Min	6		6		4	4	8					6
Max	20	16		20	18	18						18
· rox	20	10			1 10	10					. 10	10
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	5		5	5	5	. 5	. 5	. 5	. 5	. 5	. 5	. 5
Major/Semi	2			2	2	2	4		2			1.25
Major/Minor	4				2	2			4			2.5
Min	2				2	2	2		2			2.0
Max	10			10	8	8						8
	10		10	1				10		10		

Table 14-125 Bluebird North (NTH) domain estimation parameters.

Daniela Cada	2401	2404	2511	2512	2513	2514	2515	2550	2551	2552	2553	2554	2555
Domain Code Estimate	2401 Y	2404 Y	2511 Y	2512 Y	2513 Y	2514 Y	2515 Y	2550 Y	2551 Y	2552 Y	2553 Y	2554 Y	2555 Y
# Structures	2	2	2	2	2	2	2	2	2	2	2	2	2
CO CO	0.38	0.34	0.27	0.39	0.31	0.36	0.38	0.32	0.37	0.40	0.39	0.47	0.40
C1	0.30	0.34	0.45	0.36	0.33	0.34	0.34	0.34	0.35	0.36	0.35	0.47	0.40
a1	25.00	24.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	12.00	10.00	18.00
C2	0.31	0.43	0.28	0.25	0.36	0.31	0.27	0.34	0.28	0.24	0.26	0.18	0.24
a2	50.00	60.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	40.00	40.00	45.00
C3	30.00	00.00	43.00	43.00	45.00	45.00	43.00	45.00	45.00	45.00	40.00	40.00	43.00
a3													
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
TOTALSTEE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1	1	1	1	1	1	1	1	1	1	1	1	1
1. Major : Minor	5	6	4.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	2.5	2	3.5
2. Major : Semi Major	1	1.3	1	1	1	1	1	1	1	1	1	1	1
2. Major : Minor	6	7	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5	5	5.5
3. Major : Semi Major		,	3.3	3.3	5.5	3.3	3.3	3.3	5.5	5.5		,	5.5
3. Major : Minor													
2		l .	l .	l	l	l	l .						
SURPAC STRIKE	0	0	0	7	352	346	11	355	355	10	2	0	355
SURPAC PLUNGE	0	0	0	0	0	0	0	0	0	0	0	0	0
SURPAC DIP	-85	-75	90	-85	-76	79	-75	-87	86	90	90	90	-85
								<u> </u>					
Search													
Method	FLLIPSOID	ELLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID	FLLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	5, 10, 10	5, 10, 10	10, 20, 20	5, 10, 10	5, 10, 10	5, 10, 10	5, 10, 10	10, 20, 20	5, 10, 10	5, 10, 10	10, 20, 20	10, 20, 20	10, 20, 20
Estimation Block Size X	5	5	10	5	5	5	5	10	5	5	10	10	10
Estimation Block Size Y	10	10	20	10	10	10	10	20	10	10	20	20	20
Estimation Block Size Z	10	10	20	10	10	10	10	20	10	10	20	20	20
Disc Point X	3	3	3	3	3	3	3	3	3	3	3	3	3
Disc Point Y	5	5	5	5	5	5	5	5	5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5	5	5	5	5
Grade Dependent Parameters	Υ	Υ	Υ	N	N	N	Υ	N	N	Υ	Υ	Υ	Υ
Threshold Max	6	8	6				4			10	16	12	8
Search Limitation	25	25	25				25			25	25	25	25
								•			•		•
Limit Samples by Hole Id	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hole Id D Field	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2
Max Samps per Hole	5	5	5	5	5	5	5	5	5	5	5	5	5
Pass1	Υ	Υ	Υ	Y	Y	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	8	8	8	8	8	8	8	8	8	8	8	8
Max	16	16	16	16	16	16	16	16	16	16	16	16	16
Max Search	50.00	60.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	40.00	40.00	45.00
Major/Semi	1	1	1	1	1	1	1	1	1	1	1	1	1
Major/Minor	4	4	4	4	4	4	4	4	4	4	4	4	4
Run Pass 2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	1	1	1	1	1	1	1	1	1	1	1	1	1
Major/Minor	4	4	4	4	4	4	4	4	4	4	4	4	4
Min	8	8	8	8	8	8	8	8	8	8	8	8	8
Max	16	16	16	16	16	16	16	16	16	16	16	16	16
		I	I		•	ı	•						
Run Pass 3	N	N	N	N	N	N	N	N	N	N	N	N	N
Factor													
Major/Semi													
Major/Minor													
Min													
Max													

Table 14-126 Edin Hope (EDH) domain estimation parameters. Part 1.

## Structures 2 2 2 2 2 2 2 2 2	Domain Code	2010	2110	2111	2112	2113	2114	2115	2116	2151	2152	2153	2154
CO	Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
C1	# Structures	2	2	2	2	2	2	2	2	2	2	3	2
1	СО	0.24	0.25	0.23	0.27	0.34	0.30	0.25	0.27	0.24	0.32	0.59	0.38
C2	C1	0.43	0.24	0.22	0.27	0.32	0.29	0.24	0.25	0.20	0.27	0.08	0.33
22	a1	12.00	33.00	33.00	33.00	33.00	33.00	33.00	33.00	55.00	7.00	20.00	21.00
C3 A3	C2	0.33	0.51	0.55	0.46	0.34	0.42	0.51	0.48	0.56	0.41	0.15	0.29
TOTAL SILL 1.00	a2	48.00	81.00	81.00	81.00	81.00	81.00	81.00	81.00	80.00	28.00	42.00	65.00
TOTAL SILL 1.00 1	C3											0.19	
1. Major : Semi Major	a3											85.00	
1. Major: Minor	TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major: Minor													
2. Major : Semi Major	1. Major : Semi Major	1	1.269	1.269	1.269	1.269	1.269	1.269	1.269	1.17	1	1.333	1
2. Major : Minor 2 7.364	1. Major : Minor	2	8.25	8.25	8.25	8.25	8.25	8.25	8.25	5.5	1.75	2.857	5.25
SURPAC STRIKE 352.613 353.987 371.59	2. Major : Semi Major	1	1.421	1.421	1.421	1.421	1.421	1.421	1.421	1.404	1	1.5	1
Surpact Strike 352.613 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 353.987 371.59 371	2. Major : Minor	2	7.364	7.364	7.364	7.364	7.364	7.364	7.364	4	2.8	4.667	9.286
SURPAC STRIKE 352,613 353,987	3. Major : Semi Major											1.518	
SURPAC PLUNGE	3. Major : Minor											7.727	
SURPAC PLUNGE												-	
SURPAC DIP -74.779 64.586 64.58													0
Search Method ELLIPSOID												80	
Method ELLIPSOID ELLIPSO	SURPAC DIP	-74.779	64.586	64.586	64.586	64.586	64.586	64.586	64.586	78.492	78.492	90	-90
Method ELLIPSOID ELLIPSO	Con. 1									-			1
Estimation Block Size (x,y,z) 5, 10, 10 10 10 10 10 10 10		FILLECOID			FILLESCOLE	- FILLIDS OLD	511186018	511186018	511186018	511186618	FILLESCOLE	511100010	51 LIBS OLD
Estimation Block Size X													
Estimation Block Size Y 10 10 10 10 10 10 10						, ,						, ,	, ,
Estimation Block Size Z													5
Disc Point X													10
Disc Point Y													10
Disc Point Z													2
Grade Dependent Parameters													4
Threshold Max Search Limitation N	Disc Point Z	4	4	4	4	4	4	4	4	4	4	4	4
Threshold Max Search Limitation N	Grade Dependent Parameters	N	M	M	A/	۸/	M	N	M	N	N	N	N
Limit Samples by Hole Id		IN	IV	IV	7.0	10	74	IN	74	IN	IN	IN	IN
Limit Samples by Hole Id													
Hole Id D Field D2 D2 D2 D2 D2 D2 D2 D	Search Emitation					l							
Hole Id D Field D2 D2 D2 D2 D2 D2 D2 D	Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N
Max Samps per Hole Y													D2
Pass1 Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Min 7 6 7 7 6 Major/Semi 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2													
Max 18 14	Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Max Search 48 33 33 33 33 33 33 33 35 55 28 42 65 Major/Semi 1 1.2 1.2 1.2 1.2 1.2 1.2 1.17 1 1.5 1 Major/Minor 2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 2.8 4.667 9 Run Pass2 Y <td< td=""><td>Min</td><td>7</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>6</td><td>7</td><td>7</td><td>6</td></td<>	Min	7	6	6	6	6	6	6	6	6	7	7	6
Max Search 48 33 33 33 33 33 33 33 35 55 28 42 65 Major/Semi 1 1.2 1.2 1.2 1.2 1.2 1.2 1.17 1 1.5 1 Major/Minor 2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 2.8 4.667 9 Run Pass2 Y <td< td=""><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>18</td><td>16</td></td<>		18										18	16
Major/Semi 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.5 1 Major/Minor 2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 2.8 4.667 9 Run Pass2 Y <td< td=""><td>Max Search</td><td>48</td><td>33</td><td>33</td><td>33</td><td>33</td><td>33</td><td>33</td><td>33</td><td>55</td><td>28</td><td>42</td><td>65</td></td<>	Max Search	48	33	33	33	33	33	33	33	55	28	42	65
Run Pass2 Y		1	1.2		1.2	1.2	1.2	1.2	1.2	1.17	1	1.5	1
Factor 2 <td>Major/Minor</td> <td>2</td> <td>8.2</td> <td>8.2</td> <td>8.2</td> <td>8.2</td> <td>8.2</td> <td>8.2</td> <td>8.2</td> <td>5.5</td> <td>2.8</td> <td>4.667</td> <td>9</td>	Major/Minor	2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	5.5	2.8	4.667	9
Factor 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
Major/Semi 1 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.5 1	Run Pass2												
					2	2	2	2	2				2
Major/Minor 2 8.2 8.2 8.2 8.2 8.2 8.2 5.5 2.8 4.667 9						1.2	1.2		1.2				
		2	8.2	8.2		8.2	8.2	8.2	8.2	5.5	2.8	4.667	9
Min 7 6 6 6 6 6 6 6 7 7 6													
Max 18 14 14 14 14 14 14 15 17 18 16	Max	18	14	14	14	14	14	14	14	15	17	18	16
Run Pass 3 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y													
Factor 5 10 10 10 10 10 10 5 10 5 5													
Major/Semi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
													9
													2
Max 18 14 14 14 14 14 14 15 17 18 16	iviax	18	14	14	14	14	14	14	14	15	1/	18	16

Table 14-127 Edin Hope (EDH) domain estimation parameters. Part 2.

Domain Code	2155	2156	2253	2254	2255	2256	2257	2260	2261	2262	2270
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	2	3	3	3	3	3	2	2	2	3
CO	0.26	0.24	0.19	0.20	0.21	0.19	0.19	0.49	0.54	0.53	0.27
C1	0.34	0.23	0.27	0.30	0.28	0.28	0.28	0.12	0.12	0.13	0.15
a1	13.00	18.00		22.00	22.00	22.00		5.00	5.00		4.00
C2	0.40	0.54		0.32	0.32	0.33	0.33	0.39	0.34	0.34	0.47
a2	30.00	52.00		30.00	30.00	30.00		13.00	13.00	13.00	24.00
C3	55.65	32.00	0.21	0.19	0.19	0.20		20.00	20.00	10.00	0.11
a3			61.00	61.00	61.00	61.00					36.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1	1	1	1	1	1	1	1	1	1	1
1. Major : Minor	2.167	2	2	2	2	2	2	1.667	1.667	1.667	2
2. Major : Semi Major	1	1	1.154	1.154	1.154	1.154	1.154	1	1	1	2
2. Major : Minor	3.333	2	2.308	2.308	2.308	2.308	2.308	2.167	2.167	2.167	4
3. Major : Semi Major	3.333	_	2.033	2.033	2.033	2.033	2.033	2.107	2.107	2.107	2
3. Major : Minor			4.067	4.067	4.067	4.067	4.067				4
3. Wajor : Willion			4.007	4.007	4.007	4.007	4.007			l	
SURPAC STRIKE	0	184.275	5.93	5.93	5.93	5.93	5.93	0	0	0	158.308
SURPAC PLUNGE	0	-29.499		-49.741	-49.741	-49.741	-49.741	0	0		
SURPAC DIP	-80	78.492	-82.249	-82.249	-82.249	-82.249		-90	-90		
SURFAC DIF	-00	76.492	-02.249	-02.249	-02.249	-62.249	-02.249	-90	-90	-90	74.00
Coarch											
Search Method	ELLIBSOID	ELLIDSOLD	FILIDSOID	ELLIDSOLD	ELLIPSOID	ELLIBCOID	FILIDSOID	ELLIDSOLD	ELLIDSOLD	FILIDSOID	ELLIBSOID
Estimation Block Size (x,y,z)									2.5, 5, 5		5, 10, 10
Estimation Block Size X	5	5		5	5	5		2.5	2.5	2.5	5
Estimation Block Size Y	10	10		10	10	10		5	5		
Estimation Block Size Z	10	10		10	10	10		5	5		
Disc Point X	2	2		2	2	2	2	2	2		
Disc Point Y	4	4		4	4	4		4	4		_
Disc Point Z	4	4	4	4	4	4	4	4	4	4	4
							·				
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N
Threshold Max											
Search Limitation											
	1		1		1		1				
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2										
Max Samps per Hole											
			1								
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	5	7	7	7	7	7	5	5	5	7
Max	18	18	13	13	13	13	13	16	16	16	18
Max Search	30	52	30	30	30	30	30	13	13	13	24
Major/Semi	1	1	1.1	1.1	1.1	1.1	1.1	1	1	1	2
Major/Minor	3.3	2	2.3	2.3	2.3	2.3	2.3	2.167	2.167	2.167	4
				1					1		
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	1	1	1.1	1.1	1.1	1.1	1.1	1	1	1	2
Major/Minor	3	2	2.3	2.3	2.3	2.3	2.3	2.167	2.167	2.167	4
Min	8	5	7	7	7	7	7	5	5	5	7
Max	18	18	13	13	13	13	13	16	16	16	18
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	10	5	10	10	10	10	10	10	10	10	10
Major/Semi	1	1	1	1	1	1	1	1	1	1	1
Major/Minor	3	2	2	2	2	2	2	2	2	2	2
Min	2	2	2	2	2	2	2	2	2	2	2
Max	18	18	13	13	13	13	13	16	16	16	18

Table 14-128 Polar Star (POL) domains estimation parameters. Part 1.

Domain Code	3101	3104	3105	3117	3118	3120	3121	3125	3140	3141	3142
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	2	2	2	2	2	2	2	2	2	2
C0	0.532	0.503	0.278	0.569	0.690	0.616	0.515	0.648	0.221	0.321	0.295
C1	0.208	0.286	0.488	0.210	0.191	0.241	0.389	0.196	0.409	0.396	0.373
a1	8.00	25.00	7.00	18.00	18.00	16.00	6.00	18.00	8.00	6.00	6.00
C2	0.260	0.211	0.234	0.220	0.118	0.143	0.097	0.156	0.370	0.283	0.332
a2	34.00	82.00	29.00	70.00	70.00	72.00	30.00	60.00	47.00	30.00	30.00
C3											
a3											
TOTAL SILL	1.000	1.000	1.000	0.999	0.999	1.000	1.001	1.000	1.000	1.000	1.000
						ı	1				
1. Major : Semi Major	1	1.923	1	1.5	1.5		1	1	1	1	1
1. Major : Minor	4	12.5	3.5	4.5	4.5	5.333	3	9	4	3	3
2. Major : Semi Major	1	2.343	1	1.591	1.591	1.44	2.143	1	1.808	1	1
2. Major : Minor	6.8	16.4	5.8	8.75	8.75	9	5	15	9.4	5	5
3. Major : Semi Major											
3. Major : Minor											
SURPAC STRIKE	95	177	125	146	146	170	118	120	90	110	90
SURPAC PLUNGE	-80	-39	-75	-54	-54		-63	-65	-80		-65
SURPAC DIP	-80		-/5 0	-54 31	-54 31	-36 59	-63 20				-65
SURPAC DIP	U	//	U	31	31	59	20	0	U	0	U
Search											
Method	ELLIPSOID	FLLIPSOID	FLUPSOID	ELLIPSOID	FILIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)		5, 10, 10	5, 10, 10	5, 10, 10	2.5, 5, 5	2.5, 5, 5	2.5, 5, 5		2.5, 5, 5	2.5, 5, 5	2.5, 5, 5
Estimation Block Size X	5, 10, 10		5, 10, 10	5, 10, 10	2.5		2.5, 5, 5				2.5, 5, 5
Estimation Block Size Y	10	10	10	10	5		5	10	5		5
Estimation Block Size Z	10		10	10	5		5				5
Disc Point X	3		3	3	3		3				3
Disc Point Y	5	5	5	5	5		5				5
Disc Point Z	5		5	5	5		5				5
				_					_	_	
Grade Dependent Parameters	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	Υ
Threshold Max	20	15	20	10	40		3		22	5	5
Search Limitation	15	15	15	20	20		40		10	20	20
Limit Samples by Hole Id	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hole ld D Field	D2	D2	D2	D2	D2		D2		D2	D2	D2
Max Samps per Hole	8	8	8	8	8	8	8	8	8	8	8
i 				1					1		
Pass1		Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ	Υ
Min	10	10	11	11	11	11	12	10	9		12
Max	16		20	16	18		20				17
MaxSearch	50	80	60	60	40		50		50		80
Major/Semi	1	2	1	1.5	1.5		2		1.8		1
Major/Minor	5	10	4	6	6	6	5	8	5	5	5
Dun David	lv	V	v	V	V	l _v	l _v	ls:	v	la.	N.
Run Pass2		Υ	ĭ	Υ -	7	Υ	ĭ	N	Υ	N	N
Factor Major/Comi	2		2	2	2		3		2		
Major/Semi	1	1	1	1	1		1		1		-
Major/Minor Min	3 10	3 10	3 11	3 11	3 11	11	3 12		9		
Max	16		20	16	11		20		14		
Max	16	1/	20	16	18	1/	20	l	14		L
Run Pass 3	N	N	N	N	N	N	N	N	N	N	N
Factor		•			•						
Major/Semi											
Major/Minor											
Min											
Max											
		1			1						

Table 14-129 Polar Star (POL) domains estimation parameters. Part 2.

Domain Code	3143	3144	3145	3150	3151	3152	3170	3171	3172	3256	3260
Estimate	Υ	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ
#Structures	1	1	1	2	2	2	2	1	2	2	2
C0	0.150	0.440	0.110	0.577	0.420	0.571	0.340	0.610	0.370	0.151	0.490
C1	0.850	0.560	0.890	0.236	0.389	0.237	0.480	0.390	0.210	0.490	0.150
a1	80.00	70.00	150.00	15.00	15.00	15.00	40.00	150.00	25.00	10.00	50.00
C2				0.186	0.191	0.192	0.180		0.420	0.359	0.360
a2				83.00	83.00	83.00	90.00		60.00	82.00	82.00
C3											
a3											
TOTAL SILL	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
									1	1	
1. Major : Semi Major	2	2	1.5	1	1	1	1	1	1.25	1	2
1. Major : Minor	4	2	3	7.5	7.5	7.5	1.5	1.5	1.25	5	2
2. Major : Semi Major				1	1	1	1.5		2	2.733	1
2.Major: Minor				10.38	10.38	10.38	3		2	13.67	3
3. Major : Semi Major											
3. Major : Minor									<u> </u>	<u> </u>	
SURPACSTRIKE	10	345	0	100	90	85	10	23.7	350	80	124.3
SURPAC STRIKE SURPAC PLUNGE	0		0	-70	-75	-65	0		30	-90	-72
SURPAC PLUNGE SURPAC DIP	-80	-90	-85	-70		-65		-18.1 -63.6	-90	-90	-72
JULY MODIL	-80	-90	-83	U	U	U	-/5	-03.6	-90		33
Search											
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)		5, 10, 10			/	10, 20, 20	5, 10, 10	10, 20, 20	5, 10, 10	10, 20, 20	10, 20, 20
Estimation Block Size X	10, 20, 20	5	5	5		10, 20, 20				10, 20, 20	10, 20, 20
Estimation Block Size Y	20	10	10	10	10	20		20	10	20	20
Estimation Block Size Z	20	10	10	10	10	20	10	20	10	20	20
Disc Point X	3		3	3	3	3		3	3	3	3
Disc Point Y	5		5	5		5		5	5	5	5
Disc Point Z	5	5	5			5			5	5	5
	•		•			•					
Grade Dependent Parameters	N	N	N	Υ	N	N	N	N	N	Υ	N
Threshold Max				10						2	
Search Limitation				20						40	
			•			•					
Limit Samples by Hole Id	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hole Id D Field				D2	D2	D2	D2	D2	D2	D2	D2
Max Samps per Hole				8	8	8	8	8	8	8	8
	1		L			L.			I	I	
Pass1		Υ	Y	Υ 40	Υ 40	Υ 40	Υ	Y	Υ	Υ 40	Υ
Min	10	6	4	10	10	10				10	6
Max May Search	24	16	18	16	16	16	20	20	20	18	20
Max Search Major/Semi	80	140 2	150 1.5	50	100 1	150	90 1.5	150	110	180	150
Major/Semi Major/Minor	4		1.5	1 6		1 5		1.5	2	<u>2</u> 5	1 3
r-iajoi/Pilitoi	4		3	б	5		3	1.5		<u> </u>	3
Run Pass2	ly	Υ	Υ	Υ	N	N	Υ	Υ	γ	N	Υ
Factor	3	2	2	2			2	2	2		2
Major/Semi	2		1.5	1			1.5	1	2		1
Major/Minor	4	2	3	3			3	1.5	2		3
Min	10		4	10			6				6
Max	24						20				20
Run Pass 3	Υ	Υ	Υ	N	N	N	Υ	Υ	Υ	N	Υ
Factor	6		6				6	6	6		4
Major/Semi	2	2	2				1.5	1	2		1
Major/Minor	4		4				3		2		3
Min	2		2				2		2		2
Max	10	10	10				10	10	10		10

Table 14-130 South Junction (SJN) domains estimation parameters. Part 1.

Domain Code	1347	1381	1382	3201	3202	3203	3204	3205
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
#Structures	2	2	2	2	2	2	2	1
C0	0.240	0.100	0.110	0.170	0.150	0.188	0.163	0.260
C1	0.520	0.610	0.600	0.456	0.395	0.343	0.498	0.740
a1	11.00	5.00	5.00	16.00	5.00	12.00	15.00	46.00
C2	0.240	0.290	0.290	0.374	0.456	0.468	0.339	
a2	40.00	45.00	45.00	53.00	27.00	40.00	64.00	
C3								
a3								
TOTAL SILL	1.000	1.000	1.000	1.000	1.001	0.999	1.000	1.000
		1	1	,	1	1	,	
1. Major : Semi Major	1	1	1	1.6		1	1	1
1. Major : Minor	1	1	1	8	2.5	6	7.5	2
2. Major : Semi Major	1	1	1		1.35	1.6	2	
2. Major : Minor	2	3	3	5.889	3.375	5	8	
3. Major : Semi Major								
3. Major : Minor								
SURPACSTRIKE	0	0	0	175	331	346	130	182.9
SURPAC STRIKE SURPAC PLUNGE	0	0	0			60	-76	29.9
SURPAC PLUNGE SURPAC DIP	-80	-80	-80			-80	-76 45	29.9 84.2
30NFAC DIF	-00	-00	-00] 30	-02	-00	1 40	04.2
Search								
Method	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID	FLLIPSOID
Estimation Block Size (x,y,z)	1.25, 2.5, 2.			5, 10, 10	10, 20, 20		5, 10, 10	5, 10, 10
Estimation Block Size X	1.25	2.5	2.5			10, 20, 20		5, 10, 10
Estimation Block Size Y	2.5	5	5		20	20	10	10
Estimation Block Size Z	2.5	5	5			20	10	10
Disc Point X	3	3	3			3		3
Disc Point Y	5	5	5			5		5
Disc Point Z	5	5	5			5	5	5
Grade Dependent Parameters	N	N	N	Υ	N	Υ	N	N
Threshold Max				10		5		
Search Limitation				25		50		
Limit Samples by Hole Id	N	N	N	Υ	Υ	Υ	Υ	Υ
Hole Id D Field				D2	D2	D2	D2	D2
Max Samps per Hole				8	8	8	8	8
				1			1	
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	6	6		12	12	11	6
Max	20					22		
Max Search	36	45	45			100		46
Major/Semi	1	1	1			1.5		1
Major/Minor	2	3	3	10	3	5	6	2
Run Pass2	v	v	Υ	lγ	v	v	N	Υ
Factor	2	2	2		Ι	1	IN	_
Major/Semi	1	1	1		1	1		1
Major/Semi Major/Minor	2	3	3			2		2
Min	6	6	6		5	8		6
Max	20	20	20			22		18
1 IUX	20			1 19		22		10
Run Pass 3	Υ	Υ	Υ	N	N	N	N	Υ
Factor	5	5	5					6
Major/Semi	1	1	1					1
Major/Minor	2	3	3					2
Min	2	2	2					2
Max	10	10	10					10
				•		•	•	

Table 14-131 South Junction (SJN) domains estimation parameters. Part 2.

Domain Code	3206	3220	3221	3222	3223	3251	3253	3254
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
#Structures	1	2	2	2	2	2	2	2
C0	0.140	0.174	0.174	0.174	0.150		0.180	
C1	0.860	0.437	0.437	0.437	0.395	0.243	0.519	
a1	30.00	17.00	17.00	17.00	5.00	10.00	10.00	10.00
C2		0.389	0.389	0.389	0.456	0.325	0.300	0.320
a2		76.00	76.00	76.00	27.00	82.00	82.00	
C3								
a3								
TOTAL SILL	1.000	1.000	1.000	1.000	1.001	0.999	0.999	1.000
1. Major : Semi Major	2	1.7	1.7	1.7	1	1	1	1
1. Major : Minor	5	8.5	8.5	8.5	2.5	5	5	5
2. Major : Semi Major		2.533	2.533	2.533	1.35	2.733	2.733	2.733
2. Major : Minor		12.67	12.67	12.67	3.375	13.67	13.67	13.67
3. Major : Semi Major								
3. Major : Minor								
0	-					± -		-
SURPAC STRIKE	0	170	170	170	331	90	110	
SURPAC PLUNGE	-30	-65	-65	-65	57	-65	-70	
SURPAC DIP	-90	-90	-90	-90	-62	0	0	-80
Search		1		1	1		1	1
	FLLIDCOID	FLLIDCOID	ELLIPSOID	FLLIDCOID	FLLIDCOID	FLLIDCOID	FLLIDCOID	FLLIDSOID
Method								
Estimation Block Size (x,y,z)	5, 10, 10		5, 10, 10	5, 10, 10		5, 10, 10	5, 10, 10	5, 10, 10
Estimation Block Size X	5	5	5	5	10		5	
Estimation Block Size Y	10	10	10	10	20	10	10	
Estimation Block Size Z	10	10		10			10	
Disc Point X	3	3		3			3	
Disc Point Y	5	5 5		5 5			5 5	
Disc Point Z] 3] 3))] 3	5] 3	5
Grade Dependent Parameters	N	N	N	N	N	N	γ	N
Threshold Max					,		5	
Search Limitation							25	1
Course Emiliation							20	
Limit Samples by Hole Id	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hole Id D Field	D2							
Max Samps per Hole	8	8	8	8	8	8	8	
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	10	1	1	12	10	10	10
Max	16	16	6	6	22	18	18	18
Max Search	30			100		50	80	1
Major/Semi	2	2.5		1		2.5	2.5	
Major/Minor	5			1				
						-		
Run Pass2	Υ	Υ	N	N	Υ	Υ	Υ	Υ
Factor	2	2			4	2	2	2
Major/Semi	2	1			1	1	1	
Major/Minor	5	3			2		3	
Min	6	10			5	10	10	
Max	16	16			24	18	18	20
2.2	lv	l.	l N	l.	l.	N	l.	IN
Run Pass 3	Υ -	N	N	N	N	N	N	N
Factor Major/Comi	6							
Major/Semi	2							
Major/Minor	5							
Min	2							
Max	10							<u> </u>

Table 14- Archenar (ARC) domain estimation parameters.

Domain Code	3530	3533	3531	3534	3502	3505
Estimate	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	3	2	2	2	2
CO	0.49		0.39	0.41	0.36	
C1	0.27	0.28	0.22	0.24	0.46	
a1	48.00	32.00	48.00		25.00	
C2	0.24		0.40		0.18	
a2	60.00		60.00		109.00	
C3		0.17				
a3		143.00				
TOTAL SILL	1.00		1.00	1.00	1.00	1.00
1. Major : Semi Major	1.2	1.6	1.2	1.2	1	1
1. Major : Minor	9.6		9.6	9.6	1.25	1.25
2. Major : Semi Major	1.2	1.333	1.2	1.2	1.603	1.603
2. Major : Minor	6	5.714	6	6	4.037	4.037
3. Major : Semi Major		2.554				
3. Major : Minor		7.15				
						ı
SURPAC STRIKE	161.659	26.102	161.659	161.659	201.384	201.384
SURPAC PLUNGE	-29.499					
SURPAC DIP	42.394		42.394			
Search						
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)				5, 10, 10		5, 10, 10
Estimation Block Size X	5	<u> </u>	5	5	5	<i>'</i>
Estimation Block Size Y	10			10	10	
Estimation Block Size Z	10		10	10	10	
Disc Point X	2	2	2	2	2	2
Disc Point Y	4	4	4	4	4	
Disc Point Z	4	4	4	4	4	4
Grade Dependent Parameters	N	N	N	N	N	N
Threshold Max						
Search Limitation						
			l .	Į.		
Limit Samples by Hole Id	N	N	N	N	N	N
Hole Id D Field	D2	D2	D2	D2	D2	D2
Max Samps per Hole						
Pass1	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	6	6	6	8	8
Max	15	17	15	15	16	16
Max Search	48	40	48	48	25	25
Major/Semi	1.2	1.333	1.2	1.2	1	1
Major/Minor	9.6	5.714	9.6	9.6	1.25	1.25
		•			•	
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2
Major/Semi	1.2	1.3	1.2	1.2	1	1
Major/Minor	6	5.7	6	6	1.25	1.25
Min	6	6	6	6	8	8
Max	15	17	15	15	16	16
	_	-			-	
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ
Factor	5	10	5	5	10	10
Major/Semi	1	1	1	1	1.6	1.6
Major/Minor	3	3	3	3	4	4
Min	2	2	2	2	2	2
Max	15	17	15	15	16	16
	-				•	

Table 14-132 Iron Bar domain estimation parameters from the 2016 resource model.

ob	ject eler	nent	comp	field	min_sam	max_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1	c2	a2	semi2	minor2	pass
	201 au_cu	_ok	201	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
	202 au_cu	_ok	202	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
	203 au_cut	_ok	203	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
	204 au_cu	_ok	204	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
	205 au_cut	_ok	205	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
	206 au_cu	_ok	206	7	10	30	26.4	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	1
obje	ct elem	ent	comp	field	min_sam	max_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1	c2	a2	semi2	minor2	pass
	201 au_cu	_ok	201	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
	202 au_cu	_ok	202	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
	203 au_cu	_ok	203	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
	204 au_cut	_ok	204	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
	205 au_cut	_ok	205	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
	206 au_cut	_ok	206	7	8	30	40	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	2
obje	ct elem	ent	comp	field	min_sam	max_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1	c2	a2	semi2	minor2	pass
	201 au_cut	_ok	201	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3
	202 au_cut	_ok	202	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3
	203 au_cut	_ok	203	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3
	204 au_cut	_ok	204	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3
	205 au_cu	_ok	205	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3
	206 au_cu	_ok	206	7	4	30	80	1	2	28.47	-75.65	-69.41	0.5	0.37	24	1.2	2.4	0.13	38	1	1.9	3

14.4.3.6 Block Model and Grade Estimation

The model is in Metana 2012 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below. The 2024 model has been rebuilt with a 20y 10x 20z User block size. This allows for estimate block size reductions appropriate for resource definition and grade control sample spacing spacing. Minimum sub-block size has been reduced to better fit mineralisation and mining void volumes.

Table 14-133 Bluebird Group block model parameters.

	Υ	Х	Z
Min	17,000	19,600	-1,000
Max	19,400	21,000	520
Extents	2,400	1,400	1,520
Parent size	20.00	10.00	20.00
Sub-Block size	1.25	0.625	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Domains that are majority or wholly depleted in the existing open pits have been estimated using Inverse Distance Squared (ID2) to populate the depleted domain blocks and any of the minor in-situ volumes below the depleted open pits. This ID2 estimated in-situ material is classified either Inferred or is Unclassified or Sterilised.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For the Bluebird Group, all interpolation was conducted in three passes to fill all blocks in the estimation domains. An increased search distance varying between 1.5 x to $2 \, x$ was used for the second estimation pass, and an increase varying between $2 \, x$ to $4 \, x$ for the third estimation pass. A reduction of minimum and maximum informing samples was used for either the second or the third interpolation pass.

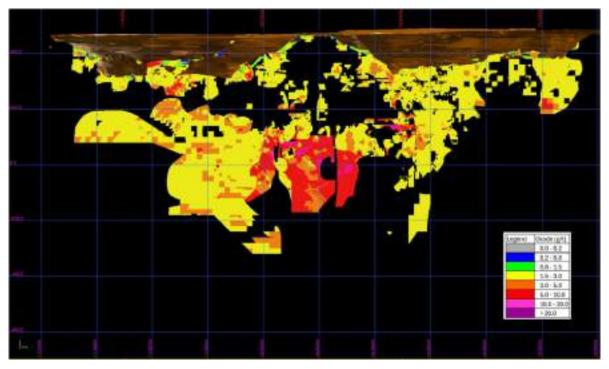


Figure 14-45 Bluebird Group depleted resource model, all domains above a 0.7 g/t COG (Open Pit) or 1.5 g/t COG (Underground) for Measured, Indicated, and Inferred classification - Source: Westgold.

14.4.3.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data for the open pits as the historic production data is incomplete. However, over the life of the Westgold project from February 2016 to November 2016, claimed open pit production vs mill reconciled actual production has been within 2% variation of ounces, but increased tonnage and lower grade due to dilution.

For Westgold underground production from December 2019 to June 2024, claimed production (CMS survey of the mined void v. estimated model, adjusted for external dilution sources) vs mill reconciled actual production, ounces and tonnes have been within 6% variation, with reduced grade and increased tonnes due to mining dilution.

Table 14-134 Bluebird open pit and underground production reconciliation, Westgold project to date.

	Actual			(Claimed		% \	Variance	
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz
Open Pit	425,505	1.36	18,624	380,037	1.50	18,305	+12%	-9%	+2%
Underground	1,427,584	3.35	153,790	1,340,645	3.72	160,316	+6%	-10%	-4%

14.4.3.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Bluebird Group Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with open pit grade control drilling or underground development face sampling, with the mineralisation interpretation supported by open pit, face and backs mapping and validated by face photos during mineralisation domain interpretation.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-30 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Bluebird Group Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

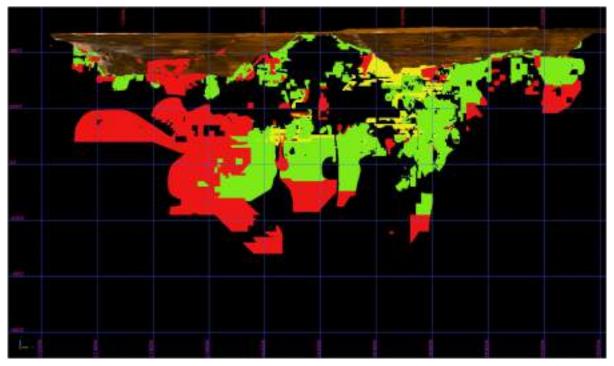


Figure 14-46 Bluebird Group resource classification. All domains above a 0.7 g/t COG (OP) or 1.5g/t COG (UG) for Measured, Indicated, and Inferred classification. Yellow = Measured, green = Indicated, red = Inferred - Source: Westgold.

14.4.3.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources s are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-135 Bluebird Group Open Pit Mineral Resources on June 30, 2024.

	Bluebird Group Open Pit Mineral Resource Statement - Rounded for Reporting 30/06/2024											
		Measured Indicated Measured and Indicated Inferred									ı	
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
Bluebird OP	38	2.72	3	460	1.67	25	499	1.75	28	122	2.49	10
Total	38	2.72	3	460	1.67	25	499	1.75	28	122	2.49	10

>=0.7g/t Au

Table 14-136 Bluebird Group Underground Mineral Resources on June 30, 2024.

	Bluebird Group Underground Mineral Resource Statement - Rounded for Reporting 30/06/2024											
	l l	Measured Indicated Measured and Indicated Inferred										
Project	kt	g/t	koz	kt g/t koz			kt	g/t	koz	kt	g/t	koz
Bluebird UG	304	4.09	40	4,368	3.03	425	4,672	3.10	465	6,032	2.55	495
Total	304	4.09	40	4,368	3.03	425	4,672	3.10	465	6,032	2.55	495

>=1.5g/t Au

The Bluebird Group Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.4 Euro

14.4.4.1 Summary

The Euro deposit is located 7 km southeast of the Bluebird mill, between the Meekatharra Shear Zone and the Burnakura – Gabanintha splays.

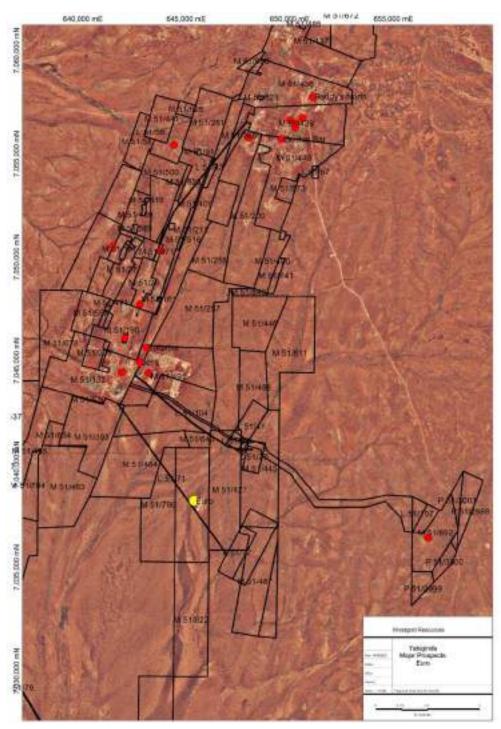


Figure 14-47 Location of the Euro deposit - Source: Westgold.

A Mineral Resource Estimate for the deposit was created by Runge (2008) for Mercator Gold Australia. This model is the basis of the reportable resource for Westgold.

14.4.4.2 Modelling Domains

Initial mineralisation interpretations were prepared by Mercator based on extensive logging and structural data analysis from drill core. Due to the broad and erratic nature of the mineralisation, Runge considered the interpretation and the resulting Mineral Resource estimate to have a low level of confidence, which is reflected in the classification of the resource. However, the various phases of drilling have intersected mineralisation in similar positions, and it is reasonable to assume mineralisation continuity between drill holes as interpreted.

Wireframes were created by Mercator using nominal 0.5 g/t cut-off and a minimum downhole width of 2 m. Boundaries were adjusted by Runge.

From Runge (2008). There is no surface exposure at the prospect as the area is covered by alluvial flood plain sediments up to 20 m thick. Diamond drilling at the prospect has been logged in detail and suggests that three lithological units are present at the prospect. These include lithic tuff, bedded tuff and quart-feldspar porphyry. Lithic tuff is intermediate to mafic in composition. Lithic fragments range in size from 5 mm to greater than 50 mm. The bedded tuff is fined grained and very well bedded. Dark layers within the bedded tuff are dominated by pyrite and arsenopyrite. The quartz-feldspar porphyry displays medium to coarse phenocrysts of quartz and feldspar within a very fine "felsite" matrix. The unit often has sharp contacts with the surrounding volcaniclastics.

The primary lithologies have been overprinted by alteration assemblages. Two types are observed – pervasive carbonate alteration, and quartz-carbonate-sericite+-fuchsite alteration.

Gold mineralisation is associated with a series of narrow quartz veins which occur within the QCS alteration zones. Vein orientation is relatively uniform, striking at 055 degrees and dipping at -70 degrees to the southeast. Several flat lying zones are also interpreted.

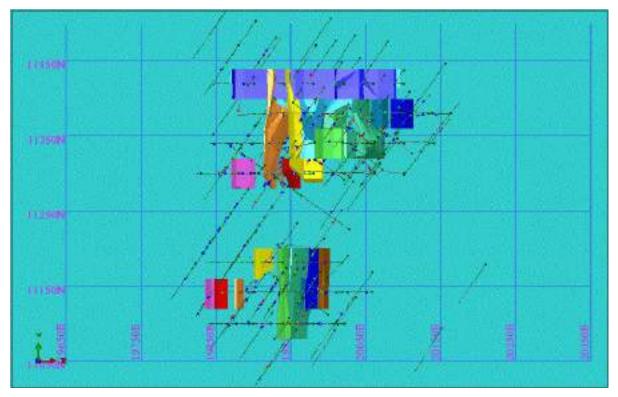


Figure 14-48 Euro mineralisation domains - Source: Westgold.

14.4.4.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (2 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Note that the Runge (2008) report incorrectly state the use of 1 m composite length, highlighted in the report by Hollingsworth (2008).

Statistical comparisons were completed on the data combined from all domains for top-cut analysis.

Table 14-137 Euro domains statistics and top-cut.

	High Grade Co	ut
Criteria	Review of log-probability plots	
	High Grade Cut Value	Number of Values Cut
All Zones	15g/t	3
	Summary Statistics of Resou	irce Composites
Parameter	All Zones	
Number	963	
Minimum	0.01	
Maximum	82.50	
Mean	1.11	
Cut Mean	1.02	
No. Samples Cut	3.00	
Median	0.48	
Std Dev	3.22	
Variance	10.39	
Coeff Var	2.91	
100000000000000000000000000000000000000	Percentiles	,
10	0.08	
20	0.15	
30	0.24	
40	0.35	
50	0.48	
60	0.66	
70	0.91	
80	1.43	
90	2.26	
95	3.57	
97.5	4.95	
99	9.89	

14.4.4.4 Density

Density values were suppled to Runge by Mercator, determined from density testwork from diamond core using the immersion method. Values area tabled below.

Table 14-138 Density values for the Euro block model.

Bulk Density Values

7.0000.000	Test Work Data	\$117704072 PE 205 00	
Method	Bulk density determinations were core at the Euro prospect. Data spreadsheet outlining material typ and density	was provided to Runge in a	
Number of samples	56		
Comments	Values appropriate for rock type	and style of mineralisation	
Material Type	Number of Samples	Mean Density	Resource Density
Oxide	19	2.13	1.8
Transitional	21	2.50	2.1
Fresh	16	2.77	2.7

14.4.4.5 Variography

The Euro deposit was estimated using Inverse Distance Squared interpolation. The Runge (2008) report does not detail how the estimation parameters were determined. An isotropic search ellipse of 100 m radius was used for estimation of the primary lodes. A Major / Minor ratio of 4 was used for the flat lodes. Estimation parameters are tabled below.

Table 14-139 Euro domain estimation parameters.

	ID2 Interpolati	on Parameters	
Parameter	Pass 1	Pass 2	Pass 3
Search Type	Ellipsoid	Ellipsoid	
Bearing	0	0	
Dip	0	0	
Plunge	0	0	
Major-Semi Major Ratio	1	1	
Major-Minor Ratio	1 (4 Flat Zones)	1 (4 Flat Zones)	
Search Radius	100m (40m Flat Zones)	150m (100m Flat Zones)	
Max Vertical Search	999	999	
Minimum Samples	4 (6 Flat Zones)	2 (4 Flat Zones)	
Maximum Samples	40	40	
Block Discretisation	3X by 3Y by 3Z	3X by 3Y by 3Z	
Percentage Blocks Filled	95%	5%	

14.4.4.6 Block Model and Grade Estimation

The model is in Euro local grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-140 Euro block model parameters.

Block Model Parameters

Model Name	Euro_id_200805.mdl					
	Υ	X	z			
Origin (minimum y,x,z)	10,900	19,700	200			
Extent	700	500	260			
Block Size (Sub-blocks)	20 (5.0)	5 (1.25)	10 (2.5)			
Rotation		none				

The inverse distance squared (ID²) interpolation method was used to fill the mineralisation domains. This method was adopted as it allows for block interpolation based on the values of the sample points closest to the block centroid. The weighting of the surrounding samples is calculated based on the inverse of their distance to the block centroid raised to the second power. Given the data density within these domains and reduced confidence in the modelled geological continuity, ID² is an appropriate technique for estimation.

14.4.4.7 Model Validation

No validation of the estimate is documented in the report by Runge (2008). There has been no historic production of the deposit to reconcile against.

14.4.4.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Euro Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) No material was applied the Indicated category where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence.
- (3) The Inferred Mineral Resource was applied to the entire Mineral Resource Estimate as Tonnage, grade, and mineral content can only be estimated with a reduced level of confidence.

The Euro Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.4.4.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-141 Euro Mineral Resources on June 30, 2024.

Euro Mineral Resource Statement - Rounded for Reporting 30/06/2024 Indicated Measured Measured and Indicated Inferred **Project** kt g/t koz kt g/t koz kt g/t koz kt g/t koz Euro 0 0.00 0 0 0.00 0 0 0.00 0 2,073 1.30 85 Total 0 0.00 0 0 0.00 0 0 0.00 0 2.073 1.30 85

>=0.5g/t Au

The Euro Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- 7 To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.5 Great Northern Highway

14.4.5.1 Summary

The Great Northern Highway (GNH) deposit is located directly adjacent to the Bluebird mill on the eastern side of the Great Northern Highway. The deposit encompasses the Great Northern Highway and Bluebird East sections of the open pit.

A resource report for the deposit was created by Snowden (Fieldgate, 2012) for Reed Resources. This model and report form the reportable resource for Westgold. The remnant resource is primarily located below the Bluebird East portion of the open pit.

Open-pit mining of the GNH deposit by Saint Barbara Mines ceased in 2001. Open pit mining of the GNH deposit reached a final depth of approximately 160 m below surface. A small two-level underground exploiting a quartz shear below the GNH section of the open pit was mined from 2001 to 2002. Total combined historic mining production is summarised in the table below, compiled by Hollingsworth (2022) from historic production records.

Table 14-142 Total historical production for the GNH deposit area.

Mine	Tonnes (t)	Grade (g/t)	Gold (oz)
Bluebird East open pit (Includes GNH).	2,987,444	1.56	149,937
Great Northern Highway underground.	90,185	10.14	29,413

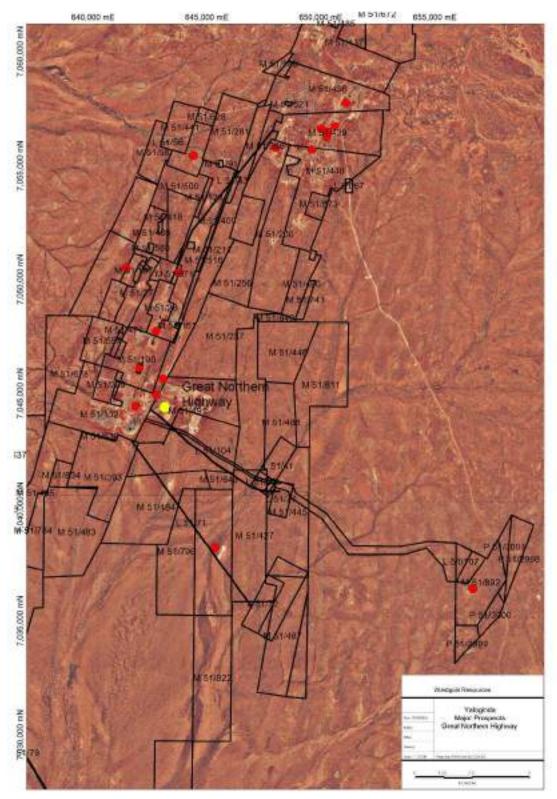


Figure 14-49 Location of the Great Northern Highway deposit - Source: Westgold.

14.4.5.2 Modelling Domains

The GNH deposit is hosted within layered ultramafic and mafic volcanics, minor sediments, and felsic intrusive units, which are separated by a north-northwest trend fault.

The Vulcan geological interpretation wireframes were supplied to Snowden by Reed Resources. Interpretation was based on a nominal 0.5 g/t wireframe cut-off grade.

A total of four separate mineralised domains were interpreted by Reed, summarised in the table below.

Table 14-143 GNH interpretation domains supplied by Reed Resources to Snowden.

File name	Description
gnh_n	Sub-vertical lodes north of the fault. Generally striking 200° and dipping towards the east southeast
gnh_of	South of the fault , flat supergene mineralisation mainly in the transitional zone. Dipping approximately 10' towards the east-southeast
gnf_s	Sub-vertical lodes south of the fault. Generally striking 350° and dipping towards the south
gnf_sg	Flat supergene mineralisation only in the oxide zone and south of the fault. Dipping approximately 30' towards the northeast

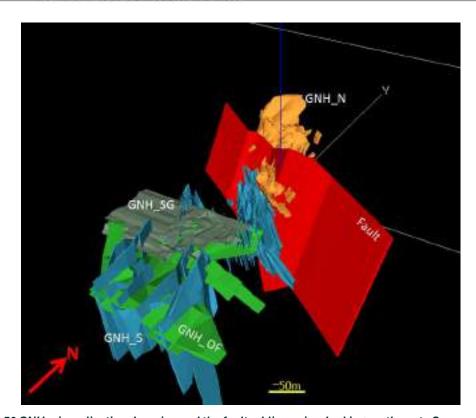


Figure 14-50 GNH mineralisation domains and the fault, oblique view looking northwest-Source: We stgold.

Snowden reviewed the geological interpretation and coded the mineralisation wireframes (MINZONE) as tabled below. Areas outside the mineralised envelopes were assigned a MINZONE value of 0.

Table 14-144 GNH block model attribute MINZONE field coding.

File name	MINZONE field code
gnh_n	1000
gnit_of	2000
gnt_s	3000
gnf_sg	4000

14.4.5.3 Statistical Analysis and Compositing

Prior to statistical analysis and estimation, the drillhole sampling data was composited using a nominal 1 m downhole interval within the mineralised domains, which is the dominant sample length. The sample data and block model were also coded with the oxidation surfaces provided by Reed. The MINZONE and the OXIDE coding were used to constrain the gold grade estimation for the GNH deposit. Summary statistics for the gold mineralisation at the GNH deposit are tabled below.

Table 14-145 GNH block model attribute OXIDE field coding.

Oxidation state	OXIDE field code
Oxide	10
Transitional	20
Fresh	30

Table 14-146 GNH mineralisation domain statistics.

MINZONE	Oxide state	Samples	Minimum (g/t)	Maximum (g/t)	Mean (g/t)	Variance	Standard deviation	cv
1000	Oxide	5,670	0.005	87.7	1.676	8.298	2.881	1.718
	Trans	1,711	0.01	98.3	1.345	8.024	2.833	2.106
	Fresh	392	0.02	11.4	1.145	1.869	1.367	1.194
2000	Oxide	326	0.005	12.19	0.538	1.362	1.167	2.17
	Trans	34	0.03	7.48	0.865	1.539	1.241	1.435
3000	Oxide	1,140	0.005	74.6	2.335	35.77	5.98	2.561
	Trans	205	0.01	25.5	1.864	7.663	2.768	1.485
	Fresh	228	0.01	60.9	2.023	39.14	6.256	3.093
4000	Oxide	372	0.01	55.8	1.691	15.59	3.949	2.336

To reduce the impact of elevated grades on the block grade estimation top-cuts were assessed for each domain within the mineralisation. For the waste blocks a top-cut value of 2 g/t Au was applied. Top-cuts are tabled below.

Table 14-147 GNH domain top-cuts.

1010 1020 1030	20.0 10.0 No	1.7	1.4 1.2	22 11
			1.2	11
1030	No			9.4
		top cut requ	ired	92
2010	2010 6.0		1.8	2
2020	No	top cut requ	ired	2
3010	1.9	2.6	1.6	29
3020	20.0	2.5	4.5	
3030	20.0	2.5	1.6	5
4010	20.0	2.3	1.6	3
Waste	2.0	6.7	2.3	480

14.4.5.4 Density

Density values provided by Reed Resources were allocated to the model blocks by assigning fixed values based on the oxidation state. The report does not state if these density values were based on test-work. Waste backfill within the GNH pit was assigned a nominal bulk density of 1.4 based on the assumption that this material is predominantly oxidised waste material.

Table 14-148 GNH model density values.

Zone	Bulk density (t/m³)
Oxide	2.02
Trans	2.25
Fresh	2.50

14.4.5.5 Variography

Grade continuity was assessed for gold mineralisation within each domain. A normal scores transform was applied to the data and the variogram model sill values back transformed prior to estimation. The back transformed variogram model parameters are tabled below.

Table 14-149 GNH variogram model parameters.

Domain (MINZONE +	Direction	Nugget	Struc	ture 1	Struc	ture 2
OXIDE)		28155 F 18	SIII	Range	Sill	Range
d triperio	-29154		-5000	7	24564	25
1010	59→177	0.56	0.33	2	0.11	6
	-10250			5		30
201007	00→120			5		30
1020	80-+030	0.51	0.31	3	0.18	15
	10→210			7		15
1030		Not enough:	samples - Dom	ain 1020 parame	eters applied	
2010	-05010			10		45
	-09-→280	0.19	0.50	4	0.31	17
	80310	500000	SHERVES	4	23275	15
2020		Not enough:	samples - Dom	nain 2010 parame	eters applied	
	00→160			10		45
3010	90→000	0.35	0.33	4	0.32	17
	00250			4		15
3020 &	00→160			10		45
3030	90-000	0.47	0.38	10	0.15	20
(combined)	00→250	003903	20000	4	21347	6
	00→090			8		45
4010	00→000	0.26	0.62	10	0.12	30
	90→000			2		3

14.4.5.6 Block Model and Grade Estimation

The model is in Metana (2012) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Datamine block model parameters are tabled below.

Table 14-150 GNH block model parameters.

	Υ	X	Z
Min	18,200	21,200	50
Max	19,100	22,000	500
Extents	700	460	360
Parent size	10.00	5.00	5.00
Sub-Block size	10.00	5.00	5.00

Gold grades were estimated into parent cells of 5 mE by 10 mN by 5 mRL using the MINZONE and OXIDE field coding to constrain the estimate. Estimation of gold was by ordinary kriging for mineralised domains and waste blocks. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the un-sampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it

considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Dynamic anisotropy in Datamine was used to locally adjust the variogram and search orientations. The mineralisation wireframes were used to create a point file where each point relates to a triangle centroid and contains the true dip and true dip direction of the wireframe triangle. All points related to the ends of the wireframes were manually removed to avoid anomalies in these areas. This point file was then used to estimate true dip and true dip direction into the block model. The estimates of true dip and true dip direction were subsequently used to locally adjust the variogram and search orientations during estimation.

As the mineralised envelopes only extend just above the base of the final pit, composites coded as being unmineralised (i.e. outside the mineralised wireframes) were limited to 5 m above the final pit surface to ensure that high grades from the grade control drilling were not included in the estimate of waste block grades.

The range of the initial search pass was based on the ranges of continuity seen in the variograms along with consideration of the drillhole sample spacing. Blocks were estimated using a minimum of ten and a maximum of forty samples. If the initial search failed to find the minimum number of samples required, then a second search was conducted using double the search radii. For the third search pass, the search radii were maintained at double the initial search, however the minimum number of samples was reduced to two (note that the third search was only used for the mineralised domains – not waste blocks). To ensure that a reasonable number of drillholes were utilised, a maximum of 8 samples per drillhole was allowed. Blocks which remained un-estimated after the third search pass, mainly waste blocks, were assigned a default grade as tabled below and the search pass field set to a value of ninety-nine.

 ${\it Table~14-151~Default~gold~grade~assigned~to~un-estimated~blocks~in~the~GNH~model.}$

MINZONE + OXIDE	Grade (g/t)
1010	1.7
1020	1.3
1030	1.1
2010	0.5
2020	0.9
3010	1.9
3020	1.9
3030	2.0
4010	1.7
Waste	0.005

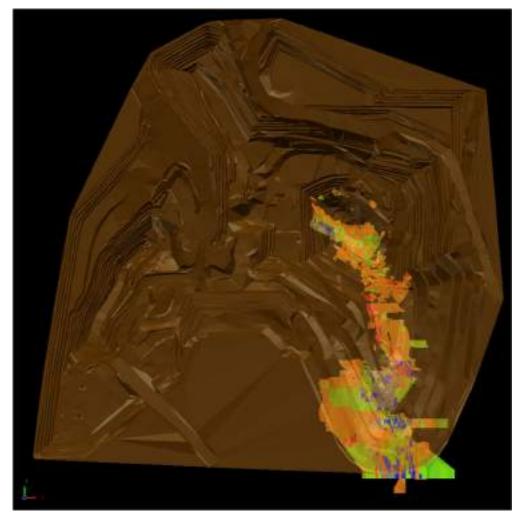


Figure 14-51 GNH depleted resource model, all domains, below the as-mined open pit. Plan view - Source: Westgold.

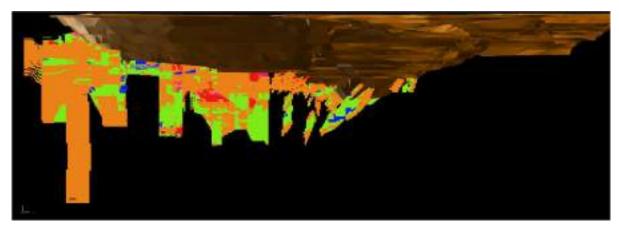


Figure 14-52 GNH depleted resource model, all domains, below the as-mined open pit. Long Section view looking west - Source: Westgold.

14.4.5.7 Model Validation

The estimates were validated using a visual comparison of block grade estimates and the drillhole data, a global comparison of the average composite (naïve and declustered) and estimated grades and moving window averages comparing the mean block grades to the composites.

The conclusions from the model validation work were that the visual comparison of the model grades and the corresponding drillhole grades shows a good correlation. A comparison of the global drillhole mean grades with the mean grade of the block model estimate (within the mineralisation domain) shows that the block model mean grades are typically within 5% of the drillhole means. The grade trend plots show a good correlation between the patterns in the block model grades compared with the drillhole grades.

The model was not reconciled against historic production records.

14.4.5.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The GNH Mineral Resource was classified in the model on the following basis:

- 1. No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally supported by a drillhole spacing of 20 m, and is limited to the upper parts of the mineralisation below the final GNH depleted pit.
- 3. The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

The Great Northern Highway Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material difference.

Figure 14-53 GNH resource classification. All domains. Green Indicated, Red Inferred. Long Section looking west - Source: Westgold.

14.4.5.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-152 Great Northern Highway Mineral Resources on June 30, 2024.

Great Northern Highway Mineral Resource Statement - Rounded for Reporting 30/06/2024												
	Measured Indicated Measured and Indicated Inferred											
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
GNH	0	0.00	0	331	1.59	17	331	1.59	17	1,326	1.43	61
Total	0	0.00	0	331	1.59	17	331	1.59	17	1,326	1.43	61

>=0.5g/t Au

The Great Northern Highway Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.

- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.6 Rhen's Group

14.4.6.1 Summary

The Rhen's Group resource consists of the mineralisation along a line-of-lode within the Meekatharra shear zone. The deposits from south to north area Mystery, Rhen's (backfilled), Anarchist, Speedy's, Gibraltar South, Gibraltar (not part of the reportable resource), and Karangahaki. The group is from 2.5 km to 4.5 km north of the Bluebird mill.

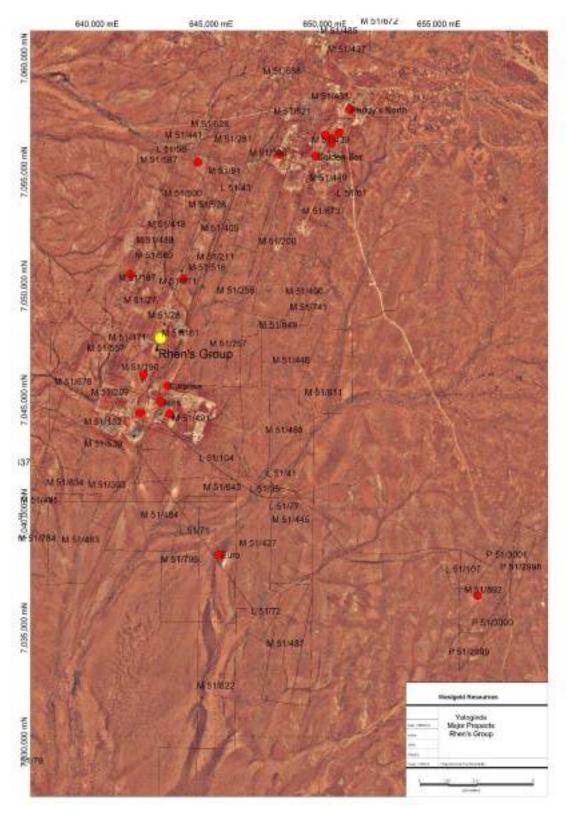


Figure 14-54 Location of the Rhen's group deposits - Source: Westgold.

Historical records document underground production from the Karangahaki and Gibraltar lodes, and workings on the Rhen's and Mystery Leases from 1903 to 1914 (Clarke, 1916). Average grade is back calculated from ore tonnage and gold ounces.

Table 14-153 Historic underground production from the Karangahaki Belt (Clarke, 1916).

Deposit	Tonnes (t)	Grade (g/t)	Gold (oz)
Karangahaki Lode	12,886	15.5	6,437.24
Gibraltar Lode	626.5	4.8	97.11
Mystery Lease	460.1	22.4	330.74

Karangahaki, Gibraltar, Gibraltar South, Anarchist, Speedy's and Rhen's opens pit were mined by Dominion Mining from 1989 to 1995. Gold production figures for Karangahaki cannot be sourced, and Speedy's production is included with the Gibraltar open pit production records. Saint Barbara Mines developed the Mystery open pit from 1995 to 1998, then the Gibraltar underground from 1999 to 2002 (Timms, 2006 and Hollingsworth, 2022)

Table 14-154 Open pit and underground production from the Rhen's Group (Hollingsworth, 2022).

Deposit	Tonnes (t)	Grade (g/t)	Gold (oz)
Mystery open pit	468,298	1.23	18,493
Rhen's open pit	21,700	1.93	1,346
Anarchist open pit	27,757	1.37	1,223
Gibraltar South open	278,861	1.70	15,199
pit			
Gibraltar open pit	284,255	2.29	20,928
Gibraltar underground	371,200	3.26	38,944

Westgold has mined an open pit cutback at Gibraltar South, producing 79,112 t at 1.30 g/t for 3,319 oz. This is included in the production figures in the table above.

The reportable Mineral Resource Estimate and associated report were produced by Westgold in 2016 (Wijayadi, 2016). This model has been depleted for open pit mining by Westgold for the 2023 reportable Mineral Resource Estimate.

Whist the Gibraltar underground mineralisation has been modelled, historic reports document poor grade reconciliation from ore production compared to RC and diamond resource drillholes and grades from underground face sampling, sludge drilling and sampling of underground production drillholes. Further work is required to analyse the data. Due to the uncertainty in the confidence of the estimate based on this data, subsequently the Gibraltar underground mineralisation is not included in the reportable Mineral Resource Estimate.

Separate resource models were produced by Westgold for Gibraltar South open pit production (Witten, 2017d) and for reassessment of Karangahaki deposit with historic open pit production data found after the 2016 model (Witten, 2017e), but this data has not yet been incorporated into a Rhen's group reportable Mineral Resource Estimate.

14.4.6.2 Modelling Domains

Adapted from Wijayadi (2016). The mineralisation is developed in a north – south trending structure hosted within mafic to ultramafic lithologies and is associated with an alteration halo. The mineralisation is associated with quartz veining and, quartz carbonate and quartz chlorite alteration.

The historic nature of the geological logging and the multiple generations of logging codes rendered the current lithological table within the database ineffective to assist with the domaining process. The lithology codes consist of over 6,000 different codes which were grouped into quartz related, ultramafic related, shear related, talc and schist for further evaluation. The interpreted lithological groups assisted with defining the mineralisation halo, however the continuity of individual mineralised lodes was problematic.

The broad orientations of the domains strike north south and are dipping moderate to steeply towards the east. The mineralisation domain selection criteria were based upon:

- >1 g/t Au threshold for Gibraltar as defined from log-probability plots.
- >0.5 g/t Au threshold for Gibraltar South to Mystery as defined from logprobability plots.
- Geological information to assist the continuity of the interpretation of the mineralised halo.
- An approximate minimum mining width of 2 m.
- Maximum internal waste of 2 m.

The interpretation was initially constructed on 20 m sections and subsequently interpreted on 10 m sections and 5 m to account for the underground face samples within Gibraltar and grade control information within Mystery.

A total of sixty-four estimation domains were interpreted within the Gibraltar - Mystery mineralised area. The mineralisation interpretation at Karangahaki required inclusion barren quartz between Karangahaki to Gibraltar to link the mineralised domains. The interpretation within Gibraltar included drill hole and face sample data through unmineralised zones due to a suspected structural offset between 7,000 mN – 6,860 mN at 275 mRL.

Gibraltar South consists of a single steeply east dipping mineralised structure in the north that develops into multiple mineralised structures to the south. Several mineralised structures are interpreted between Gibraltar South to Anarchist, with complexity increasing within the Anarchist to Rhen's areas. The continuity of mineralisation varies significantly for the interpreted domains. The continuity of the mineralisation along strike reduces between Rhen's and Mystery.

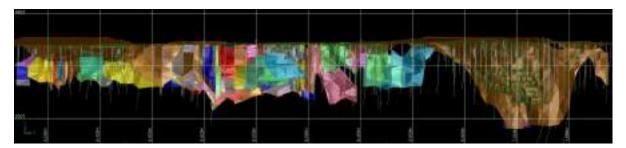


Figure 14-55 Mineralisation domains, Mystery to Gibraltar. Karangahaki not pictured - Source: Westgold.

14.4.6.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-155 Rhen's group mineralisation domain statistics and top-cuts. Part 1.

Ī.				Au									Au cut				
Domain	Samples	Min	***	Mess	Mandard	O.	Variance	Topicut	# Values Cut	N. Dara	% Mattel	Minimum	Maximum	Mean	Suntied	N.	Variance
Δs	13751	0.005	129,668	1,576	3.916	1.982	15,333					0.005	129.668	1.976	3.916	1.982	15.333
1	4677	0.005	129.668	3.179	5.046	1.776	31,874	50.00	.9.	0.2%	-1.8%	0.005	-50	1.121	4.001	1.538	23.051
2	-11	0.15	4.63	1.045	1.405	0.853	1.973	-	0	0.0%	0.0%	0.15	4.61	1.648	1.405	0.853	1.975
1	265	0.005	24.5	1.00	2.986	1.588	8.918	12.00	3	1.1%	-5.2%	0.005	12	1.783	2.387	1.329	5,7
4	137	0.02	24.4	2.102	3.219	1.531	10.36	10.00	2	1.5%	-9.7%	0.02	10	1.009	2.00	1.065	4.245
5	538	0.03	26	1.711	2,315	1.351	5.558	10.00	6	1.1%	4.6%	0.03	10	1.634	1.79	1.096	3,205
6	40	0.06	17.77	1.274	2.58	2.025	6.658	6.00	1	2.2%	-20.2%	0.00	9	1.018	1.02	1,002	1.041
7	39	0.19	4.55	0.973	0.773	9,723	0.598		0	0.0%	9.0%	0.39	4.35	0.575	0.773	0.753	0,558
8	15	0.35	. 5	1.874	1.485	0.792	2.204		0	0.0%	0.0%	0.35	5	1.874	1,485	0.792	2.204
9	102	0.09	14.2	1,589	1.961	1.249	3.844	10.00	2	1.1%	-2.9%	0.09	10	1.523	1.692	1.111	2.864
10	333	0.01	19.6	1.467	1.926	1317	3.708	10.00	3	0.9%	-3.4%	0.01	10	1.413	1.573	1.113	2.475
11	1.45	0.02	10.5	1.7	1.885	1.109	3.555	8.00	9	2.1%	-2.1%	0.02		1.004	1.737	1.064	3.017
12	68	0.005	6.5	0,037	1.098	1.147	1.207	5.00	1	1.5%	-2.3%	0.005	5	0.935	0.996	1.065	0.991
13	48	0.005	4.86	1.076	1.001	1.014	1.25	4.00	2	4.2%	-1.8%	0.005	4	1.057	1,029	0.974	1.06
14	128	0.000	7.87	1,255	1.355	1.04E	1.830	5.00	4	3.1%	-3.6%	0.005	3	1.247	1,182	0.948	1,397
15	71	0.06	6.43	0.904	1.051	1.163	1.105	3.00	1	4.8%	-7.5%	0.06	3	0.836	0.835	- 1	0.698
16	16	0.28	13.3	2,404	3.242	1,348	10.512	8.00	.1	6.3%	-13.8%	0.28		2.073	2.337	1.081	4,568
17	253	0.005	17.75	1.072	1.422	1.390	2.022	6.00	2	0.8%	5.3%	0.005	6	0.968	0.961	0.992	0.923
18	530	0.005	26.9	1.099	1.978	1.8	3.914	8.00	6	1.1%	-8.2%	0.005	9	1.009	1.221	1.21	1.49
19	13	0.05	24	7.335	3.223	3.87	10.385	10.00	1.	2.6%	-7.4%	0.05	10	2.18	2.3	1.055	5.29
20	284	0.007	8.99	1.089	1.226	1.127	1.504	5.00		2.8%	-3.4%	0.007	. 5	1.052	1.059	1.007	1.121
21	45	0.06	4.5	1.08	1.012	0.938	1.025		0.	0.0%	0.0%	0.06	4.5	1.08	1.012	0.938	1.015
22	27	0.01	2.39	0.755	0.616	0.815	0.379	74	0	0.0%	0.0%	0.01	2.39	0.755	0.616	0.815	0.379
23	75	0.02	8.05	1.122	1.256	1.12	1.579	5.00	1	1.3%	-3.7%	0.02	- 5	1.081	1.064	0.984	1.132
24	78	0.03	16.72	1.757	2.831	1.611	8.017	10.00	3	3.8%	-7.3%	0.03	10	1.028	2.275	1.397	5.178
25	198	0.005	17.5	1,288	7,295	1.762	5.266	10.00	3	1.5%	-7.4%	0.005	10	1.193	1.728	1.448	2.985
26	772	0.005	22.8	1.038	1.509	1.454	2.278	10.00	2	0.3%	-1.9%	0.005	10	1.003	1.299	1.276	1,487
27	470	0.005	18.66	1.216	1.518	1.25	2.303	6.00	10	2.1%	-4.6%	0.005	6	1.158	1.145	0.989	1.312
28	30	0.005	1.25	0.483	0.408	0.845	0.166	-	0	0.0%	0.0%	0.005	1.25	0.413	0.406	0.845	0.166
29	140	0.005	7.4	0.925	1.108	1.199	1.228	5.00	1	2.1%	-2.5%	0.005	5	0.902	1	3,300	0.999
30	144	10.01	16.75	1.482	2	1.349	1.991	8.00	2	1.4%	-4.9%	0.01	1	1.409	1.572	1.116	2.471
21	199	0.03	17.9	2.043	2.477	1.213	6.137	10.00	4	2.0%	-4.1%	0.01	10	1.96	2.015	1.064	4.352
32	69	0.088	10.41	1,907	1.657	1.081	2.745	5.00	1	1.4%	4.9%	0.088	5	1.525	1.33	0.87	1,768
33	25	0.02	2.31	0.543	0.593	1.091	0.352		0	0.0%	0.0%	0.02	2.33	0.543	0.595	1.091	0.352
34	20	0.01	4.5	0.881	1,056	1.136	1.114	7.4	0	0.0%	0.0%	0.01	4.8	0.883	1,056	1.198	1,114
35	46	0.12	88.8	3.022	12.986	4.297	168.638	10.00	1	2.2%	-56.7%	0.12	10	1.309	1.792	1.369	3.212

Table 14-156 Rhen's group mineralisation domain statistics and top-cuts. Part 2.

				Au Uncut									Au cut				
Demode	Sangles	4	Mess	Mean	Hesters	tv	Salance	Tiep Cut	# Visites Out	16 Dates	N. Mecai	Minimum	Maxmun	Mean	Standard deviation	٥٨	Variance
36	33	0.11	1.42	1.047	0.895	0.655	0.801	-	D.	0.0%	0.0%	0.11	3.42	1.047	0.895	0.855	0.801
37	- 153	0.005	17.7	3.238	2.198	1.774	4.829	8.00	4	2.6%	-10.2%	0.005		1.112	3.497	1.346	2,241
38	106	0.101	5.49	1.039	0.962	0.926	0.926	- 4	D	0.0%	0.0%	0.101	5.49	1.039	0.962	0.926	0.916
39	285	0.005	17.58	1.45	2.654	1.83	7.043	8.00	13	4.6%	-9.6%	0.005		1.011	2.118	1.615	4,487
40	1308	0.005	36.7	1.015	1.729	1.703	2.99	10.00	4	0.3%	-2.8%	0.005	10	0.917	1.362	1.4	1.909
41	167	0.06	60.7	2.015	5.31	3.131	39.811	12.00	3	1.8%	-29.0%	0.06	17	1.43	1.81	1.250	3.276
42	-11	0.07	0.89	0.412	0.234	0.569	0.055		0	0.0%	0.0%	0.07	0.89	0.412	0.234	0.569	0.055
43	131	0.01	30	4.118	5.284	1.289	27.917	15.00	.7	5.8%	5.9%	10.0	15	3.874	4,486	1.158	20.121
44	80	0.005	8:62	0.752	1.493	1.985	2.229	5.00	2	2.5%	9.8%	0.005	5	0.68	1.175	1.728	1.381
45	46	0.06	4.23	1.502	1.085	0.723	1.178	C4	0	0.0%	0.0%	0.06	4,23	1.500	1.085	0.729	1,178
46	194	9.08	14.51	27041	2.735	1.34	7.48	20.00	6	3.1%	-4.7%	0.00	10	1.940	2.368	1,217	5.607
47	431	0.04	6.7	1.120	1.00	0.914	1.051	5.00	.5	1.2%	-1.0%	0.04	5	1.115	0.979	0.878	0.959
46	37	0.07	2.88	0.962	0.745	0.759	0.555	-	0	0.0%	0.0%	0.07	2.88	0.902	0.745	0.759	0.355
49	33	0.08	4.55	0.997	0.947	0.969	0.896	105	D	0.0%	0.0%	0.00	4.53	0.937	0.947	0.969	0.886
50	19	0.1	1.35	0.497	0.364	0.752	0.132	174	0	0.0%	0.0%	0.1	1,35	0.497	0,354	0.732	0,132
51	41	0.03	4,29	9,789	0.0	1.015	0.64	1.4	D	0.0%	0.0%	0.03	4.29	0.785	0.8	1.015	0.64
52	56	0.03	10.27	1.672	2.009	1,138	4.20	7.00	2	3.4%	-3.9%	0.03	.7	1.60c	1,536	1,140	3,371
53.	40	0.01	2.73	0.729	0.542	0.746	0.293		0.	0.0%	0.0%	0.01	2.71	0.726	0.542	0.746	0.258
54	- 00	0.12	9.28	1.100	1.576	1.307	2.483	5.00	3.	4.5%	-8.0%	0.12	5	1.109	1.182	1.065	1,356
55	63	0.005	3.87	3,065	0.752	0.705	0.565		0.	0.0%	0.0%	0.005	1,87	1.065	0.752	0.705	0.565
56	26	9.11	15.33	3.604	2.924	1.822	8.548	8.00	3	3.8%	-17.6%	0.11		1.322	1.555	1.207	2,545
57	16	0.01	1.98	0.993	0.657	0.663	0.431	4	D	0.0%	0.0%	0.01	3.98	0.993	0.657	0.662	0.431
58	17	0.009	1.44	0.486	0.43	0.885	0.185		-0	0.0%	0.0%	0.009	1.44	0.496	0.43	0.885	0.185
59.	18	0.19	4.06	1.126	0.855	0.76	0.731	1.1	0.	0.0%	0.0%	0.19	4.06	1.126	0.855	0.74	0.731
60	. 54	0.04	10.86	2.221	2.501	1.126	6.253	8.00	2	3.6%	-3.4%	0.04		2.145	2.279	1.062	5.193
61	-21	0.126	5.61	1.476	1.272	0.883	1.018	4.00	1	4.0%	-5.2%	0.126	4	1.397	1.017	0,742	1,075
62	111	0.005		1,400	2.182	1.552	4.753	10.00	1	0.9%	-3.0%	0.005	10	1.555	1.850	1.397	3.582
61	9	0.07	1.98	0.79	0.66	0.846	0.435		0	0.0%	0.0%	0.07	3.98	0.78	0.66	0.846	0.415
64	11	0.07	3.12	1.287	1.172	0.966	1.374		0	0.0%	0.0%	0.07	3.13	1.237	1.172	0.949	1.376

14.4.6.4 Density

Density values were assigned based on oxidation. The values sourced from previous resource models, but the previous model and reports to not detail the source of the values. The values applied are consistent with test-work of equivalent lithology from other deposits in the Yaloginda area.

Table 14-157 Rhen's Group density values.

Material Type	Density
Cover	1.40
Oxide	1.90
Transitional	2.20
Fresh	2.60
Backfill	1.40
Air / Void	0.00

14.4.6.5 Variography

A geostatistical analysis of down-hole composited data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

Table 14-158 Rhen's group variogram model parameters. Part 1.

Domain	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
No. Comps	4677	11	266	137	538	46	59	15	182	333	145	68	48	128	21	16	253	530	83	284	45	27
NUGGET	0.36	0.28	0.20	0.31	0.38	0.33	0.14	0.35	0.40	0.25	0.26	0.41	0.51	0.26	0.24	0.27	0.47	0.32	0.31	0.25	0.25	0.26
SILL 1	0.45	0.44	0.40	0.18	0.19	0.24	0.66	0.17	0.43	0.44	0.45	0.39	0.37	0.62	0.63	0.62	0.42	0.42	0.36	0.51	0.51	0.49
SILL 2	0.14	0.18	0.40	0.51	0.43	0.43	0.20	0.48	0.17	0.31	0.29	0.20	0.12	0.12	0.13	0.11	0.11	0.26	0.33	0.24	0.24	0.25
	0.05	0.10																				
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Major																						
RANGE 1	5.00	5.00	38.00	40.00	15.00	20.00	3.00	15.00	34.00	30.00	30.00	27.00	30.00	55.00	55.00	55.00	55.00	22.00	30.00	30.00	30.00	30.00
RANGE 2	30.00	30.00	70.00	75.00	60.00	40.00	20.00	60.00	60.00	70.00	70.00	70.00	70.00	90.00	90.00	90.00	90.00	86.00	65.00	70.00	70.00	70.00
RANGE 3	104.00	104.00																				
Semi-Major																						
RANGE 1	6.00	6.00	38.00	40.00	15.00	30.00	3.00	15.00	34.00	30.00	10.00	10.00	15.00	45.00	45.00	45.00	45.00	119.00	10.00	30.00	30.00	30.00
RANGE 2	31.00	31.00	70.00	75.00	60.00	65.00	20.00	60.00	60.00	70.00	45.00	45.00	35.00	78.00	78.00	78.00	78.00	149.00	30.00	70.00	70.00	70.00
RANGE 3	59.00	59.00																				
Minor																						
RANGE 1	6.00	6.00	5.00	5.00	10.00	10.00	3.00	10.00	10.00	6.00	6.00	6.00	10.00	10.00	10.00	10.00	5.00	19.00	19.00	10.00	7.00	7.00
RANGE 2	8.00	8.00	10.00	10.00	20.00	20.00	10.00	20.00	20.00	14.00	14.00	14.00	20.00	20.00	20.00	20.00	10.00	40.00	40.00	20.00	15.00	15.00
RANGE 3	10.00	10.00																				
Major : Semi Major 1	0.83	0.83	1.00	1.00	1.00	0.67	1.00	1.00	1.00	1.00	3.00	2.70	2.00	1.22	1.22	1.22	1.22	0.18	3.00	1.00	1.00	1.00
Major : Minor 1	0.83	0.83	7.60	8.00	1.50	2.00	1.00	1.50	3.40	5.00	5.00	4.50	3.00	5.50	5.50	5.50	11.00	1.16	1.58	3.00	4.29	4.29
Major : Semi Major 2	0.97	0.97	1.00	1.00	1.00	0.62	1.00	1.00	1.00	1.00	1.56	1.56	2.00	1.15	1.15	1.15	1.15	0.58	2.17	1.00	1.00	1.00
Major : Minor 2	3.75	3.75	7.00	7.50	3.00	2.00	2.00	3.00	3.00	5.00	5.00	5.00	3.50	4.50	4.50	4.50	9.00	2.15	1.63	3.50	4.67	4.67
Major : Semi Major 3	1.76	1.76																				
Major : Minor 3	10.40	10.40																				
												1		1		1						
BEARING	16.1	16.1	352.9	346.4	338.2	352.9	270	270	348.3	250	80	90	70	349.7	349.7	40.9	323.4	30.9	348.2	80	62.7	355
PLUNGE	-25.7	-25.7	18.7	19.7	9.8	18.7	70	50	49	80	-80	-80	-50	17.2	17.2	-48.6	37.8	-48.6	9.8	-60	-67.7	8.6
DIP	-56.3	-56.3	-68.8	-79.4	-79.8	-68.8	0	0	-74.7	0	0	0	0	-58.4	-58.4	-40.9	-50.8	-40.9	-79.8	0	-25.5	-59.6

Table 14-159 Rhen's group variogram model parameters. Part 2.

Domain	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
No. Comps	75	78	198	772	470	10	140	144	199	69	29	20	46	33	153	106	285	1308	167	11	131	80
NUGGET	0.36	0.41	0.29	0.49	0.31	0.22	0.15	0.27	0.25	0.18	0.36	0.39	0.34	0.23	0.31	0.26	0.15	0.27	0.29	0.21	0.24	0.28
SILL 1	0.32	0.32	0.30	0.38	0.46	0.50	0.30	0.29	0.44	0.31	0.32	0.31	0.49	0.51	0.37	0.36	0.29	0.36	0.43	0.45	0.46	0.47
SILL 2	0.32	0.27	0.41	0.13	0.23	0.28	0.55	0.44	0.31	0.51	0.32	0.30	0.17	0.26	0.32	0.38	0.56	0.37	0.28	0.34	0.30	0.25
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Major																						
RANGE 1	40.00	40.00	50.00	31.00	50.00	30.00	55.00	50.00	70.00	70.00	40.00	40.00	30.00	10.00	10.00	15.00	10.00	15.00	20.00	5.00	5.00	5.00
RANGE 2	85.00	85.00	120.00	109.00	100.00	70.00	90.00	100.00	90.00	90.00	80.00	80.00	70.00	30.00	30.00	90.00	60.00	50.00	80.00	40.00	25.00	25.00
RANGE 3																						
Semi-Major																						
RANGE 1	30.00	40.00	30.00	40.00	44.00	30.00	55.00	40.00	60.00	60.00	20.00	20.00	30.00	10.00	10.00	15.00	10.00	45.00	20.00	5.00	5.00	5.00
RANGE 2	65.00	85.00	90.00	70.00	90.00	70.00	90.00	80.00	80.00	80.00	40.00	40.00	70.00	30.00	30.00	45.00	60.00	89.00	40.00	40.00	25.00	25.00
RANGE 3																						
Minor																						
RANGE 1	3.00	3.00	8.00	3.00	5.00	7.00	5.00	7.00	7.00	7.00	10.00	10.00	7.00	4.00	5.00	5.00	5.00	3.00	10.00	5.00	5.00	5.00
RANGE 2	15.00	15.00	15.00	9.00	15.00	20.00	15.00	14.00	14.00	14.00	20.00	20.00	15.00	10.00	8.00	10.00	15.00	10.00	20.00	10.00	12.00	12.00
RANGE 3																						
											-											
Major : Semi Major 1	1.33	1.00	1.67	0.78	1.14	1.00	1.00	1.25	1.17	1.17	2.00	2.00	1.00	1.00	1.00	1.00	1.00	0.33	1.00	1.00	1.00	1.00
Major : Minor 1	13.33	13.33	6.25	10.33	10.00	4.29	11.00	7.14	10.00	10.00	4.00	4.00	4.29	2.50	2.00	3.00	2.00	5.00	2.00	1.00	1.00	1.00
Major : Semi Major 2	1.31	1.00	1.33	1.56	1.11	1.00	1.00	1.25	1.13	1.13	2.00	2.00	1.00	1.00	1.00	2.00	1.00	0.56	2.00	1.00	1.00	1.00
Major : Minor 2	5.67	5.67	8.00	12.11	6.67	3.50	6.00	7.14	6.43	6.43	4.00	4.00	4.67	3.00	3.75	9.00	4.00	5.00	4.00	4.00	2.08	2.08
Major : Semi Major 3																						
Major : Minor 3																						
BEARING	343.2	319.7	30.9	23.2	349.7	90	355	40.6	326.8	252.7	10	20	74.7	301.7	289.5	260.5	40.9	13.2	100	90	90	16.5
PLUNGE	-15.2	17.2	-48.6	-15.2	17.2	-70	8.6	-54.5	62	67.7	0	0	-49	29.5	46	46	-48.6	-15.2	-60	-60	-60	9.4
DIP	-48.2	-58.4	-40.9	-48.2	-58.4	0	-59.6	-53.9	-43.2	25.5	-50	-60	-11.7	-42.4	-22.2	22.2	-40.9	-48.2	0	0	0	-69.7

Table 14-160 Rhen's group variogram model parameters. Part 3.

Domain	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
No. Comps	46	194	431	37	35	19	41	58	40	66	63	26	16	17	18	56	21	111	9	11
NUGGET	0.22	0.49	0.29	0.27	0.32	0.29	0.30	0.48	0.43	0.49	0.43	0.50	0.43	0.44	0.30	0.24	0.24	0.26	0.24	0.25
SILL 1	0.26	0.26	0.47	0.40	0.40	0.52	0.52	0.28	0.29	0.28	0.33	0.31	0.32	0.32	0.32	0.41	0.41	0.35	0.41	0.41
SILL 2	0.52	0.25	0.24	0.33	0.28	0.19	0.18	0.24	0.28	0.23	0.24	0.19	0.25	0.24	0.38	0.35	0.35	0.39	0.35	0.34
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Major																				
RANGE 1	10.00	30.00	35.00	5.00	20.00	20.00	20.00	20.00	20.00	20.00	32.00	32.00	32.00	10.00	15.00	20.00	20.00	10.00	20.00	20.00
RANGE 2	50.00	45.00	100.00	20.00	95.00	50.00	80.00	85.00	80.00	95.00	95.00	95.00	95.00	40.00	30.00	90.00	50.00	50.00	50.00	50.00
RANGE 3																				
Semi-Major																				
RANGE 1	5.00	10.00	13.00	5.00	20.00	20.00	20.00	20.00	10.00	20.00	32.00	32.00	10.00	10.00	15.00	20.00	20.00	10.00	20.00	20.00
RANGE 2	25.00	30.00	40.00	20.00	95.00	50.00	50.00	85.00	40.00	95.00	70.00	70.00	40.00	40.00	30.00	45.00	50.00	40.00	50.00	50.00
RANGE 3																				
Minor																				
RANGE 1	5.00	3.00	3.00	3.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	3.00	3.00	10.00	7.00	5.00	7.00	7.00
RANGE 2	12.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	20.00	14.00	10.00	14.00	14.00
RANGE 3																				
Major : Semi Major 1	2.00	3.00	2.69	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	3.20	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Major : Minor 1	2.00	10.00	11.67	1.67	6.67	5.00	5.00	5.00	5.00	5.00	8.00	8.00	8.00	3.33	5.00	2.00	2.86	2.00	2.86	2.86
Major : Semi Major 2	2.00	1.50	2.50	1.00	1.00	1.00	1.60	1.00	2.00	1.00	1.36	1.36	2.38	1.00	1.00	2.00	1.00	1.25	1.00	1.00
Major : Minor 2	4.17	4.50	10.00	2.00	9.50	5.00	8.00	8.50	8.00	9.50	9.50	9.50	9.50	4.00	3.00	4.50	3.57	5.00	3.57	3.57
Major : Semi Major 3																				
Major : Minor 3																				
BEARING	68.1	119.1	33.2	80.5	74.7	105.3	20.8	7.1	90	90	90	90	90	90	90	7.1	110	17.1	90	90
PLUNGE	-41.6	-48.6	-15.2	-46	-49	-49	-41.6	-18.7	-50	-50	-50	-80	-80	-80	-70	-18.7	-70	-18.7	-80	-70
DIP	-30.8	40.9	-48.2	-22.2	-11.7	11.7	-48.1	-68.8	0	0	0	0	0	0	0	-68.8	0	-68.8	0	0

14.4.6.6 Block Model and Grade Estimation

The model is in Gibraltar local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-161 Rhen's Group block model parameters.

	Υ	Х	Z
Min	5,000	2,000	100
Max	7,500	3,000	550
Extents	2,500	1,000	450
Parent size	20.00	5.00	10.00
Sub-Block size	5.00	1.25	1.25

The Gibraltar underground and Mystery grade control area were estimated in separate block models with different parent cell sizes to account for the tighter informing drill data. These models shared the common sub-block size to allow import into the master block model.

 ${\it Table~14-162~Gibral tar~Mineral~Resource~Estimation~sub-model~parameters.}$

	Υ	X	Z
Min	5,000	2,000	100
Max	7,500	3,000	550
Extents	2,500	1,000	450
Parent size	10.00	5.00	10.00
Sub-Block size	5.00	1.25	1.25

Table 14-163 Mystery Mineral Resource Estimation sub-model parameters.

	Υ	X	Z
Min	5,180	2,500	400
Max	5,540	2,640	580
Extents	360	140	180
Parent size	5.00	2.50	5.00
Sub-Block size	5.00	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation). Estimation parameters are tabled below.

Table 14-164 Rehn's Group estimation parameters. Part 1.

Domain	Area	Min Samples	Max Samples	Max Search	Desc	Bearing	Plunge	Dip	Major/Semi Ratio	Major/Minor Ratio
1	Gibraltar	8	30	50	4 x 4 x 4	16.1	-25.7	-56.3	1.76	10.4
2	Gibraltar	8	30	30	4 x 4 x 4	16.1	-25.7	-56.3	1.76	10.4
3	Gibraltar South	8	30	70	4 x 4 x 4	352.9	18.7	-68.8	1	7
4	Gibraltar South	8	30	75	4 x 4 x 4	346.4	19.7	-79.4	1	7.5
5	Gibraltar South	8	30	60	4 x 4 x 4	338.2	9.8	-79.8	1	3
6	Gibraltar South	8	30	40	4 x 4 x 4	352.9	18.7	-68.8	0.62	2
7	Gibraltar South	8	30	20	4 x 4 x 4	270	70	0	1	2
8	Mystery	8	30	60	4 x 4 x 4	270	50	0	1	3
9	Gibraltar South	8	30	60	4 x 4 x 4	348.3	49	-74.7	1	3
10	Gibraltar South	8	30	70	4 x 4 x 4	250	80	0	1	5
11	Gibraltar South	8	30	70	4 x 4 x 4	80	-80	0	1.56	5
12	Gibraltar South	8	30	70	4 x 4 x 4	90	-80	0	1.56	5
13	Anarchist	8	30	70	4 x 4 x 4	70	-50	0	2	3.5
14	Anarchist	8	30	90	4 x 4 x 4	349.7	17.2	-58.4	1.15	4.5
15	Anarchist	8	30	90	4 x 4 x 4	349.7	17.2	-58.4	1.15	4.5
16	Anarchist	8	30	90	4 x 4 x 4	40.9	-48.6	-40.9	1.15	4.5
17	Rhens	8	30	90	4 x 4 x 4	323.4	37.8	-50.8	1.15	9
18	Rhens	8	30	86	4 x 4 x 4	30.9	-48.6	-40.9	0.58	2.15
19	Rhens	8	30	65	4 x 4 x 4	348.2	9.8	-79.8	2.17	1.63
20	Anarchist	8	30	70	4 x 4 x 4	80	-60	0	1	3.5
21	Anarchist	8	30	70	4 x 4 x 4	62.7	-67.7	-25.5	1	4.67
22	Rhens	8	30	70	4 x 4 x 4	355	8.6	-59.6	1	4.67
23	Anarchist	8	30	85	4 x 4 x 4	343.2	-15.2	-48.2	1.31	5.67
24	Rhens	8	30	85	4 x 4 x 4	319.7	17.2	-58.4	1	5.67
25	Rhens	8	30	100	4 x 4 x 4	30.9	-48.6	-40.9	1.33	8
26	Mystery	8	30	100	4 x 4 x 4	23.2	-15.2	-48.2	1.56	12.11
27	Rhens	8	30	100	4 x 4 x 4	349.7	17.2	-58.4	1.11	6.67
28	Rhens	8	30	70	4 x 4 x 4	90	-70	0	1	3.5
29	Rhens	8	30	90	4 x 4 x 4	355	8.6	-59.6	1	6
30	Rhens	8	30	100	4 x 4 x 4	40.6	-54.5	-53.9	1.25	7.14
31	Rhens	8	30	90	4 x 4 x 4	326.8	62	-43.2	1.13	6.43
32	Rhens	8	30	90	4 x 4 x 4	252.7	67.7	25.5	1.13	6.43

Table 14-165 Rehn's Group estimation parameters. Part 2.

Domain	Area	Min Samples	Max Samples	Max Search	Desc	Bearing	Plunge	Dip	Major/Semi Ratio	Major/Minor Ratio
33	Rhens	8	30	80	4 x 4 x 4	10	0	-50	2	4
34	Rhens	8	30	80	4 x 4 x 4	20	0	-60	2	4
35	Mystery	8	30	70	4 x 4 x 4	74.7	-49	-11.7	1	4.67
36	Mystery	8	30	30	4 x 4 x 4	301.7	29.5	-42.4	1	3
37	Mystery	8	30	30	4 x 4 x 4	289.5	46	-22.2	1	3.75
38	Mystery	8	30	90	4 x 4 x 4	260.5	46	22.2	2	9
39	Mystery	8	30	60	4 x 4 x 4	40.9	-48.6	-40.9	1	4
40	Mystery	8	30	50	4 x 4 x 4	13.2	-15.2	-48.2	0.56	5
41	Mystery	8	30	80	4 x 4 x 4	100	-60	0	2	4
42	Mystery	8	30	40	4 x 4 x 4	90	-60	0	1	4
43	Mystery	8	30	25	4 x 4 x 4	90	-60	0	1	2.08
44	Mystery	8	30	25	4 x 4 x 4	16.5	9.4	-69.7	1	2.08
45	Mystery	8	30	50	4 x 4 x 4	68.1	-41.6	-30.8	2	4.17
46	Mystery	8	30	45	4 x 4 x 4	119.1	-48.6	40.9	1.5	4.5
47	Mystery	8	30	100	4 x 4 x 4	33.2	-15.2	-48.2	2.5	10
48	Mystery	8	30	20	4 x 4 x 4	80.5	-46	-22.2	1	2
49	Mystery	8	30	95	4 x 4 x 4	74.7	-49	-11.7	1	9.5
50	Mystery	8	30	50	4 x 4 x 4	105.3	-49	11.7	1	5
51	Western Load	8	30	80	4 x 4 x 4	20.8	-41.6	-48.1	1.6	8
52	Western Load	8	30	85	4 x 4 x 4	7.1	-18.7	-68.8	1	8.5
53	Mystery	8	30	80	4 x 4 x 4	90	-50	0	2	8
54	Mystery	8	30	95	4 x 4 x 4	90	-50	0	1	9.5
55	Mystery	8	30	95	4 x 4 x 4	90	-50	0	1.36	9.5
56	Rhens	8	30	95	4 x 4 x 4	90	-80	0	1.36	9.5
57	Rhens	8	30	95	4 x 4 x 4	90	-80	0	2.38	9.5
58	Rhens	8	30	40	4 x 4 x 4	90	-80	0	1	4
59	Rhens	8	30	30	4 x 4 x 4	90	-70	0	1	3
60	Rhens	8	30	90	4 x 4 x 4	7.1	-18.7	-68.8	2	4.5
61	Rhens	8	30	50	4 x 4 x 4	110	-70	0	1	3.57
62	Mystery	8	30	50	4 x 4 x 4	17.1	-18.7	-68.8	1.25	5
63	Western Load	8	30	50	4 x 4 x 4	90	-80	0	1	3.57

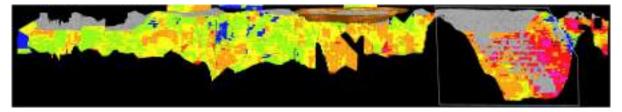


Figure 14-56 Rhen's group depleted reportable resource. Excluded Gibraltar underground area outlined - Source: Westgold.

14.4.6.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through

the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data for the open pits as the historic production data is incomplete.

14.4.6.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Rhen's Group Mineral Resource was classified in the model on the following basis:

(1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.

- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of up to 20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Rhen's Group Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

Figure 14-57 Rhen's group resource classification. Excluded Gibraltar underground area outlined - Source: Westgold.

14.4.6.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground mineral resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-166 Rhen's Group Mineral Resources on June 30, 2024.

	Rhen's Group Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred													
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Rhen's Group	0	0.00	0	2,589	1.41	118	2,589	1.41	118	1,698	1.34	72	
Total	Total 0 0.00 0 2,589 1.41 118 2,589 1.41 118 1,698 1.34 72												

>=0.7g/t Au

The Rhen's Group Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.7 Romsey

14.4.7.1 Summary

The Romsey deposit is located 1 km northwest of the Bluebird mill.

The historic Romsey underground mine was worked between 1909 and 1914. A total of 4,340.07 tonnes of ore yielded 37.97 kg (1220.46 ounces) of gold at an average grade of 8.75 g/t. (Clarke, 1916). The Romsey open pit was mined by Saint Barbara Mines from 1995 to 1997 producing 398,401 t at 1.66 g/t for 21,317 oz (Hollingsworth, 2022).

A Westgold Mineral Resource Estimate was conducted in November 2017 and a report was completed in January 2018, incorporating Westgold resource definition drilling to the west of the existing open pit (Witten, 2018c). There is no production from this deposit by Westgold.

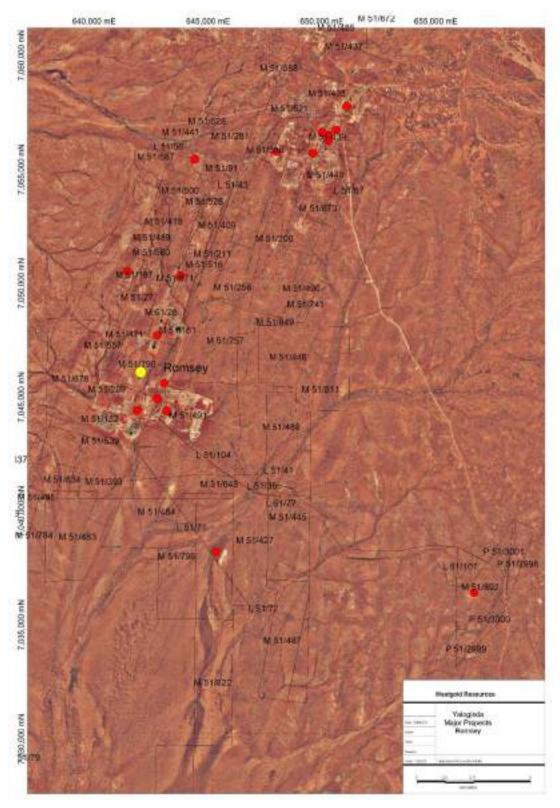


Figure 14-58 Location of the Romsey deposit - Source: Westgold.

14.4.7.2 Modelling Domains

The geologically modelled mineralisation domains represent the altered ultramafic material that hosts the gold mineralisation. These domains coincide with a wireframing cut-off of 0.5 g/t that generally coincides with logged geology, alteration, veining and sulphides.

Strings were digitised on section to establish the 0.5 g/t cut-off envelope around the individual mineralised zones. Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two metres was modelled.

Modelling was undertaken in Metana local grid, with a nominal sectional spacing of 10-20 m through the depleted open pit, increasing to 20-40 m north and south of the pit, dependant on the drill spacing.

14.4.7.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-167 Romsey mineralisation domain statistics and top-cuts.

Domain	1010	1015	1020	1030	1040	1050	1060	1070	1080	1090
VOLUME	135,929	147,911	22,888	7,752	7,875	24,797	6,932	11,721	1,914	870
% total Volume	36.9%	40.1%	6.2%	2.1%	2.1%	6.7%	1.9%	3.2%	0.5%	0.2%
Drillholes	308	77	20	40	190	44	20	36	11	10
Samples	1432	648	84	125	585	187	55	116	33	24
Imported	3289	3289	3289	3289	3289	3289	3289	3289	3289	3289
Minimum	0.000	0.001	0.010	0.060	0.001	0.005	0.030	0.001	0.050	0.070
Maximum	100.00	39.60	103.00	100.00	68.40	86.80	6.18	17.63	2.14	76.30
Mean	2.70	1.63	2.48	3.18	1.06	1.58	0.94	1.55	0.69	6.85
Standard deviation	7.36	3.73	11.49	11.17	3.12	6.40	1.17	2.59	0.47	16.71
CV	2.73	2.29	4.63	3.52	2.95	4.04	1.25	1.67	0.69	2.44
Variance	54.10	13.95	131.98	124.78	9.74	40.95	1.38	6.69	0.22	279.12
Skewness	8.06	6.07	8.37	7.49	17.79	12.85	2.41	4.32	1.08	3.57
50% (Median)	0.91	0.69	0.59	1.28	0.63	0.76	0.51	0.73	0.54	0.83
90%	4.73	3.02	2.24	3.77	1.57	2.28	2.43	3.53	1.28	17.18
95%	10.21	4.97	4.07	5.61	2.62	4.14	3.18	4.53	1.39	30.42
97.5%	18.22	11.32	6.88	7.48	3.82	5.70	3.70	6.64	1.59	50.38
99.0%	34.28	24.97	38.15	62.05	10.42	6.53	4.87	15.11	1.92	65.93
Top Cut	40.00	14.00	7.00	8.00	4.50	7.00	7.00	6.00	7.00	6.00

Top Cut	40.00	14.00	7.00	8.00	4.50	7.00	7.00	6.00	7.00	6.00
No Values Cut	13	11	2	3	13	2	0	3	0	4
% Data	0.9%	0.8%	2.4%	2.4%	2.2%	1.1%		1.6%		16.7%
% Metal	8.6%	8.8%	55.1%	44.4%	Χ	27.5%		14.0%		Х

Au_cut										
Domain	1010	1015	1020	1030	1040	1050	1060	1070	1080	1090
Samples	1432	648	84	125	585	187	55	116	33	24
Imported	3289	3289	3289	3289	3289	3289	3289	3289	3289	3289
Minimum	0	0.001	0.01	0.06	0.001	0.005	0.03	0.001	0.05	0.07
Maximum	40	14	7	8	4.5	7	6.18	6	2.14	6
Mean	2.47	1.43	1.11	1.77	0.85	1.15	0.94	1.31	0.69	1.91
Standard deviation	5.211	2.415	1.512	1.735	0.821	1.328	1.174	1.461	0.472	2.256
CV	2.11	1.69	1.36	0.98	0.96	1.16	1.25	1.12	0.69	1.18
Variance	27.155	5.83	2.287	3.011	0.674	1.763	1.378	2.135	0.223	5.089
Skewness	5.007	3.837	2.755	2.052	2.803	2.542	2.405	1.818	1.081	1.239
50% (Median)	0.91	0.69	0.59	1.275	0.63	0.76	0.51	0.73	0.54	0.83
90%	4.732	3.022	2.244	3.765	1.57	2.282	2.425	3.526	1.281	6
95%	10.206	4.972	4.07	5.61	2.618	4.139	3.175	4.534	1.392	6
97.5%	18.216	11.32	6.879	7.478	3.82	5.699	3.695	5.991	1.587	6
99.0%	34.276	14	7	8	4.5	6.321	4.871	6	1.919	6

14.4.7.4 Density

Density laboratory test-work of oxide and transitional rock was undertaken by Saint Barbara Mines in 1992 before mining of the Romsey deposit. Diamond core was used to measure oxide and transitional rock density of samples of ore using the immersion method. These values were adopted as the density values for the Romsey resource.

Fresh rock density is assumed to be the same as nearby Gibraltar deposit that is of similar lithology, for which density test-work of fresh rock exists.

Table 14-168 Romsey model density values.

Material Type	Density
Oxide	1.80
Transitional	2.30
Fresh	2.80
Backfill	1.40
Air / Void	0.00

14.4.7.5 Variography

A geostatistical analysis of down-hole composited data for all domains was undertaken as part of the resource estimation process. All domains had a sample population significant enough for variogram modelling. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Table 14-169 Romsey mineralisation domain estimation parameters.

Domain Code	1010	1015	1020	1030	1040	1050	1060	1070	1080	1090
Estimate	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	2	2	2	2	1	1	. 2	1	1
CO	0.60	0.49				0.27	0.18			0.54
C1	0.32	0.37	0.12	0.22	0.43	0.73	0.82	0.44	0.78	0.46
a1	12.00	25.00				40.00	44.00	12.00		35.00
C2	0.08	0.14	0.18		0.20	0.00	0.00	0.28		0.00
a2	120.00	60.00	60.00		30.00	0.00	0.00	36.00		0.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.333	2.5	2.5	1.333	1	2	2	1	2	2
1. Major : Minor	2.555	2.5	2.5	1.555	1	4	4	2	2	4
2. Major : Semi Major	4	2.4	2.4	1	2	0	0	1	0	0
2. Major : Minor	10	2.4	2.4	4	2	0	0	2	0	0
3. Major : Semi Major	0								•	0
3. Major : Minor	0	0	0		0	0	0	0		0
5. Major : Millor			<u>_</u>			<u>_</u>				
SURPAC STRIKE	356.6	10				350	10		5	350
SURPAC PLUNGE	9.4	0							0	0
SURPAC DIP	-69.7	-50	-50	-69.7	0	-50	-60	-53.3	-20	-50
Search			l	1		l	1			1
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)										
Estimation Block Size (x,y,z)	5, 5, 5		5, 5, 5		5, 5, 5 5	5, 5, 5 5	5, 5, 5 5	5, 5, 5	5, 5, 5	5, 5, 5 5
Estimation Block Size X Estimation Block Size Y	5	5				5				5
Estimation Block Size Z	5					5	5			5
Disc Point X	5	5				5	5			5
Disc Point Y	5						5			5
Disc Point Z	5									5
DISC POINT Z		3] 3] 3] 3] 3) 3	3
Grade Dependent Parameters	Υ	Υ	N	N	N	N	N	N	N	N
Threshold Max	12.5	12.5								
Search Limitation	10	10								
Limit Samples by Hole Id	In	N	N	N	In	ls.	l _N	In	N	N
Hole Id D Field	d2	N d2	N d2	N d2		N d2	N d2	N d2	N d2	d2
Max Samps per Hole	6		5			5	5		5	5
iviax samps per more		3] 3] 3	1 3)	3
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	6	6	6	4	4	4	6	6	6
Max	22	22	22	22	18	18	14	18	12	16
Max Search	80	60	60	36	30	40	40	32	12	35
Major/Semi	1.333	2.4	2.4	1	2	2	2	1	2	2
Major/Minor	2	2.4	2.4	4	2	4	4	2	2	4
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Major/Semi	4					2	2			2
Major/Minor	10	2.4	2.4			4	4			4
Min	8					4	4			6
Max	22	22	22	22	18	18	14	18	12	16
Run Pass 3	Υ	Υ	lγ	Υ	ү	lγ	Υ	lγ	lγ	Y
Factor	2	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 2
						2	2			2
Major/Semi	4	2.4	2.4	1		4				
	10	2.4					4			4
Major/Semi			2.4	4	2	4		2	2	

14.4.7.6 Block Model and Grade Estimation

The model is in Metana (2012) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-170 Romsey block model parameters.

	Υ	Х	Z
Min	19,710	19,600	360
Max	20,650	20,060	500
Extents	940	460	140
Parent size	5.00	5.00	5.00
Sub-Block size	2.50	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For Romsey, all interpolation was conducted in three passes to fill all blocks in the estimation domains. An increased search distance 1.5 x was used for the second interpolation pass. An increased search distance 2 x and reduction of minimum and maximum informing samples was used for the third interpolation pass.

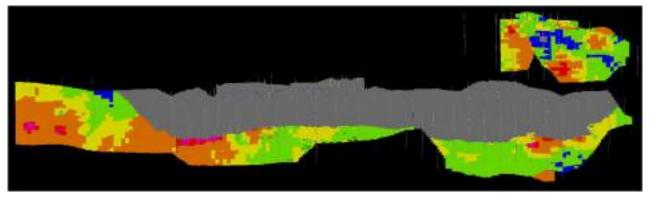


Figure 14-59 Romsey depleted resource model, all domains. Viewing west, tilted view - Source: Westgold.

14.4.7.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs

indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data as records are inconsistent or not available.

14.4.7.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Romsey Mineral Resource was classified in the model on the following basis:

(1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.

- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 5-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or open pit mining void survey were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Romsey Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

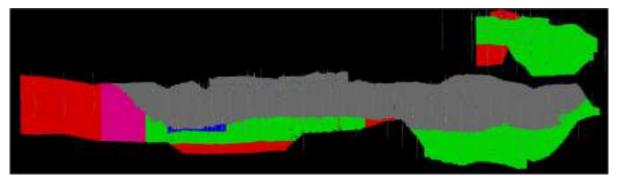


Figure 14-60 Romsey resource classification. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted. Tilted view looking west - Source: Westgold.

14.4.7.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-171 Romsey Mineral Resources on June 30, 2024.

Romsey Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred												
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
Romsey	Romsey 0 0.00 0 259 1.30 11 259 1.30 11 77 1.62 4											4
Total	Total 0 0.00 0 259 1.30 11 259 1.30 11 77 1.62 4											

>=0.7g/t Au

The Romsey Mineral Resource estimate is effective as of June 30, 2024

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.8 Luke's Junction

14.4.8.1 Summary

The Luke's Junction deposit is located 14 km north of the Bluebird mill, and 5 km south of the Meekatharra township.

There is no historic production from the deposit.

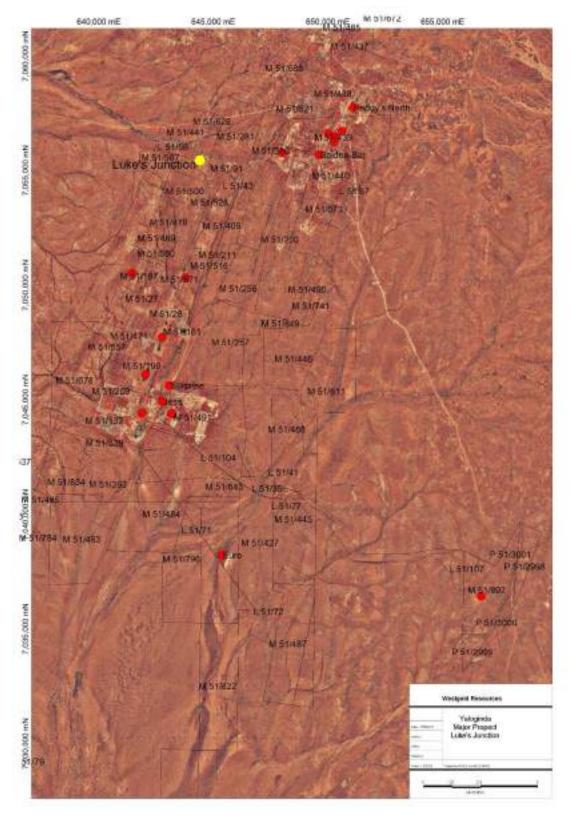


Figure 14-61 Location of the Luke's Junction deposit - Source: Westgold.

A Westgold Mineral Resource Estimate was conducted in September 2015 and an associated report was completed in December 2015, incorporating Westgold resource definition drilling from May 2015 (Witten, 2015).

14.4.8.2 Modelling Domains

The geologically modelled mineralisation domains represent the geological structure that hosts the gold mineralisation. These domains coincide with a wireframing cut-off of 0.5 g/t that generally coincides with logged geology, alteration, veining and sulphides.

Strings were digitised on section to establish the 0.5 g/t cut-off envelope around the individual mineralised zones. Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two metres was modelled.

Modelling was undertaken in Mine Grid of Australia 1994 (zone 50) grid, with a nominal sectional spacing of 10 m, increasing to 20-40 m outside of the primary mineralised area.

Four geologically mineralised domain groups were identified:

- Domain group 100; Mineralised BIF south of the central cross-cutting Proterozoic dyke.
- Domain group 200; Sub-vertical quartz hosted shear mineralisation in mafic rock, south of the cross-cutting Proterozoic dyke.
- Domain group 300; Quartz shear hosted mineralisation parallel to westerly mafic/ultramafic rock contact, dipping 50 degrees east, north of the central cross-cutting Proterozoic dyke.
- Domain group 400; Mineralised BIF north of the central cross-cutting Proterozoic dyke.

14.4.8.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domain groups for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-172 Luke's Junction domain statistics and top-cuts.

Domain	100	200	300	400
Raw Data:				
Samples	62.00	272.00	374.00	57.00
Imported	765.00	765.00	765.00	765.00
Minimum	0.04	0.01	0.03	0.08
Maximum	58.90	53.30	77.50	9.80
Mean	3.63	1.71	1.78	1.38
Standard deviation	8.74	4.00	4.70	1.55
CV	2.41	2.34	2.64	1.13
Variance	76.46	16.03	22.09	2.40
Skewness	4.84	8.99	11.92	3.29
Log samples	62.00	272.00	374.00	57.00
Log mean	0.06	-0.38	-0.24	-0.16
Log variance	2.32	1.96	1.51	1.09
Geometric mean	1.06	0.69	0.79	0.85

Top Cut	10.00	7.00	8.00	5.00
No Values Cut	5	11	12	1
% Data	8.1%	4.1%	3.2%	1.8%
% Metal	39.8%	19.6%	20.7%	6.1%

Au_cut				
Domain	100	200	300	400
Raw Data:				
Samples	62.00	272.00	374.00	57.00
Imported	765.00	765.00	765.00	765.00
Minimum	0.04	0.01	0.03	0.08
Maximum	10.00	7.00	8.00	5.00
Mean	2.01	1.35	1.31	1.25
Standard deviation	2.65	1.64	1.65	1.07
cv	1.32	1.21	1.26	0.86
Variance	7.00	2.69	2.71	1.15
Skewness	2.03	2.39	2.68	1.44
Log samples	62.00	272.00	374.00	57.00
Log mean	-0.01	-0.34	-0.32	-0.16
Log variance	1.58	1.58	1.32	0.91
Geometric mean	0.99	0.71	0.73	0.86

14.4.8.4 Density

Density values used in the Luke's Junction are based density test-work on similar lithology from the Yaloginda and Paddy's Flat region. There is no density test-work from Luke's Junction samples.

Table 14-173 Luke's Junction model density values.

Material Type	Density
Oxide	1.90
Transitional	2.20
Fresh	2.50
Air / Void	0.00

14.4.8.5 Variography

A geostatistical analysis of down-hole composited data for all domain groups was undertaken as part of the resource estimation process. All domain groups had a sample population significant enough for variogram modelling, whereas the individual sub-domains in each group did not. This analysis included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Table 14-174 Luke's Junction variogram model parameters.

			<i>3</i>		
	DOMAIN	100	200	300	400
Nugget	C0	0.43	0.48	0.60	0.50
Sill 1	C1	0.57	0.52	0.40	0.50
Range 1	a1	80.00	30.00	38.00	65.00
Sill 2	C2	0.00	0.00	0.00	0.00
Range 2	a2	0.00	0.00	0.00	0.00
	TOTAL SILL	1.00	1.00	1.00	1.00
Structure 1	Major : Semi Major	3.333	1	1.357	6.5
Structure 1	Major : Minor	3.333	1	1.357	6.5
Churchina 2	Major : Semi Major	0	0	0	0
Structure 2	Major : Minor	0	0	0	0
	DIRECTION 1	-70>020	0>025	49>340	0>020
	DIRECTION 2	0>110	-50>115	-8>061	-60>290
	DIRECTION 3	20>020	40>115	40>145	-30>110
	SURPAC STRIKE	20	25	340	20
	SURPAC PLUNGE	-70	0	49	0
	SURPAC DIP	0	-50	-12	60
	No.Comps	62	272	374	57
	Mean	2.01	1.35	1.31	1.25
	COV	1.32	1.21	1.26	0.86
	Nominal Drill Spacing				
	х	10	10	10	20
	у	20	20	20	40
	Z	10	10	10	20
	Wireframe Parameters				
	strike	25	30	27	20
	dip	-70	-50	-45	-60

14.4.8.6 Block Model and Grade Estimation

The model is in Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-175 Luke's Junction block model parameters.

	Y	X	Z
Min	7,054,800	644,000	320
Max	7,055,500	644,500	520
Extents	700	500	200
Parent size	10.00	5.00	5.00
Sub-Block size	2.50	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For Luke's Junction, all interpolation was conducted in three passes to fill all blocks in the estimation domains. An increased search distance 2 x was used for the second and third interpolation pass. A reduction of minimum and maximum informing samples was used for the third interpolation pass.

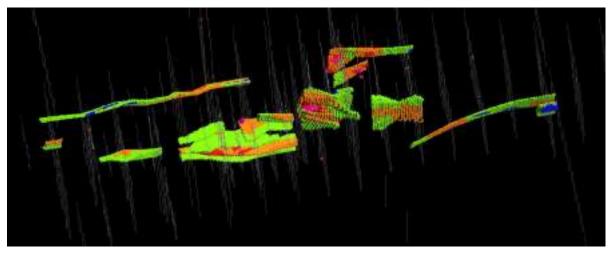


Figure 14-62 Luke's Junction block model estimate - Source: Westgold.

Table 14-176 Luke's Junction estimation parameters - pass 1.

attribute	comp	domain	field	min_sam	max_san	maj_dis	semi	minor	strike	plunge	dip	c0	c1	a1	c2	a2	pass	disc x	disc y	disc z
au_ok	101	101	1	12	24	80	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	1	3	3	3
au_ok	102	102	1	12	24	80	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	1	3	3	3
au_ok	103	103	1	12	24	80	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	1	3	3	3
au_ok	201	201	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	202	202	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	203	203	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	204	204	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	205	205	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	206	206	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	207	207	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	208	208	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	209	209	1	8	22	30	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	1	3	3	3
au_ok	301	301	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	302	302	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	303	303	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	304	304	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	305	305	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	306	306	1	8	26	40	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	1	2	2	2
au_ok	401	401	1	2	4	60	6.00	6.00	20	0	60	0.5	0.5	65	0.00	0.00	1	1	1	1
au_ok	402	402	1	2	4	60	6.00	6.00	20	0	60	0.5	0.5	65	0.00	0.00	1	1	1	1

Table 14-177 Luke's Junction estimation parameters - pass 2.

attribute	comp	domain	field	min sam	max san	maj dis	semi	minor	strike	plunge	dip	c0	c1	a1	c2	a2	pass	disc x	disc v	disc z
au ok	101	101	1	12	24	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	2	3	3	3
au ok	102	102	1	12	24	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	2	3	3	3
au_ok	103	103	1	12	24	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	2	3	3	3
au_ok	201	201	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	202	202	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	203	203	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	204	204	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	205	205	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	206	206	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	207	207	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	208	208	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	209	209	1	8	22	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	2	3	3	3
au_ok	301	301	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	302	302	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	303	303	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	304	304	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	305	305	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	306	306	1	8	26	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	2	2	2	2
au_ok	401	401	1	2	4	120	6.00	6.00	20	0	60	0.5	0.5	65	0.00	0.00	2	1	1	1
au_ok	402	402	1	2	4	120	6.00	6.00	20	0	60	0.5	0.5	65	0.00	0.00	2	1	1	1

Table 14-178 Luke's Junction estimation parameters - pass 3.

attribute	comp	domain	field	min_sam	max_sam	maj_dis	semi	minor	strike	plunge	dip	c0	c1	a1	c2	a2	pass	disc_x	disc_y	disc_z
au_ok	101	101	1	2	4	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	3	3	3	3
au_ok	102	102	1	2	4	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	3	3	3	3
au_ok	103	103	1	2	4	160	3.20	3.20	20	-70	0	0.43	0.57	80	0.00	0.00	3	3	3	3
au_ok	201	201	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	202	202	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	203	203	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	204	204	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	205	205	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	206	206	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	207	207	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	208	208	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	209	209	1	4	8	60	1.00	1.00	25	0	-50	0.48	0.52	30	0.00	0.00	3	3	3	3
au_ok	301	301	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	302	302	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	303	303	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	304	304	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	305	305	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	306	306	1	6	18	80	1.30	1.30	340	49	-12	0.6	0.4	38	0.00	0.00	3	2	2	2
au_ok	401	401	1	2	4	120	3.00	3.00	20	0	60	0.5	0.5	65	0.00	0.00	3	1	1	1
au_ok	402	402	1	2	4	120	3.00	3.00	20	0	60	0.5	0.5	65	0.00	0.00	3	1	1	1

14.4.8.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

There is no historic production to reconcile the model against.

14.4.8.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Luke's Junction Mineral Resource was classified in the model on the following basis:

- 1. No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- 2. No material was applied the Indicated category where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence.
- 3. The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

No material was required to be sterilised.

The Luke's Junction Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

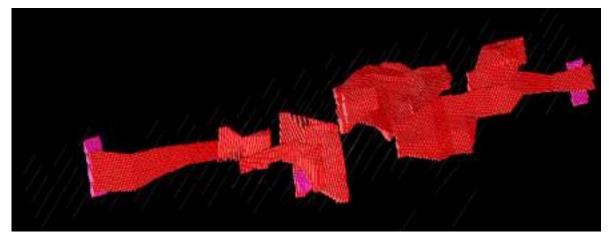


Figure 14-63 Luke's Junction resource classification. Green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold.

14.4.8.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-179 Luke's Junction Mineral Resources on June 30, 2024.

	Luke's Junction Mineral Resource Statement - Rounded for Reporting 30/06/2024												
	Measured Indicated Measured and Indicated Inferred												
Project	kt	g/t	koz	kt	g/t	koz	kt g/t koz kt g/t k						
Luke's Junction	0	0.00	0	0	0.00	0	0	0.00	0	394	1.50	19	
Total 0 0.00 0 0 0.00 0 0 0.00 0 394 1.50 19													

>=0.7g/t Au

The Luke's Junction Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.

- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.4.9 Whangamata

14.4.9.1 Summary

The Whangamata deposit is located approximately 7 km northwest of the Bluebird mill.

Whangamata was mined by open pit methods in 1995 by Dominion Gold and produced 2,800 oz of gold at a grade of 1.4 g/t.

A Westgold Minera Resource Estimate was produced in January 2015 and an accompanying report was completed in June 2015 (Hunt, 2015). This model incorporated surface grade control drilling for the planned open pit. Open pit mining was conducted by Westgold from July 2015 to April 2016, producing 420,744 t at 0.87 g/t for 11,756 oz. The reported Minera Resource Estimate is the final July 2015 grade control model incorporating the final in-pit grade control drilling. The resource classification in this Minera Resource Estimate has been updated, and the Minera Resource Estimate is reported as depleted with the final open pit void survey.

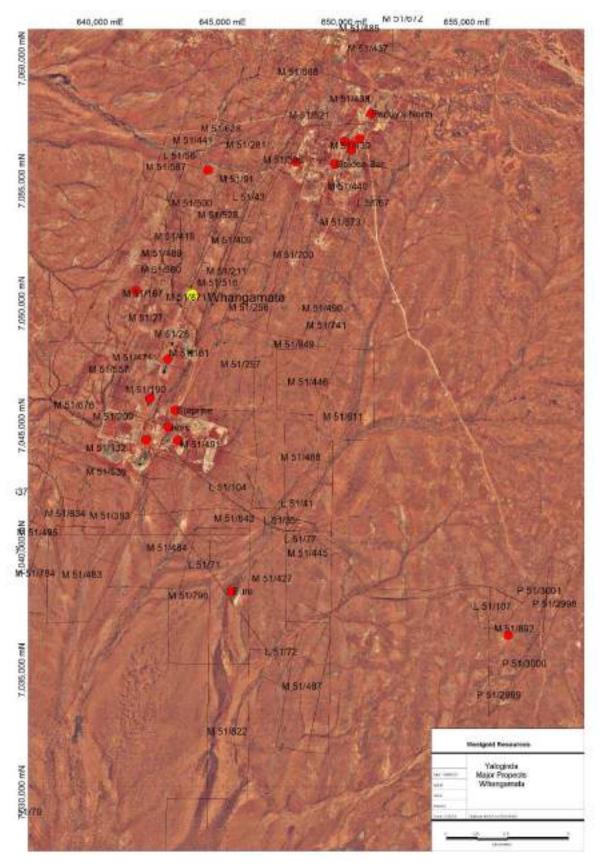


Figure 14-64 Location of the Whangamata deposit - Source: Westgold.

14.4.9.2 Modelling Domains

Where possible, the known geological controls on mineralisation within the Whangamata deposit were used to guide mineralisation strings.

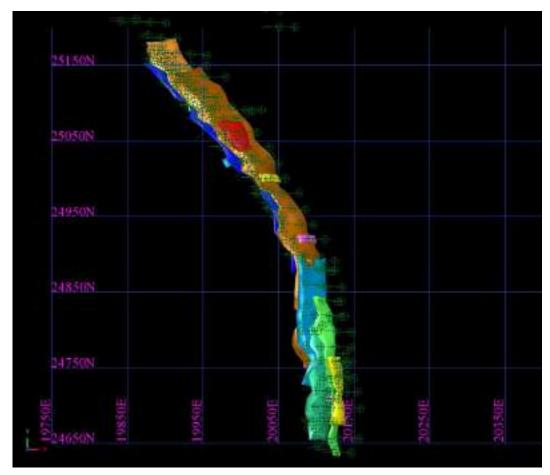


Figure 14-65 Whangamata mineralisation domains - Source: Westgold.

Digitised wireframes were completed in Surpac software by snapping to drill data, wireframed using a 0.5 g/t wireframing cut-off grade if the mineralisation was not constrained to the host lithology or if no geological logging is available. If required to preserve geological continuity, these wireframes continue through barren lithology using a 2 m minimum downhole width and maximum of 2 m internal dilution. In cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling domain continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure.

14.4.9.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

As Uncer Denisir Firm Detail 1.47 Minde 1.05 1.00 100 0.98 1.12 C-RE 181 Std Dev 181 0.62 Variores 3.65 8.23 1438 150 1.36 5.54 0.35 5.52 8.61 1,05 7,65 5.28 600 1,92 4,45 181 5.68 1.52 3.41 2.71 38.52 15-81 14.00 48.79 1.54 furtise of 46.00 34.55 luces Mayo lug-est tonic LEDE MERCHANIS 75% 171 1.48 1.88 1.35 1.14 1.02 1.17 155 2.86 0.75 Median 0.98 0.57 23% 0.53 0.59 0.44 0.41 0.50 0.58 0.45 0.51 0.44 Fasge 17.22 38.46 45.54 0.00 \$26 15.42 110 18.24 11.51 An Oct Denon 100 5 4 11 DO CLE Applied A Semples Cut N Date Cut Ge Dan Donne. 325 はは 1.07 124 Stat Day 219 2.72 Variance BUTTICLE 200 12.70 11.06 6.25 6.87 or to Ne 5.00 11.00 Mediman. 8.00 15.00 15.00 1.85 173 1 46 1.85 1.00 Vector 0.73 0.83 0.62 32% 603 0.34 0.44 0.32 12.0 Minimum 6,600 0.660 6.650 0.000 0.015 is: 11.07 Range

Table 14-180 Whangamata mineralisation domain statistics and top-cuts.

14.4.9.4 Density

Density values for oxide, transitional and fresh material were allocated based on values from other deposits in the region with equivalent lithology that have undergone density test-work. No density test-work has been conducted at Whangamata. No discrimination was made between mineralised and unmineralised rock densities.

The model has also been flagged with in-pit fill and the waste rock landform constructed during mining by Westgold. Backfill density has been updated with a value of 70% of unmineralised fresh rock density representing the dominant composition of the backfill material.

Values used in the Whangamata Mineral Resource Estimate are tabled below.

Table 14-181 Whangamata density values.

Material Type	Density
Oxide	2.00
Transitional	2.40
Fresh	2.80
Air / Void	0.00

14.4.9.5 Variography

A geostatistical analysis of down-hole composited Whangamata data as part of the resource estimation process This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are backtransformed from the Gaussian distribution using Hermite polynomials.

Only the major north domain 2 and south domain 3 had significant population for variogram modelling. The remaining domains with insufficient samples for geostatistical analysis were allocated variogram parameters of the spatially and statistically similar primary domain for estimation. A summary of the resulting parameters are tabled below.

Table 14-182 Whangamata mineralisation domain variogram models.

		-
DOMAIN	South	North
C0	0.34	0.53
C1	0.40	0.15
a1	24.00	17.00
C2	0.26	0.32
a2	65.00	64.00
TOTAL SILL	1.00	1.00

Structure 1	Major : Semi Major	1	1
Structure 1	Major : Minor	1.85	1.89
Structure 2	Major : Semi Major	1.35	1.19
Structure 2	Major : Minor	2.71	2.37

SURPAC STRIKE	176.55	146.55
SURPAC PLUNGE	-9.39	-9.39
SURPAC DIP	69.72	69.72

Table 14-183 Whangamata north and south domains.

South domains	North domains
1	2
3	7
4	9
5	11
6	12
8	13
10	14
19	15
	16
	17
	18
	100

14.4.9.6 Block Model and Grade Estimation

The model is in Whangamata (2015) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-184 Whangamata block model parameters.

	Υ	Χ	Z
Min	24,500	19,750	350
Max	25,300	20,400	550
Extents	800	650	200
Parent size	5.00	5.00	5.00
Sub-Block size	1.25	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation). For domain 1 that covers the entire strike length of the deposit but has the strike change that divides the north and south areas, the domain was estimated in a south (domain 1) and north (domain 100) sub-domains with a shared composite file (i.e. soft boundary for estimation).

All interpolation was conducted in two passes, with a reduction of minimum and maximum informing samples for the second interpolation pass.

Table 14-185 Whangamata estimation parameters - Pass 1.

object element	comp	field	min_sa ma	x_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1 c	2	a2	semi2	minor2 pa	ISS
1 au_cut_ok	1	. 7	8	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
2 au_cut_ok	2	. 7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
3 au_cut_ok	3	7	8	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
4 au_cut_ok	4	. 7	8	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
5 au_cut_ok	5	7	8	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
6 au_cut_ok	6	7	8	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
7 au_cut_ok	7	7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
8 au_cut_ok	8	7	4	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
9 au_cut_ok	9	7	4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
10 au_cut_ok	10	7	4	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
11 au_cut_ok	11	. 7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
12 au_cut_ok	12	7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
13 au_cut_ok	13	7	4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
14 au_cut_ok	14	. 7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
15 au_cut_ok	15	7	4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
16 au_cut_ok	16	7	4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
17 au_cut_ok	17	7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
18 au_cut_ok	18	7	4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1
19 au_cut_ok	19	7	4	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	1
100 au_cut_ok	1	. 7	8	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	1

Table 14-186 Whangamata estimation parameters - Pass 2.

object element	comp	field	min_s	max_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1	c2	a2	semi2	minor2 pa	ISS
1 au_cut_ok	1	. 7		16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
2 au_cut_ok	2	7		16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
3 au_cut_ok	3	7	2	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
4 au_cut_ok	4	. 7	, Z	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
5 au_cut_ok	5	7	4	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
6 au_cut_ok	6	7	' Z	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
7 au_cut_ok	7	7	' Z	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
8 au_cut_ok	8	7	2	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
9 au_cut_ok	9	7	2	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
10 au_cut_ok	10	7	2	16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
11 au_cut_ok	11	. 7	·	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
12 au_cut_ok	12	. 7	·	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
13 au_cut_ok	13	7	2	2 16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
14 au_cut_ok	14	. 7	' Z	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
15 au_cut_ok	15	7	' 2	2 16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
16 au_cut_ok	16	7	' 2	2 16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
17 au_cut_ok	17	7	' Z	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
18 au_cut_ok	18	7	2	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2
19 au_cut_ok	19	7	' 2	2 16	65	1.35	2.71	176.55	69.716	-9.391	0.34	0.4	24	1	1.85	0.26	65	1.35	2.71	2
100 au_cut_ok	1	. 7	' 4	16	64	1.19	2.37	146.55	69.716	-9.391	0.53	0.15	17	1	1.89	0.32	64	1.19	2.37	2

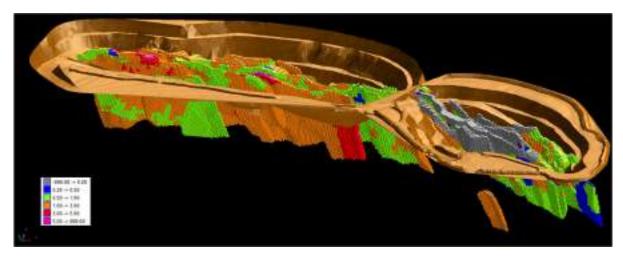


Figure 14-66 Whangamata resource model, pre-Westgold mining depletion with final Westgold open pit void surveys - Source: Westgold.

14.4.9.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each domain. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

Over the life of the Westgold open pit from July 2015 to April 2016, claimed production v. mill reconciled production saw a significant reduction of reconciled ounces, The tonnage increase is due to dilution from blasting during mining and poor reconciliation of trucked tonnage compared to planned one tonnage from dig blocks led to significant underestimation of claimed tonnes. The reduction in grade is thought to be due to a poor understanding of the mineralisation control inside the observed alteration zone, where either the drillhole and sample spacing is not capturing the variability of grade, or the domain interpretation has not captured the extents of the alteration zone that was mined.

Table 14-187 Whangamata open pit production reconciliation, Westgold project to date.

		Actual			Claimed	I	% Variance				
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz		
Open Pit	420,744	0.87	11,756	390,776	1.12	14,033	+8%	-22%	-16%		

14.4.9.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage / grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Whangamata Mineral Resource was classified in the model on the following basis:

- (1) The Measured category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, where the deposit is drilled to a grade control drill spacing density of 10 m or less.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

The Whangamata Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

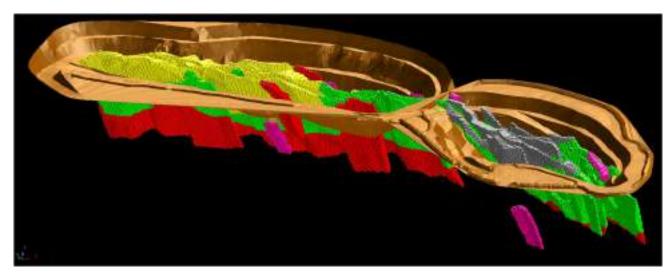


Figure 14-67 Whangamata resource classification, pre-Westgold mining depletion with final Westgold open pit void surveys shown. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source:

Westgold.

14.4.9.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-188 Whangamata Mineral Resources on June 30, 2024.

	Whangamata Mineral Resource Statement - Rounded for Reporting 30/06/2024														
	Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
Whangamata	4	1.19	0.2	196	1.12	7	200	1.12	7	168	1.48	8			
Total	4	1.19	0.2	196	1.12	7	200	1.12	7	168	1.48	8			

>=0.7g/t Au

The Whangamata Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.5 NANNINE

Nannine consists of deposits located 20 km south of the Bluebird Mill and includes the reported open pit deposits of Aladdin and Caledonian. A location plan is shown below.



Figure 14-68 Location of Nannine Mineral Resources - Source: Westgold.

 No further work has been undertaken on either other mineral resource estimate since last updated.

All Nannine deposits are reported within optimised pit shells above a likely economic cut-off grade for the open pit mineable portion of the Mineral Resource Estimate. The underground portion of the Mineral Resource Estimate are reported above a depth for which ground conditions are conducive to underground mining and above a likely economic cut-off grade.

14.5.1 Aladdin

14.5.1.1 Summary

The Aladdin deposit is located approximately 20 km south of the Bluebird mill.

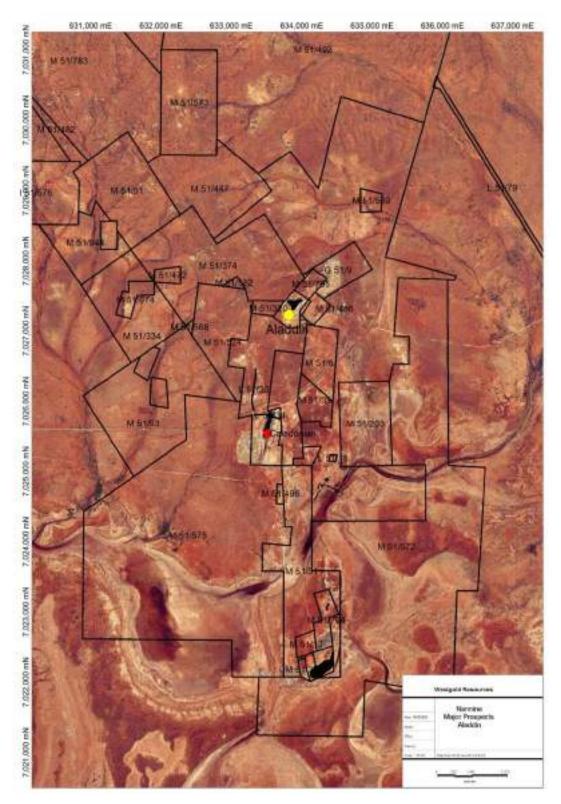


Figure 14-69 Location of the Aladdin deposit - Source: Westgold.

Historical production from The Queen of the Lake mine produced 4951 ounces of gold from shallow underground workings and an open pit from 1897 to 1908. Aladdin Gold Mines extracted 2321 ounces of gold and developed the underground workings to the 230 foot level (385 mRL) between 1917 and 1938. Endeavour Resources commenced open pit mining in 1987, producing 252,860 t at 2.41 g/t for 19,600 oz. Mining ceased in March 1989 with open pit development to 55 m depth. Mining ceased due to water ingress as a dewatering pump in the Aladdin underground shaft failed and was unable to be retrieved for repair, remaining in the flooded shaft to the current day.

Open pit mining was conducted by WGX in 2019. A 12 m depth extension to the existing 65 m deep Aladdin pit was designed and evaluated. The design was configured to suit a 120 t class excavator and 60 t tonne payload articulated trucks. Mining produced 26 kt of ore at an average grade of 2.45 g/t for 2045 contained ounces (WGX, 2019).

14.5.1.2 Modelling Domains

The Aladdin deposit is a sericite and silica altered, fine disseminated sulphide rich mineralised shear striking north-south (Aladdin local grid) through mafic basalts, volcaniclastics and sediments. A wedge of talcose ultramafic to the northeast defines the footwall of the sheared domains within the open pit to the north (domains 1030 and 1050), with another mineralised lode propagating along the mafic / ultramafic contact to the east (domain 1010).

The shear cross-cuts a sequence of E-W striking ferruginised cherty sediments, locally logged as BIF. Gold propagates along strike of the BIF lodes towards the west for approximately 50 m from the intersection of the sediments and the north-south shear (group 2000 mineralisation domains). Gold is associated with pyrite, with strong pyrite mineralisation associated with bonanza gold grades.

A northeast-southwest striking fault may also have some control on BIF domain displacement at depth and possibly has some control on grade distribution, however there is insufficient drill information at depth to determine any fault movements or offsets. This fault also appears to define the break between shear domains 1030 and 1040

Fresh rock of the BIF lithology has not always been logged as SIF, SCF or BIF, but rather as a strong silica alteration or quartz veining, or as chert or sediment. Shear mineralisation has been logged incorrectly as quartz in some drilling. Chip trays were reviewed for modelling.

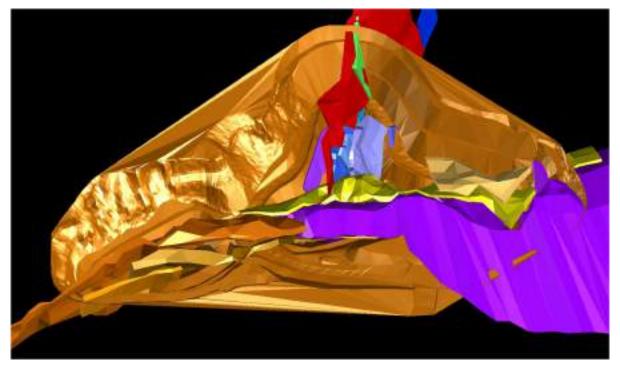


Figure 14-70 Aladdin pit as-mined topography, logged and mapped BIF (red) and BIF ore domains (group 2000, blue). Talc chlorite ultramafic (purple) with shear mineralisation domains (group 1000, yellow/brown) propagating along both sides of the talc chlorite ultramafic unit - Source: Westgold.

Digitised wireframes were completed in Surpac software by snapping to drill data. Core photos and chip trays were utilised to correlate grade boundaries with the logged lithology. Where a visible control was not clear, a nominal cut-off grade of 0.5 g/t Au was applied to the interpretation. A maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling domain continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two meters was modelled.

14.5.1.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-189 Aladdin mineralisation domain raw and top-cut statistics.

Au raw														
Domain	1010	1020	1030	1040	1050	1060	1070	1080	1090	2010	2020	2030	2040	2050
VOLUME										_		_		
% total Volume	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Drillholes	81	73	57	31	21	8	10	3	14	26	32	27	13	16
Samples	791	781	843	228	99	31	96	12	48	211	260	329	108	102
Imported	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939
Minimum	0.000	0.010	0.010	0.010	0.010	0.080	0.060	0.050	0.010	0.010	0.010	0.02	0.01	0.01
Maximum	37.00	31.40	82.54	188.00	102.50	9.83	16.30	2.02	8.07	22.80	109.90	43.48	24.30	28.13
Mean	1.73	1.59	2.53	3.57	3.68	1.13	1.46	0.75	0.95	2.26	4.48	2.24	1.66	4.66
Standard deviation	3.20	2.41	4.92	12.92	11.11	1.87	2.26	0.66	1.49	3.65	11.81	4.13	3.01	6.26
CV	1.85	1.52	1.94	3.62	3.02	1.66	1.54	0.88	1.56	1.62	2.64	1.84	1.81	1.34
Variance	10.26	5.79	24.19	167.01	123.52	3.50	5.09	0.43	2.23	13.31	139.37	17.04	9.09	39.20
Skewness	5.91	5.17	8.20	12.98	7.55	3.81	4.02	1.24	2.89	2.94	6.39	5.92	5.03	1.85
50% (Median)	0.85	0.82	1.18	1.15	0.79	0.48	0.77	0.45	0.43	0.87	1.07	1.12	0.79	1.48
90%	3.35	3.87	5.63	7.14	7.97	2.35	3.44	1.82	2.77	6.90	9.45	4	4	13
95%	6.35	5.77	8.74	11.92	11.80	3.43	5.47	2.00	3.63	9.39	19.89	7.76	6.07	16.89
97.5%	10.08	7.76	12.79	14.78	21.51	5.85	7.20	2.01	4.12	12.70	26.71	10.20	8.24	23.20
99.0%	16.04	11.73	19.89	22.17	31.22	8.24	9.70	2.02	6.21	18.57	52.50	23.15	13.28	26.26
Top Cut	18.00	14.00	21.00	16.00	8.60	5.00	6.00	Х	5.00	13.00	24.00	12.00	7.20	17.00
No Values Cut	4	4	7	4	6	1	4		1	5	7	6	3	6
% Data	0.5%	0.5%	0.8%	1.7%	6.1%	3.2%	4.2%		2.1%	2.1%	2.7%	1.8%	2.8%	5.9%
% Metal	3.9%	2.4%	6.6%	24.0%	41.0%				6.7%	5.9%	22.3%	11.8%	15.0%	7.5%

Au_cut														
Domain	1010	1020	1030	1040	1050	1060	1070	1080	2010	2010	2020	2030	2040	2050
Samples	791	781	843	228	99	31	96	12	48	211	260	329	108	102
Imported	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939	3939
Minimum	0	0.01	0.01	0.01	0.01	0.08	0.06	0.05	0.01	0.01	0.01	0.02	0.01	0.01
Maximum	18	14	21	16	8.6	5	6	2.02	5	13	24	12	7.2	17
Mean	1.66	1.55	2.36	2.72	2.17	0.97	1.30	0.75	0.89	2.12	3.48	1.98	1.41	4.31
Standard deviation	2.64	2.08	3.39	3.73	2.76	1.2	1.51	0.66	1.22	3.08	5.82	2.47	1.74	5.24
cv	1.59	1.35	1.44	1.37	1.27	1.24	1.16	0.88	1.37	1.45	1.67	1.25	1.23	1.21
Variance	6.99	4.35	11.48	13.9	7.59	1.45	2.27	0.43	1.5	9.49	33.86	6.09	3.01	27.43
Skewness	3.92	3.16	3.25	2.06	1.4	2.43	1.96	1.24	1.86	2.14	2.42	2.44	2.2	1.26
50% (Median)	0.85	0.82	1.18	1.15	0.79	0.48	0.77	0.45	0.43	0.87	1.07	1.12	0.79	1.48
90%	3.35	3.87	5.63	7.14	7.97	2.35	3.44	1.82	2.77	6.9	9.45	4.41	3.51	13.04
95%	6.35	5.77	8.74	11.92	8.6	3.43	5.47	2	3.63	9.39	19.89	7.76	6.07	16.88
97.5%	10.08	7.76	12.79	14.78	8.6	4.76	6	2.01	4.12	12.7	23.71	10.2	7.17	17
99.0%	16.04	11.73	19.89	16	8.6	4.9	6	2.02	4.61	13	24	12	7.2	17

14.5.1.4 Density

Density values for oxide and transitional material were allocated based on density test-work from diamond drillhole samples for the Aladdin open pit mining. No discrimination was made between mineralised and unmineralised rock densities in this test-work.

Fresh rock density for mafic and ultramafic material are the same as used for other deposits in the Nannine area. Density for the modelled BIF unit was based on Prohibition BIF values, with the value was reduced to account for the lithology at Aladdin being a ferruginous sediment and cherty interbedded unit of lower density rather than a true BIF.

No density test-work was conducted on fresh rock material before the block model was completed, but bulk density test-work was completed by WGX Open Pits technical staff in February 2018. The test-work used the immersion method, weighing dry and wet samples, and paraffin wax covered dry and wet samples.

This test-work resulted in an average of 2.79 t/m³ for mafic schist mineralisation samples and an average of 2.96 t/m³ for sulphide rich BIF mineralisation samples. These numbers correspond with the allocated density values in the block model,

assuming that the BIF mineralisation test-work bulk density is slightly higher due to the presence of sulphides.

Values used in the Aladdin resource model are tabled below.

Table 14-190 Aladdin density values.

Rock Type	Oxide	Transitional	Fresh
Mafic	2.20	2.40	2.90
Ultramafic	2.20	2.45	2.80
BIF	2.60	2.70	2.90
Fill	1.40		
Air/Void	0.00		

14.5.1.5 Variography

A geostatistical analysis of down-hole composited Aladdin data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Domains with insufficient samples for geostatistical analysis were allocated variogram parameters of spatially and statistically similar domains for estimation.

A summary of the resulting parameters is shown in the tables below.

Table 14-191 Aladdin variogram model and interpolation parameters, domains 1010 to 1090.

Domain Code	1010	1011	1020	1030	1040	1050	1060	1070	1080	1090
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
# Structures	2	1	2	2	1	1	2	2	2	2
CO	0.53	0.85	0.40	0.41	0.27	0.32	0.53	0.53	0.53	0.41
C1	0.37	0.15	0.34	0.33	0.73	0.68	0.37	0.37	0.37	0.33
a1	14.00	40.00	25.00	8.00	48.00	60.00	14.00	14.00	14.00	8.00
C2	0.10	0.00	0.26	0.26	0.00	0.00	0.10			0.26
a2	40.00	0.00	55.00	60.00	0.00	0.00	40.00		40.00	60.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1	2	2	1	4	1.5	1	1	1	1
1. Major : Minor	2	2	4	0.5	8	3	2	2	2	0.5
2. Major : Semi Major	1	0	2	2	0	0	1	1	1	2
2. Major : Minor	2	0		2	0		2	2	2	2
3. Major : Semi Major	0			0			0			0
3. Major : Minor	0	0	0	0	0		0	0		0
SURPAC STRIKE	337.8	319.5	343.6	295.3	300	40	337.8	337.8	337.8	295.3
SURPAC PLUNGE	-20.7	-46	19.7	-49	-40		-20.7	-20.7	-20.7	-49
SURPAC DIP	40.9	22.2	79.4	11.7	0		40.9			11.7
Search										
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5
Estimation Block Size X	5	5		5			5			5
Estimation Block Size Y	5						5			5
Estimation Block Size Z	5			5			5			5
Disc Point X	5			5			5			5
Disc Point Y	5			5			5			5
Disc Point Z	5						5			5
Grade Dependent Parameters	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	N
Threshold Max	11	11	8	11	7		11	11	11	
Search Limitation	30				20		30			
	•		!				!	•		·
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N
Hole Id D Field										
Max Samps per Hole										
· · ·			ı				ı			
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	6	6	6	6	4	6	6	6	6
Max	22	22		22	22		22			22
Max Search	36	60	50	54	32		36			54
Major/Semi	1	2	2	2			1			2
Major/Minor	2	2	4		8		2			2
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2
Major/Semi	1	2	2	2	4	1.5	1	1	1	2
Major/Minor	2									
Min	6			6						
Max	22	22								
	•							•		
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	3	3	3	3	3	3	3	3		
Major/Semi	1					1.5	1	1		2
Major/Minor	2									
Min	4									
Max	12	12								

Table 14-192 Aladdin variogram model and interpolation parameters, domains 2010 to 2051.

Domain Code	2010	2011	2020	2030	2040	2050	2051
Estimate	Y	Y	Y.	Y	γ	Y	Y
# Structures	2			1			J. 1965
CD	0.12			0.37	8.52	0.06	0.0
CI	0.41	0.41	0.34	0.63	0.48	0.54	0.5
al	20.00	20.00	10.00	50.00	45.00	20.00	20.0
CZ	0.47	0.47	0.49	2 100	1,40	0.40	0.4
42	90,00	90.00	40.00	-8.80	0.00	30.00	30.0
CB	-2.00	- 1. Year	0.05	5.10	0.00	10.00	0.0
a3	0.00	=00	0.00	0.00	0.00	2.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.0
1. Major : Semi Major	1	1	1	1.429	1	2	
1. Major : Missor	2	2	2	. 2	1.5		
2. Major : Semi Major	3		1.333	0	0	1	
2. Major : Minor	- 6			0	0		
3. Major : Semi Major	0	0	0				
3. Major : Minor	0				0		
SURPAC STRIKE	306.7	306.7	307.3	340.4	344.6	111.7	311
SURPAC FLUNGE	-58.5				-75,9		-39.
SURPAC DIP	-70.6			-51.9			7
3007762 207	-70076	170.0	170.7	13913	44,0		
Search							
Method	ELLIPSOID	EULIPSOID:	ELLIPSOID	ELLIPSOID.			ELLIPSOID
Estimation Block Size (xy,z)	5,5,5	and the second second	5,5,5	5, 3, 5	10, 10, 10	-	10, 10, 10
Estimation Block Size X	5			. 5			1
Estimation Block Size Y							
Estimation Block Size Z	5				10		- 1
Disc Point X	5				5		
Disc Point Y	5						
Disc Point 2	5	5	5	- 5	5	5	
Grade Dependent Parameters	V	Ψ	٧	Υ	N	Y	Y.
Threshold Max	8	8	10	5		10	
Search Limitation	25	25	25	25		25	2
Limit Samples by Hole Id	N	N	N	N	N	N	N
Hole Id Difield		-	-		-	100	-
Max Samps per Hole							
120020							CI.
Pass 1	Y	Y	γ.	Y	Y	Y	Y
Min				6			
Max	16						- 1
Max Search	90						. 3
Major/Semi	3			1,429			
Major/Minor	6	- 6	2	2	1.5	2	
	to the second second		v	Ÿ	v	y	v.
Rati Pasi 2	Y	Y	11				
Ran Pass 2 Factor	γ 2	Y Z					
Factor	2						
Factor Major/Servi	3	3	1.333	1.429	1	1	
Factor Major/Semi Major/Minor	3 6	2 3 6	1.393 2	1.429	1.5	1 2	2
Factor Major/Servi	3	2 3 6 4	1.393 2 6	1.429 2 6	1.5 5	1 2 6	
Factor Major/Semi Major/Minor Mis Max	2 3 6 4 16	2 3 6 4 16	1.333 2 6 20	1,429 2 6 20	1 1.5 5 18	1 2 6 18	1
Factor Major/Semi Major/Minor Mis Max Rain Pass 3	2 3 6 4 16	2 3 6 4 16	1.393 2 6 20	1.429 2 6 20	1 1.5 5 18	1 2 6 18	1 Y
Factor Major/Semi Major/Minor Mis Max Rain Pass 3 Factor	2 3 6 4 16	2 3 6 4 16	2 1.353 2 6 20 Y	1.429 2 6 20 Y	1 1.5 5 18 Y	1 2 6 18 V	1 Y
Factor Major/Semi Major/Minor Miss Max Run Pass 3 Factor Major/Semi	2 3 6 4 16	2 3 6 4 16 7	2 1.393 2 6 20 Y 3 1.333	1.429 2 6 20 7 3 1.429	1 1.5 5 18 Y	1 2 6 18 7 3	1 Y
Factor Major/Semi Major/Minor Mis Max Rain Pass 3 Factor	2 3 6 4 16	2 3 6 4 16 16 Y 3 6 6	2 1.333 2 6 20 7 1.333 2	1,429 2 6 20 Y 3 1,429 2	1 1.5 5 18 Y 2 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	1 2 6 18 Y 3 1 2 2	1 Y

14.5.1.6 Block Model and Grade Estimation

The model is in Aladdin local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-193 Aladdin block model parameters.

	Υ	Х	Z
Min	9,900	9,750	150
Max	10,600	10,210	510
Extents	700	460	360
Parent size	5.00	5.00	5.00
Sub-Block size	1.25	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with increased search distance $2 \, x$ and $3 \, x$ for subsequent interpolation runs, and a reduction of minimum and maximum informing samples for the third interpolation pass.

Within the block model, the attribute 'res_zone_n' is assigned a numerical code for each individual mineralisation domain and 'res_group_n' with the mineralisation domain group code 1000 for the N-S shear mineralisation, and 2000 for the east-west BIF mineralisation. Mined or depleted material is flagged in attribute 'geo_ox' as 0 for air or void, or 5 for backfill waste material.

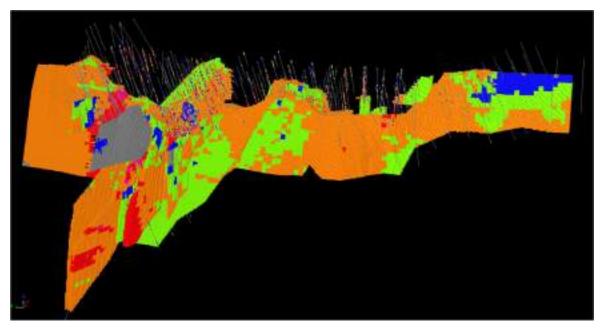


Figure 14-71 Aladdin depleted resource model, all domains - Source: Westgold.

14.5.1.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each domain. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous production data.

14.5.1.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Aladdin Mineral Resource was classified in the model on the following basis:

- (1) The Measured category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, where the deposit is drilled to a drill spacing density of 10 m or less.
- (2) The Indicated Mineral Resource was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

The Aladdin Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

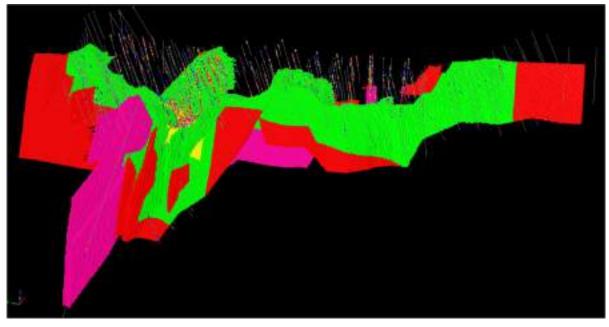


Figure 14-72 Aladdin resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported - Source: Westgold.

14.5.1.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. At Aladdin, areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-194 Aladdin Open Pit Mineral Resources at June 30, 2024.

Aladdin Open Pit Mineral Resource Statement - Rounded for Reporting 30/06/2024														
		Measure	d	-	Indicated	i	Measu	ed and Indi	cated		Inferred	ı		
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Aladdin OP	68	2.55	6	460	1.76	26	529	1.86	32	46	1.58	2		
Total	Total 68 2.55 6 460 1.76 26 529 1.86 32 46 1.58 2											2		

>=0.7g/t Au

Table 14-195 Aladdin Underground Mineral Resources at June 30, 2024.

	Aladdin Underground												
	Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred													
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Aladdin UG	0	0.00	0	41	2.77	4	41	2.77	4	58	3.03	6	
Total	0	0.00	0	41	2.77	4	41	2.77	4	58	3.03	6	

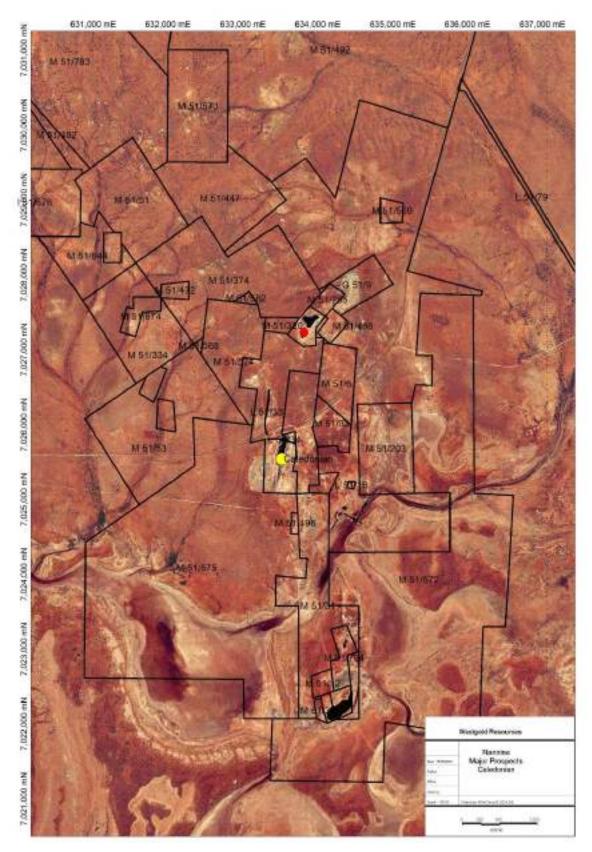
>=2.0g/t Au

The Aladdin Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.

- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.5.2 Caledonian


14.5.2.1 Summary

The Caledonian deposit is located approximately 20 km south of the Bluebird mill.

The Caledonian deposit was mined by underground methods between 1897 and 1915. A total of 2,613 tonnes of ore produced 3,865 ounces of gold (46 g/t recovered). Endeavour Resources Limited and Whim Creek Mining commenced mining the existing Aladdin and Caledonian pits in March 1988. Mining ceased in 1990. At Caledonian the open pit was mined based upon a Mineral Reserve of 1,108,058 t at 2.68 g/t Au.

Saint Barbara Mines carried out exploration drilling campaigns at Caledonian area in 1994-95 and 1997-1998. A feasibility study for the development of Caledonian South pit was completed in November 1999. Mining commenced in March 2000. Mining was completed on Phase 2 Caledonian in April of 2001. A mill feed study was completed on Caledonian Phase 3. The Great Northern Highway was shifted and the cutback commenced in October 2002. This mining period produced a total of 243,483 tonnes of ore mined at a gold grade of 2.53 g/t (Smith, 2002).

An initial Mineral Resource was completed by Westgold in 2018, and an updated Mineral Resource was completed in 2022.

 ${\it Figure~14-73\,Location~of~the~Caledonian~deposit~-\,Source:}~We stgold.$

14.5.2.2 Modelling Domains

The main Caledonian shear that follows contact between the western granite and the eastern mafic units which trends north-northeast locally. To the north of the pit the shear appears to continue on a more northerly trend whilst the granite trends towards the northwest. More locally gold is associated with quartz veining and sulphide mineralisation within the shear zone. Two plunge components have been identified within the main shear lode, the first is moderately towards the north which is the intersection between the shear fabric and the regional foliation, and the second is the intersection of the Champion set with the main shear. The Champion mineralisation visible in the pit wall and well defined in drilling has a more north-west orientation compared to the Caledonian main shear.

Digitised wireframes were completed in Surpac software by snapping to drill data. Interpretation of the mineralisation is undertaken in sectional and / or plan view to create the outline strings snapped to drillhole data points, which form the basis of the three-dimensional mineralisation wireframe. Wireframing is then carried out using a combination of automated stitching algorithms and manual triangulation to create an accurate three-dimensional representation of the sub-surface mineralised orebody.

The geologically modelled mineralisation domains represent the shear that hosts the gold mineralisation, wireframed to a 0.5 g/t cut-off grade. If required to preserve geological continuity, these wireframes continue through barren lithology using a 0.2 g/t cut-off grade.

14.5.2.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-196 Caledonian mineralisation domains raw and top-cut statistics.

14.5.2.4 Density

Density values were taken in combination from the Caledonian Open Pit Feasibility Report (Saint Barbara Mines, 1999) and Caledonian South Resource Report (Saint Barbara Mines, 2001). Regular bulk density test work was completed on a bench-bybench basis by Saint Barbara Mines during open pit mining **Table 14-197**.

Densities were assigned based on oxidation state, lithology and material type. Values used in the Caledonian resource model are tabled below **Table 14-197**.

Rock Type	Oxide	Transitional	Fresh
Tonalite - Mineralised	1.90	2.45	2.70
Tonalite - Unmineralised	2.30	2.40	2.60
Mafic	2.10	2.45	2.80
Dolerite	2.50	2.80	3.00
Fill	2.00		
Air/void	0.00		

Table 14-197 Caledonian density values.

14.5.2.5 Variography

Geostatistical analysis of down-hole composited data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Domains with insufficient samples for geostatistical analysis were allocated variogram parameters of spatially and statistically similar domains for estimation.

A summary of the resulting parameters is tabled below.

Table 14-198 Caledonian variogram model and interpolation parameters, domains 1510 to 6010.

Domain Code	1510	3510	3520	3530	3610	3620	3630	3640	3660	3690	3700	5510	5550	6010
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	2	2	2	2	2	2	2	2	2	2	1	. 1	2
CO	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.52	0.52	0.51
C1	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.48	0.48	0.42
a1	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	24.00	24.00	22.00
C2	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.00	0.00	0.07
a2	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	45.00	0.00	0.00	45.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	1.33	1.33	2.75
1. Major : Minor	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5		4	5.5
2. Major : Semi Major	3	3	3	3	3	3	3	3	3	3	3	(0	3
2. Major : Minor	3	3	3	3	3	3	3	3	3	3	3		0	3
3. Major : Semi Major	0	0	0	0	0	0	0	0	0	0	0	(0	0
3. Major : Minor	0	0	0	0	0	0	0	0	0	0	0	(0	0
,	•							•			•	•	,	
SURPAC STRIKE	12.9	350	350	350	350	350	12.9	350	350	350	350	7.7	7.7	12.9
SURPAC PLUNGE	-18.7	-18.7	-18.7	-18.7	-18.7	-18.7	-18.7	-18.7	-18.7	-18.7		6.4		-18.7
SURPAC DIP	68.8		68.8	68.8	68.8	68.8	68.8		68.8	68.8				68.8
		•												
Search														
Method	ELLIPSOID													
Estimation Block Size (x,y,z)	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5
Estimation Block Size X	2.5	2.5	2.5	2.5	2.5	2.5	2.5		2.5	2.5		2.5		2.5
Estimation Block Size Y	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Estimation Block Size Z	2.5		2.5	2.5	2.5	2.5	2.5		2.5	2.5		2.5	2.5	2.5
Disc Point X	3		3	3	3	3	3		3					3
Disc Point Y	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Disc Point Z	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max														
Search Limitation														
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field														
Max Samps per Hole														
								•			•	•		
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6	6	6	6	6	6	6	6	6	6	6	8	8	6
Max	24	24	24	24	24	24	24	24	24	24	24	20	20	24
Max Search	45	45	45	45	45	45	45	45	45	45	45	16	16	45
Major/Semi	3	3	3	3	3	3	3	3	3	3	3	1.33	1.33	3
Major/Minor	3	3	3	3	3	3	3	3	3	3	3	. 4	4	3
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	3	3	3	3	3	3	3	3	3	3	3	1.33	1.33	3
Major/Minor	3	3	3	3	3	3	3	3	3	3	3	4	4	3
Min	6		6	6	6	6	6	6				8	8	6
Max	24		24	24	24	24	24	24		24	24	20	20	24
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Major/Semi	3		3	3	3	3	3	3	3	3	3	1.33	1.33	3
Major/Minor	3			3		3								3
Min	3		3	3	1	1	3	3	3			. 4		3
Max	12		12	12	12	12	12	12	12			10		12
	-													

Table 14-199 Caledonian variogram model and interpolation parameters, domains 9010 to 9091.

Domain Code	9010	9020	9021	9022	9030	9031	9032	9040	9050	9051	9052	9090	9091
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	1	1	1	1	1	1	1	. 1	1	1	1		1
CO	0.33	0.21	0.21	0.21	0.21	0.21	0.21	0.33	0.33	0.33	0.33	0.21	0.21
C1	0.67	0.79	0.79	0.79	0.79	0.79	0.79	0.67	0.67	0.67	0.67	0.79	0.79
a1	65.00	36.00	36.00	36.00	36.00	36.00	36.00	65.00	65.00	65.00	65.00	36.00	36.00
C2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	3.61	1.2	1.2	1.2	1.2	1.2	1.2	3.61	3.61	3.61	3.61	1.2	1.2
1. Major : Minor	7.22	2	2	. 2	. 2	2	2	7.22	7.22	7.22	7.22	2	2
2. Major : Semi Major	0	0	0	0	0	0	0		0	0	0		0
2. Major : Minor	0	0				0	0	·	0	0	0		0
3. Major : Semi Major	0	0	0	0	0	0	0	0	0	0	0	0	0
3. Major : Minor	0	0	0	0	0	0	0	0	0	0	0	0	0
CURRAC										ac-	ar-		
SURPAC STRIKE	25					40				355	355		30
SURPAC PLUNGE	0					0				0	0		
SURPAC DIP	75	70	70	70	70	70	70	75	75	75	75	70	70
Search		1	1			ı	ı	1					
Method	ELLIBSOID	ELLIBSOID	FILIDSOID	ELLIBSOID	ELLIBSOID	ELLIBSOID	ELLIBSOID	ELLIBSOID	ELLIBEOID	ELLIBCOID	ELLIBCOID	ELLIPSOID	ELLIBSOID
Estimation Block Size (x,y,z)	2.5, 2.5, 2.5		5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5		2.5, 2.5, 2.5				5, 5, 5
Estimation Block Size (x,y,z)	2.5, 2.5, 2.5	5, 5, 5	5, 5, 5		5, 5, 5	5, 5, 5	5, 5, 5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5	2.5, 2.5, 2.5		5, 5, 5
	2.5	5			3	5	2	2.5		2.5	2.5		5
Estimation Block Size Y Estimation Block Size Z	2.5	5			5	5	2	2.5	2.5	2.5	2.5		5
Disc Point X	3	,	,		,	3	3	1		2.5	2.5		2
Disc Point Y	3					3				3	3		3
Disc Point Z	3					3	3	1		3	3		
DISC I GINCE	, ,		,	1	,	ļ	,	1					٦,
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max													
Search Limitation													
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field													
Max Samps per Hole													
						1		1					
Pass1	Y	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ
Min	6				4	4	4	6	6	6	6		4
Max	30	24				24	24		30	30	30		24
Max Search	43					54 1.2			43	43	43		54 1.2
Major/Semi	3.6					1.2	1.2			3.6	3.6		
Major/Minor	7.2	2	2	2	2	2	<u> </u>	7.2	7.2	7.2	7.2	2	2
Run Pass2	lv	v	v	ly	v	v	v	Y	Y	γ	γ	٧	γ
Factor	2	2	2	2	. 2	2	2	. 2	. 2	2	2	2	2
Major/Semi	3.6	_				1.2	1.2	-		3.6	3.6	_	1.2
Major/Minor	7.2	2			2.2	2	2	7.2	7.2	7.2	7.2		2
Min	6				4	4	4			6	6		4
						24					30		
Max	30				·								
Max	30												
Max Run Pass 3	30 Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
	Υ 3	Υ 3	. 3	Υ 3	Υ 3	Y 3	Υ 3	Y 3	Υ 3	Υ 3	Υ 3		Y 3
Run Pass 3	Υ	Υ 3	. 3		Y 3	Y 3	Y 3		Y 3 3.6	Y 3.6	Y 3 3.6		Y 3 1.2
Run Pass 3 Factor	Υ 3	Y 3 1.2	3 1.2 2	1.2	Y 3 1.2 2	Y 3 1.2 2	Y 3 1.2	3.6	Y 3 3.6 7.2	-		1.2	2
Run Pass 3 Factor Major/Semi	Y 3 3.6	Y 3 1.2 2 2	3 1.2 2	1.2 2 1	2		2 1	3.6 7.2	7.2 1	3.6	3.6	1.2 2 3	

14.5.2.6 Block Model and Grade Estimation

The model is in Nannine local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below **Table 14-200**.

Table 14-200 Caledonian block model parameters.

	Υ	X	Z
Min	9,300	4,360	-100
Max	11,660	5,080	520
Extents	2,360	720	620
Parent size	5.00	5.00	5.00
Sub-Block size	2.50	0.625	2.50

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

All interpolation was conducted in three passes, with increased search distance $2 \, x$ and $3 \, x$ for subsequent interpolation runs, and a reduction of minimum and maximum informing samples for the third interpolation pass.

Within the block model, the attribute 'res_zone_n' is assigned a numerical code for each individual mineralisation domain. Mined or depleted material is flagged in attribute 'geo_ox_n' as 0 for air or void, or 5 for backfill waste material.

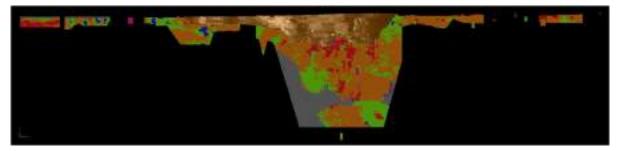


Figure 14-74 Caledonian depleted resource model, all domains - Source: Westgold.

14.5.2.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within

only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous production data.

14.5.2.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Caledonian Mineral Resource was classified in the model on the following basis:

- (1) No material was applied the Measured category where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence.
- (2) The Indicated Mineral Resource was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7 and a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally defined by wide spaced drilling >20 m or domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Caledonian Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

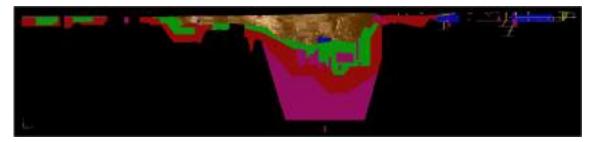


Figure 14-75 Caledonian resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised - Source: Westgold.

14.5.2.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground mineral resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-201 Caledonian Open Pit Mineral Resources on June 30, 2024.

		1	Mineral	Resou	rce State	onian Op ement - 0/06/202	Rounded for	Reporting						
		Measured Indicated Measured and Indicated Inferred												
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz		
Caledonian OP	0	0.00	0	41	1.72	2	41	1.72	2	62	1.74	3		
Total	0	0.00	0	41	1.72	2	41	1.72	2	62	1.74	3		

>=0.7g/t Au

Table 14-202 Caledonian Underground Mineral Resources on June 30, 2024.

		ı	Mineral				ounded for F	Reporting							
	Measured Indicated Measured and Indicated Inferred														
Project	kt											koz			
Caledonian UG	0	0.00	0	163	3.31	17	163	3.31	17	85	3.56	10			
Total	0	0.00	0	163	3.31	17	163	3.31	17	85	3.56	10			

>=2.0g/t Au

The Caledonian Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6 REEDY'S

Reedy's consists of deposits located 55-65 km by road south of the Bluebird Mill. The Reedy line of lode includes the deposits of Boomerang – Kurara, Callisto, Jack Ryan, Rand, and South Emu – Triton. The Turn of the Tide line-of-lode is 6 km east of the Reedy line, and hosts the Culculli, Thompsons Bore and Turn of the Tide Deposits.

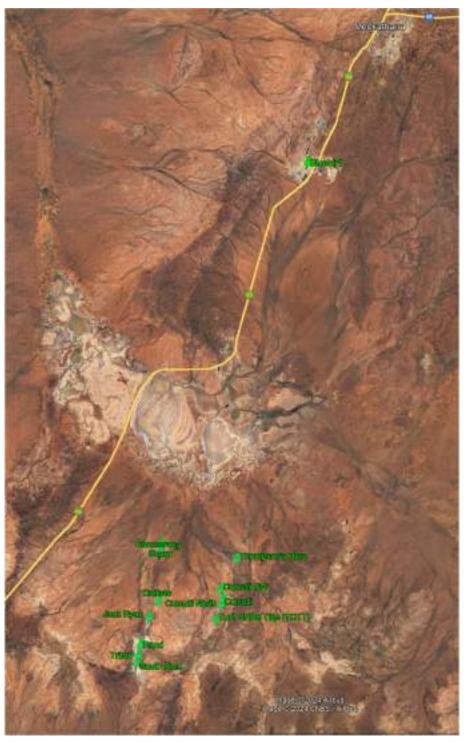


Figure 14-76 Location of the Reedy's Mineral Resources - Source: Westgold.

The current status of the Reedy's Mineral Resources is as follows:

- The South Emu Triton Mineral Resource Estimate was last updated in 2023.
 Production has halted and resource definition drilling is in progress at the time of reporting.
- No further work has been undertaken on any other mineral resource estimate since last updated.

All Reedy's deposits are reported within optimised pit shells above a likely economic cut-off grade for the open pit mineable portion of the Mineral Resource Estimate. The underground portion of the Mineral Resource Estimate are reported above a depth for which ground conditions are conducive to underground mining and above a likely economic cut-off grade.

14.6.1 Boomerang - Kurara

14.6.1.1 Summary

The Boomerang Kurara group is located approximately 55 km by road south of the Bluebird mill, accessible from the Great Northern Highway and a private haul road. It has been mined historically as an open pit and underground mine and was also the location of the historic Reedy mill. No mining of the deposit has been conducted by Westgold.

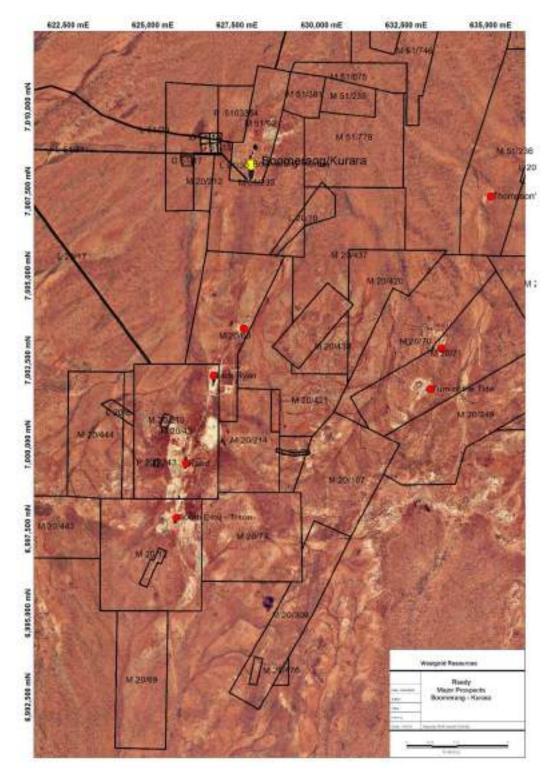


Figure 14-77 Location of the deposits in the Boomerang - Kurara group - Source: Westgold.

The Kurara open pit was mined under the Metana – Homestake JV from 1987 to 1992. The Boomerang open pit and underground was mined later under the Metana and Gold Mines Australia (GMA) collaboration from 1995 to 1997. Total combined production for open pit and underground mining is summarised in the table below, compiled by Hollingsworth (2022) from historic records. Some of the production from the Metana – GMA period was estimated from mining reserve records as much of the

production records was lost during the litigation and financial collapse of the entities in 1998. Significant drilling for resource definition was conducted by Saint Barbara Mines (2003-2006), and Mercator Gold Australia (2006-2009), though no production commenced.

Table 14-203 Boomerang - Kurara historical production, 1987 to 1997.

Source	Tonnes (t)	Grade (g/t)	Gold (oz)
Boomerang Kurara Open Pit	1,919,635	2.61	161,057
Boomerang Underground	256,715	4.90	40,481

Westgold first conducted a Mineral Resource Estimate for the combined Boomerang, Kurara, Gidgee Laterite, Washdown, and Phoenix deposits in 2016 (Tomsett, 2016), involving a comprehensive validation of historic drilling, reinterpretation of Boomerang mineralisation lodes, and combining of the deposits into a single group block model. Westgold conducted an update to the Mineral Resource Estimate in 2017 which incorporated new RC and diamond drilling for Boomerang, and also incorporated a grade control model mineralisation interpretation defined by RC grade control drilling for the Gidgee Laterite on the eastern side of the Boomerang open pit (Witten, 2016a). This updated model forms the reportable resource.

14.6.1.2 Modelling Domains

Details on the mineralisation are adapted from Tomsett (2016). Only minor changes to the interpretation lodes were required after infill drilling conducted by Westgold in 2017 confirmed the interpretation.

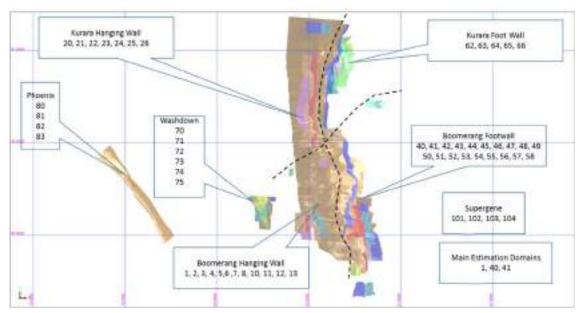


Figure 14-78 Boomerang - Kurara domains (Tomsett, 2016).

Boomerang - Kurara

The mineralisation observed within the Boomerang Kurara is hosted within mafic schists adjacent to a talc-carbonate altered ultramafic unit that is poorly mineralised. The talc-carbonate unit is a marker horizon within the stratigraphic sequence is ranges in thickness from metres to tens of metres. The footwall and hangingwall rock are characterised by a chlorite and carbonate alteration halo and quartz-carbonate veins (or veinlets) which host the majority of the gold mineralisation.

The bulk of the mineralisation occurs within 15 m of the footwall and hanging wall contact of the talc-carbonate unit and the thickness of the interpreted lodes are variable with the thicker intercepts occurring within the oxide and transitional zones. It is unclear if the increase in thickness is associate with weathering, structural thickening, or is a result of poor drilling and or sampling methodologies (i.e. down-the hole smearing). It should be noted the majority of oxide and transition material has already been extracted.

The main hanging wall and footwall lodes have been interpreted strike and down dip length of 1,300 m and 550 m, respectively. Numerous hangingwall and footwall lodes exist over the strike extent with the most continuous domains occurring in close proximity to the talc-carbonate unit. The main units strike approximately north-south with a variable dip ranging from steep to moderate dips towards the west. The change in dip is associated with an interpreted deposit-scale, open, anticlinal structure which has been documented in previous grade control reviews (Carras, 1988).

The minor hangingwall and footwall lodes are less-continuous than the main lodes and have been interpreted to be structurally controlled but overall strata-bound. The mineralisation appears to be associated with quartz veining, associate alteration and in several instances associated with the BIF units located in the hanging wall stratigraphy. The hangingwall and footwall lodes strike approximately north-south and dip moderately to steeply towards the west.

A second talc-carbonate unit has been identified approximately 170 m from the footwall contact of the main talc-carbonate unit. It is unclear if the second talc-carbonate unit is a structural or stratigraphic repeat. Mineralised lodes have been identified in the hanging wall of this unit but it is currently under drilled with respect to main lodes.

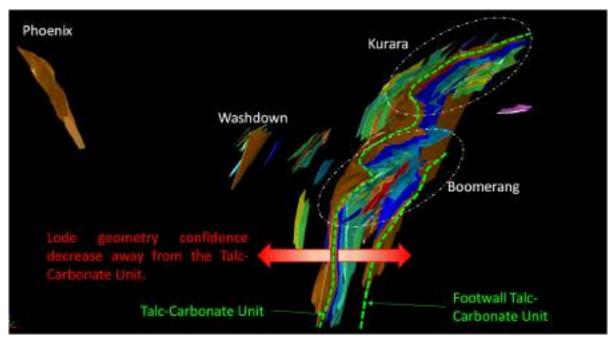


Figure 14-79 Schematic representation of the Boomerang, Kurara, Phoenix and Washdown mineralised areas with respect to the talc-carbonate marker horizon and the footwall talc-carbonate unit (Tomsett, 2016).

Digitised wireframes were completed in Surpac software by snapping to drill data. The selection criteria for the mineralised domains were based upon:

- A strata-controlled mineralisation system. The orientation of the talc-carbonate schist was used to guide the overall orientation of the hanging wall and footwall lodes.
- A threshold value of ≥0.5 g/t Au.
- The presence of quartz veining and or sulphides. It should be noted this information was limited.

Washdown

The Washdown mineralisation is located approximately 300 m from the hanging wall contact of the main talc-carbonate marker horizon. The mineralisation is structurally controlled and occurs with quartz veining and associated wall rock alteration, that is hosted within chloritic schists ±BIF. The interpreted mineralisation strikes north-south and dips moderately towards the west.

The domaining strategy for Washdown areas was based on the previous interpretation and wireframes defined during the resource estimation process conducted in 2012. Digitised wireframes were completed in Surpac software by snapping to drill data. The Washdown interpretation was based on ≥ 0.5 g/t threshold aligned approximately parallel to the orientation of the other hanging wall mineralisation.

Phoenix

The Phoenix mineralisation is located immediately south of the Boomerang Kurara tailings dam or, approximately 1,100 m east of the main Boomerang Kurara mineralisation. The Phoenix mineralisation differs from the mineralisation observed in other areas within the project. The quartz veining mineralisation is structurally controlled and is hosted within steeply northeast dipping quartz porphyries. The quartz porphyries have intruded along a north-west trending shear zone that has been interpreted as a secondary shear or splay off the main Reedy shear structure.

The variographic analysis of the main hanging wall lode identified a moderate plunge towards the north for the higher-grade mineralised areas. The observed plunge approximates the intersection lineation of the interpreted surface and the approximate orientation of Phoenix shear or parallel shear zones.

The domaining strategy for Phoenix was based on the previous interpretation and wireframes defined during the resource estimation process conducted in 2012. Digitised wireframes were completed in Surpac software by snapping to drill data. The interpretation for the Phoenix area was based on ≥ 0.5 g/t thresholds applied approximately parallel to the Phoenix shear zone and hosted within quartz porphyry.

Gidgee Laterite

The Gidgee Laterite resource is located close to surface, adjacent to the eastern side of the Boomerang open pit. The deeper, high grade paleochannel provided significant early ounces whilst mining of the Boomerang pit. The mineralised horizon extends beyond the depleted pit shell to the east and was sufficiently drilled during the mining grade control process. The May 2016 drilling twinned several of these existing intercepts, with the drilling encountering a similar tenor of grade as shown in the historic drillholes (Witten, 2016a). Digitised wireframes were completed in Surpac software by snapping to drill data, to a 0.5 g/t wireframe cut-off grade, with a maximum of 1 m of internal dilution.

14.6.1.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-204 Statistics and top-cuts for Gidgee Laterite. Washdown. Phoenix and South Boomerang domains.

m Comps 50% Resid Tol	Supe	rgene Alte	ration		٧	Vashdown N	lineralisati	on		P	hoenix Mi	neralisatio	n	South Boo	merang Mir	neralisatio
Domain	1101	1102	1103	4070	4071	4072	4073	4074	4075	5080	5081	5082	5083	6031	6032	6033
Decluster Grid	-	-	-	-	-	-	-	-			-	-	-	-	-	-
Samples	3690	6	191	59	8	30	4	51	21	561	73	204	31	6	9	4
Minimum	0.005	0.15	0.01	0.1	0.3	0.2	0.19	0.07	0.14	0.005	0.02	0.005	0.13	0.25	0.1	0.606
Maximum	84.4	0.54	10.7	13.8	1.58	31.9	1.09	10.4	10.1	2.8	4.63	11.27	1.84	2.38	3.59	1.29
Mean	1.21	0.31	0.96	1.73	0.95	3.95	0.63	1.23	1.33	0.18	1.20	1.14	0.82	1.20	1.09	0.87
Standard deviation	2.445	0.138	1.457	2.691	0.544	7.04	0.429	1.847	2.112	0.194	0.961	1.479	0.424	0.867	1.006	0.293
CV	2.02	0.444	1.514	1.554	0.571	1.781	0.68	1.502	1.584	1.057	0.8	1.293	0.515	0.724	0.92	0.336
Variance	5.977	0.019	2.123	7.24	0.296	49.568	0.184	3.412	4.461	0.038	0.923	2.186	0.18	0.752	1.011	0.086
Skewness	16.35	0.867	3.746	2.92	-0.068	2.89	0.066	3.256	3.921	4.938	1.573	4.192	0.747	0.689	2.247	1.425
Log samples	3690	6	191	59	8	30	4	51	21	561	73	204	31	6	9	4
Log mean	-0.235	-1.247	-0.824	-0.104	-0.235	0.381	-0.685	-0.465	-0.22	-2.305	-0.132	-0.422	-0.343	-0.077	-0.255	-0.176
Log variance	0.782	0.198	1.942	1.092	0.487	1.818	0.668	1.265	0.811	1.7	0.781	1.549	0.359	0.691	0.913	0.099
Geometric mean	0.791	0.287	0.439	0.901	0.79	1.464	0.504	0.628	0.803	0.1	0.876	0.656	0.71	0.926	0.775	0.838
10%	0.33	0.15	0.04	0.269	0.3	0.24	0.19	0.141	0.319	0.01	0.279	0.156	0.244	0.25	0.1	0.606
20%	0.51	0.166	0.18	0.46	0.306	0.52	0.19	0.226	0.422	0.035	0.5	0.37	0.514	0.336	0.476	0.606
30%	0.6	0.214	0.31	0.534	0.398	0.68	0.222	0.323	0.469	0.06	0.596	0.53	0.569	0.596	0.585	0.643
40%	0.68	0.242	0.424	0.616	0.574	0.86	0.286	0.438	0.598	0.09	0.77	0.632	0.654	0.721	0.603	0.718
50%	0.78	0.26	0.54	0.73	0.75	0.98	0.35	0.6	0.68	0.135	0.895	0.76	0.743	0.78	0.73	0.793
60%	0.92	0.278	0.636	0.908	1.126	1.53	0.566	0.776	0.76	0.2	1.066	0.95	0.832	0.864	0.93	0.795
70%	1.1	0.312	0.82	1.036	1.304	1.79	0.782	1.011	0.918	0.25	1.201	1.127	0.9	1.17	1.086	0.796
80%	1.37	0.378	1.168	1.464	1.444	5.6	0.93	1.442	1.564	0.31	1.818	1.492	1.096	1.92	1.196	0.896
90%	1.95	0.456	2.3	3.953	1.572	8.78	1.01	2.703	2.109	0.4	2.53	1.942	1.428	2.254	1.529	1.093
95%	2.835	0.498	3.37	7.785	1.576	18.15	1.05	4.753	2.605	0.48	3.311	2.958	1.614	2.317	2.56	1.191
98%	4.648	0.519	4.838	9.707	1.578	22.975	1.07	5.847	6.178	0.54	3.638	4.551	1.763	2.349	3.075	1.241
99%	8.679	0.532	8.113	11.853	1.579	28.33	1.082	8.125	8.531	0.664	3.966	8.885	1.809	2.367	3.384	1.27
Top Cut	25.00		7.00	-	-	15.00	-	4.50	5.00	-	-	-	ļ.	-		-
No Values Cut	6	0	3	0	0	3	0	3	1	0	0	0	0	0	0	0
% Data	0.2%	0.0%	1.6%	0.0%	0.0%	10.0%		5.9%	4.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
% Metal	-2.1%	0.0%	-3.4%	0.0%	0.0%	-19.6%		-13.5%	-18.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
<u>Au cut</u>		rgene Alte				Vashdown N						neralisatio			merang Mir	
Domain	1101	1102	1103	4070	4071	4072	4073	4074	4075	5080	5081	5082	5083	6031	6032	6033
Decluster Grid																
	101 ALL DD	102 AU PPI	103 ALL DD	070 ALL DD	071 ALL DD	072 ALL DD	072 ALL DD	074 ALL DD	075 411 001	000 411 004	001 ALL DD	002 411 00	000 411 00	024 411 001	.022 ALL DDA	.022 ALL D
				IO/U AU PPI	U/I AU PP		U/S AU PP	10/4 AU PPI	U/5 AU PPI	USU AU PPI	USI AU PPI	U8Z AU PP	U83 AU PPI	U31 AU PPI	DU3Z AU PPIV	DUSS AU P
Samples	3690	6	191	59	8 8	30	4	51	075 AU_PPI 21	561	73	082 AU_PP 204	31	031 AU_PPI	9 9	4

Au cut	Super	rgene Alte	ration		V	/ashdown N	lineralisati	on		P	hoenix Mi	neralisatio	n	South Boo	merang Mii	neralisation
Domain	1101	1102	1103	4070	4071	4072	4073	4074	4075	5080	5081	5082	5083	6031	6032	6033
Decluster Grid																
1	101 AU_PPI	102 AU_PPI	103 AU_PPI	070 AU_PPI	071 AU_PPI	072 AU_PPI	073 AU_PPI	074 AU_PPI	075 AU_PPI	199_UA 080	081 AU_PP	082 AU_PPI	083 AU_PP	031 AU_PPI	032 AU_PPN	033 AU_PPN
Samples	3690	6	191	59	8	30	4	51	21	561	73	204	31	6	9	4
Top Cut Count	6		3			3		3	1							
Minimum	0.005	0.15	0.01	0.1	0.3	0.2	0.19	0.07	0.14	0.005	0.02	0.005	0.13	0.25	0.1	0.606
Maximum	25	0.54	7	13.8	1.58	15	1.09	4.5	5	2.8	4.63	11.27	1.84	2.38	3.59	1.29
Mean	1.18	0.31	0.93	1.73	0.95	3.18	0.63	1.06	1.09	0.18	1.20	1.14	0.82	1.20	1.09	0.87
Standard deviation	1.907	0.138	1.277	2.691	0.544	4.528	0.429	1.232	1.108	0.194	0.961	1.479	0.424	0.867	1.006	0.293
CV	1.61	0.444	1.373	1.554	0.571	1.424	0.68	1.158	1.016	1.057	0.8	1.293	0.515	0.724	0.92	0.336
Variance	3.635	0.019	1.63	7.24	0.296	20.507	0.184	1.518	1.228	0.038	0.923	2.186	0.18	0.752	1.011	0.086
Skewness	8.163	0.867	2.942	2.92	-0.068	1.948	0.066	1.886	2.522	4.938	1.573	4.192	0.747	0.689	2.247	1.425
Log samples	3690	6	191	59	8	30	4	51	21	561	73	204	31	6	9	4
Log mean	-0.235	-1.247	-0.828	-0.104	-0.235	0.344	-0.685	-0.491	-0.253	-2.305	-0.132	-0.422	-0.343	-0.077	-0.255	-0.176
Log variance	0.777	0.198	1.919	1.092	0.487	1.613	0.668	1.143	0.657	1.7	0.781	1.549	0.359	0.691	0.913	0.099
Geometric mean	0.79	0.287	0.437	0.901	0.79	1.41	0.504	0.612	0.776	0.1	0.876	0.656	0.71	0.926	0.775	0.838
10%	0.33	0.15	0.04	0.269	0.3	0.24	0.19	0.141	0.319	0.01	0.279	0.156	0.244	0.25	0.1	0.606
20%	0.51	0.166	0.18	0.46	0.306	0.52	0.19	0.226	0.422	0.035	0.5	0.37	0.514	0.336	0.476	0.606
30%	0.6	0.214	0.31	0.534	0.398	0.68	0.222	0.323	0.469	0.06	0.596	0.53	0.569	0.596	0.585	0.643
40%	0.68	0.242	0.424	0.616	0.574	0.86	0.286	0.438	0.598	0.09	0.77	0.632	0.654	0.721	0.603	0.718
50%	0.78	0.26	0.54	0.73	0.75	0.98	0.35	0.6	0.68	0.135	0.895	0.76	0.743	0.78	0.73	0.793
60%	0.92	0.278	0.636	0.908	1.126	1.53	0.566	0.776	0.76	0.2	1.066	0.95	0.832	0.864	0.93	0.795
70%	1.1	0.312	0.82	1.036	1.304	1.79	0.782	1.011	0.918	0.25	1.201	1.127	0.9	1.17	1.086	0.796
80%	1.37	0.378	1.168	1.464	1.444	5.6	0.93	1.442	1.564	0.31	1.818	1.492	1.096	1.92	1.196	0.896
90%	1.95	0.456	2.3	3.953	1.572	8.78	1.01	2.703	2.109	0.4	2.53	1.942	1.428	2.254	1.529	1.093
95%	2.835	0.498	3.37	7.785	1.576	15	1.05	4.258	2.605	0.48	3.311	2.958	1.614	2.317	2.56	1.191
98%	4.648	0.519	4.838	9.707	1.578	15	1.07	4.5	3.756	0.54	3.638	4.551	1.763	2.349	3.075	1.241
99%	8.679	0.532	7	11.853	1.579	15	1.082	4.5	4.502	0.664	3.966	8.885	1.809	2.367	3.384	1.27

Table 14-205 Statistics and top-cuts for Boomerang Hangingwall domains.

1m Comps 50% Resid Tol					Воо	merang Ha	nging Wall	Mineralisa	ation				
Domain	2001	2002	2003	2004	2005	2006	2007	2008	2010	2011	2012	2013	2014
Decluster Grid	-	-	-	-	-	-	-	-	-	-	-	-	-
Samples	3939	325	5	17	4	7	3	9	12	2	27	6	16
Minimum	0.005	0.01	0.222	0.04	0.01	0.63	0.55	0.18	0.18	0.8	0.02	0.04	0.02
Maximum	122	129	5.244	3.47	1.29	1.74	8.734	10.95	1.14	6.465	52.9	3.23	2.37
Mean	4.65	11.15	2.22	0.91	0.63	1.00	5.41	1.85	0.61	3.63	10.35	0.93	1.09
Standard deviation	8.336	17.182	2.352	0.79	0.524	0.389	4.3	3.449	0.285	4.006	15.27	1.151	0.685
CV	1.794	1.541	1.058	0.872	0.835	0.388	0.796	1.866	0.47	1.103	1.476	1.235	0.631
Variance	69.494	295.228	5.532	0.623	0.275	0.152	18.488	11.893	0.081	16.048	233.183	1.324	0.469
Skewness	4.89	3.235	0.666	2.292	0.255	1.182	-1.396	2.886	0.484	0	1.753	2.207	0.395
Log samples	3939	325	5	17	4	7	3	9	12	2	27	6	16
Log mean	0.484	1.404	0.162	-0.447	-1.34	-0.056	1.168	-0.262	-0.621	0.822	0.989	-0.716	-0.286
Log variance	2.536	2.596	1.849	0.951	4.869	0.132	2.353	1.534	0.294	2.183	4.425	2.013	1.404
Geometric mean	1.623	4.07	1.175	0.64	0.262	0.946	3.217	0.769	0.538	2.274	2.688	0.489	0.751
10%	0.22	0.55	0.222	0.152	0.01	0.63	0.55	0.18	0.19	0.8	0.062	0.04	0.116
20%	0.52	0.89	0.222	0.388	0.01	0.65	0.55	0.196	0.298	0.8	0.681	0.12	0.358
30%	0.76	1.579	0.386	0.474	0.122	0.684	0.55	0.375	0.46	0.8	0.968	0.36	0.654
40%	1.11	3.189	0.55	0.534	0.346	0.712	1.826	0.516	0.516	0.8	2.536	0.488	0.806
50%	1.67	4.919	0.685	0.67	0.57	0.855	3.74	0.57	0.57	0.8	2.882	0.56	1.08
60%	2.461	7.39	0.82	0.734	0.598	1.004	5.654	0.684	0.609	1.933	3.97	0.566	1.182
70%	3.84	10.72	2.55	1.016	0.626	1.053	7.11	0.918	0.672	3.066	7.257	0.606	1.364
80%	6.501	16.6	4.28	1.28	0.77	1.146	7.651	1.234	0.714	4.199	15.19	0.714	1.428
90%	12.155	27.7	4.762	1.403	1.03	1.364	8.192	2.688	0.986	5.332	35.844	1.742	1.92
95%	19.172	39.075	5.003	1.906	1.16	1.552	8.463	6.819	1.086	5.899	43.079	2.486	2.346
98%	27.015	67.546	5.123	2.688	1.225	1.646	8.598	8.885	1.113	6.182	47.681	2.858	2.358
99%	39.522	86.325	5.195	3.157	1.264	1.702	8.679	10.124	1.129	6.352	50.812	3.081	2.365
Ton Cut	30.00	60.00		l _	l _	l _		5.00			15.00	1.40	l _

Top Cut	30.00	60.00		-	-	-		5.00		-	15.00	1.40	-
No Values Cut	72	11	0	0	0	0	0	1	0	0	6	1	0
% Data	1.8%	3.4%	0.0%	0.0%	0.0%	0.0%	0.0%	11.1%	0.0%	0.0%	22.2%	16.7%	0.0%
% Metal	-7.1%	-7.0%	0.0%	0.0%	0.0%	0.0%	0.0%	-35.8%	0.0%	0.0%	-45.2%	-32.7%	0.0%

Au cut	Boomerar	ng Hanging	Wall Mine	ralisation									
Domain	2001	2002	2003	2004	2005	2006	2007	2008	2010	2011	2012	2013	2014
Decluster Grid													
	2001 AU_PPI	002 AU_PPI	003 AU_PPI	004 AU_PPI	005 AU_PPI	006 AU_PP	007 AU_PPI	008 AU_PPI	010 AU_PPI	011 AU_PPI	012 AU_PPI	013 AU_PPI	014 AU_PP
Samples	3939	325	5	17	4	7	3	9	12	2	27	6	16
Top Cut Count	72	11						1			6	1	
Minimum	0.005	0.01	0.222	0.04	0.01	0.63	0.55	0.18	0.18	0.8	0.02	0.04	0.02
Maximum	30	60	5.244	3.47	1.29	1.74	8.734	5	1.14	6.465	15	1.4	2.37
Mean	4.32	10.37	2.22	0.91	0.63	1.00	5.41	1.19	0.61	3.63	5.67	0.63	1.09
Standard deviation	6.366	13.743	2.352	0.79	0.524	0.389	4.3	1.512	0.285	4.006	5.707	0.447	0.685
CV	1.474	1.326	1.058	0.872	0.835	0.388	0.796	1.275	0.47	1.103	1.007	0.714	0.631
Variance	40.526	188.872	5.532	0.623	0.275	0.152	18.488	2.287	0.081	16.048	32.575	0.2	0.469
Skewness	2.425	2.126	0.666	2.292	0.255	1.182	-1.396	2.451	0.484	0	0.813	0.857	0.395
Log samples	3939	325	5	17	4	7	3	9	12	2	27	6	16
Log mean	0.477	1.393	0.162	-0.447	-1.34	-0.056	1.168	-0.35	-0.621	0.822	0.807	-0.856	-0.286
Log variance	2.487	2.535	1.849	0.951	4.869	0.132	2.353	1.082	0.294	2.183	3.557	1.498	1.404
Geometric mean	1.611	4.028	1.175	0.64	0.262	0.946	3.217	0.705	0.538	2.274	2.241	0.425	0.751
10%	0.22	0.55	0.222	0.152	0.01	0.63	0.55	0.18	0.19	0.8	0.062	0.04	0.116
20%	0.52	0.89	0.222	0.388	0.01	0.65	0.55	0.196	0.298	0.8	0.681	0.12	0.358
30%	0.76	1.579	0.386	0.474	0.122	0.684	0.55	0.375	0.46	0.8	0.968	0.36	0.654
40%	1.11	3.189	0.55	0.534	0.346	0.712	1.826	0.516	0.516	0.8	2.536	0.488	0.806
50%	1.67	4.919	0.685	0.67	0.57	0.855	3.74	0.57	0.57	0.8	2.882	0.56	1.08
60%	2.461	7.39	0.82	0.734	0.598	1.004	5.654	0.684	0.609	1.933	3.97	0.566	1.182
70%	3.84	10.72	2.55	1.016	0.626	1.053	7.11	0.918	0.672	3.066	7.257	0.606	1.364
80%	6.501	16.6	4.28	1.28	0.77	1.146	7.651	1.234	0.714	4.199	13.277	0.714	1.428
90%	12.155	27.7	4.762	1.403	1.03	1.364	8.192	2.093	0.986	5.332	15	1.01	1.92
95%	19.172	39.075	5.003	1.906	1.16	1.552	8.463	3.547	1.086	5.899	15	1.205	2.346
98%	27.015	60	5.123	2.688	1.225	1.646	8.598	4.273	1.113	6.182	15	1.303	2.358
99%	30	60	5.195	3.157	1.264	1.702	8.679	4.709	1.129	6.352	15	1.361	2.365

Table 14-206 Statistics and top-cuts for Boomerang footwall domains.

Boomerang Foot Wall Mineralisation

1m Comps 50% Resid Tol

Domain	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058
Decluster Grid	2040	20-12	-	-	2044	2043	-	2047	2040	2043	2000			-	2034	-	2000	2037	
Decluster Grid		-	-	-	-	•	-					-	•	-			-	-	•
Samples	1360	1260	423	157	14	12	182	273	4	18	162	119	103	19	7	3	3	3	31
Minimum	0.005	0.005	0.005	0.005	0.31	0.088	0.005	0.005	0.08	0.005	0.02	0.005	0.005	0.093	0.4	0.568	0.67	4.238	0.02
Maximum	146.41	52.8	46.32	29.9	11.09	7.31	18.3	19.4	1.3	3.73	7.29	12.9	13.9	8.43	3.19	6.032	4.525	12.239	13.3
Mean	2.87	2.17	1.88	2.29	2.56	2.19	1.74	1.30	0.74	0.71	1.34	1.48	1.53	2.68	1.73	2.43	2.85	8.19	1.02
Standard deviation	6.128	3.826	3.35	3.56	3.159	2.698	2.488	1.719	0.514	0.897	1.301	2.124	2.075	2.434	1.079	3.118	1.975	4.001	2.343
CV	2.137	1.764	1.785	1.552	1.233	1.234	1.434	1.323	0.699	1.258	0.97	1.436	1.359	0.909	0.625	1.282	0.694	0.488	2.3
Variance	37.555	14.642	11.221	12.673	9.98	7.277	6.191	2.956	0.264	0.804	1.693	4.513	4.304	5.924	1.165	9.724	3.901	16.01	5.491
Skewness	12.093	6.357	7.469	4.367	1.918	1.266	3.46	5.044	-0.468	2.533	2.228	3.219	3.157	1.204	0.386	1.729	-1.063	0.102	5.118
Log samples	1360	1260	423	157	14	12	182	273	4	18	162	119	103	19	7	3	3	3	31
Log mean	0.212	0.001	-0.088	0.026	0.329	-0.068	-0.131	-0.432	-0.698	-1.209	-0.108	-0.278	-0.38	0.511	0.339	0.29	0.772	2.014	-0.811
Log variance	1.944	1.73	1.643	2.093	1.281	2.124	1.548	1.809	1.568	3.135	0.946	1.645	2.276	1.293	0.553	1.714	1.054	0.286	1.537
Geometric mean	1.236	1.001	0.916	1.026	1.39	0.934	0.877	0.649	0.497	0.299	0.898	0.757	0.684	1.666	1.404	1.336	2.164	7.49	0.444
10%	0.24	0.21	0.236	0.191	0.318	0.112	0.23	0.102	0.08	0.005	0.3	0.206	0.103	0.279	0.4	0.568	0.67	4.238	0.2
20%	0.53	0.46	0.41	0.4	0.498	0.256	0.374	0.24	0.08	0.092	0.524	0.458	0.26	0.788	0.571	0.568	0.67	4.238	0.22
30%	0.693	0.6	0.561	0.598	0.648	0.328	0.542	0.417	0.192	0.204	0.599	0.577	0.509	1.1	0.868	0.568	0.67	4.238	0.235
40%	0.957	0.76	0.722	0.768	0.685	0.346	0.656	0.59	0.416	0.286	0.744	0.646	0.582	1.321	1.144	0.594	1.205	5.011	0.284
50%	1.3	1.01	0.92	1.291	0.83	0.77	0.87	0.715	0.64	0.5	0.89	0.825	0.795	1.485	1.257	0.632	2.007	6.17	0.435
60%	1.74	1.35	1.249	1.652	1.58	1.014	1.058	1.022	0.752	0.546	1.024	0.924	0.918	2.006	1.46	0.671	2.81	7.33	0.49
70%	2.6	1.84	1.637	2.239	2.36	2.032	1.52	1.441	0.864	0.598	1.54	1.13	1.476	3.093	2.053	1.23	3.463	8.516	0.834
80%	3.85	2.81	2.524	2.874	3.294	3.82	2.27	2	0.996	0.939	1.86	1.702	2.232	4.261	2.665	2.831	3.817	9.757	1.078
90%	6.374	5.02	4.14	4.709	6.302	6.616	3.982	3.185	1.148	1.386	2.818	2.837	4.012	6.233	3.069	4.431	4.171	10.998	1.284
95%	9.68	7.82	6.191	8.43	8.332	7.142	6.223	4.16	1.224	2.038	4.24	6.248	4.484	7.415	3.129	5.232	4.348	11.618	2.002
98%	13.48	12.125	7.912	11.857	9.711	7.226	8.284	5.278	1.262	2.884	5.296	7.409	7.211	7.923	3.16	5.632	4.436	11.928	5
99%	22.96	16.82	13.653	15.663	10.538	7.276	11.985	6.191	1.285	3.392	6.136	10.525	8.964	8.227	3.178	5.872	4.49	12.114	9.98
Top Cut	30.00	25.00	14.00	15.00				8.50		2.50		8.00	10.00						6.00
No Values Cut	10	6	5	2	0	0	0	1	0	1	0	3	1	0	0	0	0	0	1
% Data	0.7%	0.5%	1.2%	1.3%	0.0%	0.0%	0.0%	0.4%	0.0%	5.6%	0.0%	2.5%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.2%
% Metal	-5.9%	-3.1%	-6.7%	-5.1%	0.0%	0.0%	0.0%	-3.1%	0.0%	-9.5%	0.0%	-5.1%	-2.5%	0.0%	0.0%	0.0%	0.0%	0.0%	-23.2%
<u>Au_cut</u>	Boomeran	ng Foot Wa	ll Minerali	sation															
Domain	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058
Decluster Grid																			
	1																		
	2040 AU PPI																		
Samples		041 AU PPI	042 AU PPI	043 AU PPI	044 AU PPI	045 AU PPI	046 AU PPI	047 AU PPI	048 AU PPI	049 AU PPI	050 AU PP	051 AU PPI	052 AU PPI	053 AU PPI	054 AU PPI	055 AU PPI	056 AU PPI	057 AU PPI	058 AU PP
Top Cut Count	1360	041 AU_PPI										051 AU_PPI							
	1360	1260	423	157	044 AU_PPI 14	045 AU_PPI 12	046 AU_PPI 182	273	048 AU_PPI 4	18	050 AU_PP 162	119	103	053 AU_PPI 19	054 AU_PPI 7	055 AU_PPI 3	056 AU_PP1 3	057 AU_PP1 3	31
5.61 m l man	10	1260 6	423 5	157 2	14	12	182	273 1	4	18 1	162	119 3	103 1	19	7	3	3	3	31 1
Minimum	10 0.005	1260 6 0.005	423 5 0.005	157 2 0.005	0.31	0.088	0.005	273 1 0.005	0.08	18 1 0.005	0.02	119 3 0.005	103 1 0.005	0.093	7	3 0.568	3 0.67	3 4.238	31 1 0.02
Maximum	10 0.005 30	1260 6 0.005 25	423 5 0.005 14	157 2 0.005 15	0.31 11.09	0.088 7.31	0.005 18.3	273 1 0.005 8.5	0.08	18 1 0.005 2.5	162 0.02 7.29	119 3 0.005 8	103 1 0.005	0.093 8.43	7 0.4 3.19	0.568 6.032	0.67 4.525	3 4.238 12.239	31 1 0.02 6
	10 0.005 30 2.70	1260 6 0.005 25 2.10	423 5 0.005 14 1.75	157 2 0.005 15 2.18	0.31 11.09 2.56	0.088 7.31 2.19	0.005 18.3 1.74	273 1 0.005 8.5 1.26	0.08 1.3 0.74	18 1 0.005 2.5 0.65	162 0.02 7.29 1.34	119 3 0.005 8 1.40	103 1 0.005 10 1.49	0.093 8.43 2.68	7 0.4 3.19 1.73	3 0.568 6.032 2.43	3 0.67 4.525 2.85	3 4.238 12.239 8.19	31 1 0.02 6 0.78
Maximum Mean Standard deviation	10 0.005 30 2.70 4.081	1260 6 0.005 25 2.10 3.191	423 5 0.005 14 1.75 2.298	157 2 0.005 15 2.18 2.86	0.31 11.09 2.56 3.159	0.088 7.31 2.19 2.698	0.005 18.3 1.74 2.488	273 1 0.005 8.5 1.26 1.393	0.08 1.3 0.74 0.514	18 1 0.005 2.5 0.65 0.672	0.02 7.29 1.34 1.301	119 3 0.005 8 1.40 1.796	103 1 0.005 10 1.49 1.872	0.093 8.43 2.68 2.434	7 0.4 3.19 1.73 1.079	3 0.568 6.032 2.43 3.118	3 0.67 4.525 2.85 1.975	3 4.238 12.239 8.19 4.001	31 1 0.02 6 0.78 1.11
Maximum Mean Standard deviation CV	10 0.005 30 2.70 4.081 1.513	1260 6 0.005 25 2.10 3.191 1.518	423 5 0.005 14 1.75 2.298 1.311	157 2 0.005 15 2.18 2.86 1.314	0.31 11.09 2.56 3.159 1.233	0.088 7.31 2.19 2.698 1.234	0.005 18.3 1.74 2.488 1.434	273 1 0.005 8.5 1.26 1.393 1.106	0.08 1.3 0.74 0.514 0.699	18 1 0.005 2.5 0.65 0.672 1.043	0.02 7.29 1.34 1.301 0.97	119 3 0.005 8 1.40 1.796 1.28	103 1 0.005 10 1.49 1.872 1.257	0.093 8.43 2.68 2.434 0.909	7 0.4 3.19 1.73 1.079 0.625	3 0.568 6.032 2.43 3.118 1.282	3 0.67 4.525 2.85 1.975 0.694	3 4.238 12.239 8.19 4.001 0.488	31 1 0.02 6 0.78 1.11 1.418
Maximum Mean Standard deviation	10 0.005 30 2.70 4.081	1260 6 0.005 25 2.10 3.191	423 5 0.005 14 1.75 2.298	157 2 0.005 15 2.18 2.86	0.31 11.09 2.56 3.159	0.088 7.31 2.19 2.698	0.005 18.3 1.74 2.488	273 1 0.005 8.5 1.26 1.393	0.08 1.3 0.74 0.514	18 1 0.005 2.5 0.65 0.672	0.02 7.29 1.34 1.301	119 3 0.005 8 1.40 1.796	103 1 0.005 10 1.49 1.872	0.093 8.43 2.68 2.434	7 0.4 3.19 1.73 1.079	3 0.568 6.032 2.43 3.118	3 0.67 4.525 2.85 1.975	3 4.238 12.239 8.19 4.001	31 1 0.02 6 0.78 1.11
Maximum Mean Standard deviation CV	10 0.005 30 2.70 4.081 1.513	1260 6 0.005 25 2.10 3.191 1.518	423 5 0.005 14 1.75 2.298 1.311	157 2 0.005 15 2.18 2.86 1.314	0.31 11.09 2.56 3.159 1.233	0.088 7.31 2.19 2.698 1.234	0.005 18.3 1.74 2.488 1.434	273 1 0.005 8.5 1.26 1.393 1.106	0.08 1.3 0.74 0.514 0.699	18 1 0.005 2.5 0.65 0.672 1.043	0.02 7.29 1.34 1.301 0.97	119 3 0.005 8 1.40 1.796 1.28	103 1 0.005 10 1.49 1.872 1.257	0.093 8.43 2.68 2.434 0.909	7 0.4 3.19 1.73 1.079 0.625	3 0.568 6.032 2.43 3.118 1.282	3 0.67 4.525 2.85 1.975 0.694	3 4.238 12.239 8.19 4.001 0.488	31 1 0.02 6 0.78 1.11 1.418
Maximum Mean Standard deviation CV Variance	10 0.005 30 2.70 4.081 1.513 16.653	1260 6 0.005 25 2.10 3.191 1.518 10.181	423 5 0.005 14 1.75 2.298 1.311 5.28	157 2 0.005 15 2.18 2.86 1.314 8.181	14 0.31 11.09 2.56 3.159 1.233 9.98	0.088 7.31 2.19 2.698 1.234 7.277	0.005 18.3 1.74 2.488 1.434 6.191	273 1 0.005 8.5 1.26 1.393 1.106 1.941	0.08 1.3 0.74 0.514 0.699 0.264	18 1 0.005 2.5 0.65 0.672 1.043 0.452	0.02 7.29 1.34 1.301 0.97 1.693	119 3 0.005 8 1.40 1.796 1.28 3.225	103 1 0.005 10 1.49 1.872 1.257 3.505	19 0.093 8.43 2.68 2.434 0.909 5.924	7 0.4 3.19 1.73 1.079 0.625 1.165	3 0.568 6.032 2.43 3.118 1.282 9.724	3 0.67 4.525 2.85 1.975 0.694 3.901	3 4.238 12.239 8.19 4.001 0.488 16.01	31 1 0.02 6 0.78 1.11 1.418 1.233
Maximum Mean Standard deviation CV Variance Skewness Log samples	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068	0.005 18.3 1.74 2.488 1.434 6.191 3.46 182	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281	0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124	0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281	0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934	0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39	0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112	0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24	0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.08	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.092	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 2.228 0.946 0.898 0.3 0.524 0.599	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103 0.26	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22
Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4 0.598	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.648	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.09	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.204 0.286	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577 0.646	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103 0.26 0.509	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868 1.144	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 5.011	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.225
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.08	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.092	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 2.228 0.946 0.898 0.3 0.524 0.599	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577 0.646 0.825	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103 0.26	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.235 0.284
Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4 0.598	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.648	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.09	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.204 0.286	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577 0.646	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103 0.26 0.509	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.571 0.868 1.144	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 0.67	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 5.011	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.225
Maximum Mean Standard deviation CV Variance Skewness Log samples Log variance Geometric mean 10% 20% 30% 40% 50%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693 0.957	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6 0.76	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 1.57 0.02 2.059 1.02 0.191 0.4 0.598 0.768	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.648 0.685	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 1.29 0.068 2.124 0.934 0.112 0.256 0.328 0.346 0.77	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656 0.87	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.08 0.192 0.416 0.64	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.204 0.286 0.5	162 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577 0.646 0.825	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 0.383 2.258 0.682 0.103 0.26 0.509 0.582	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1 1.321	7 0.4 3.19 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868 1.144	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 0.67 1.205 2.007	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 5.011 6.17	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.23 0.235 0.284
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.957 1.3	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6 0.76 1.01	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92 1.249	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4 0.598 1.291 1.652	0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.685 0.685	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346 0.77 1.014	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.545 0.656 0.87 1.058	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.08 0.192 0.416 0.64 0.752	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.204 0.286 0.5 0.546	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89 1.024	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.206 0.458 0.577 0.646 0.825 0.924	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 2.258 0.682 0.103 0.26 0.509 0.582 0.795	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 1.293 1.666 0.279 0.788 1.1 1.321 1.485 2.006	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868 1.144 1.257	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568 0.568 0.594	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 1.205 2.007 2.81	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 4.238 5.011 6.17 7.33	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.22 0.225 0.284 0.435
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693 0.957 1.3 1.74 2.6 3.85	1260 6 0.005 25 2.10 3.191 1.518 10.181 10.200 1.716 0.909 0.21 0.46 0.6 0.76 1.01 1.35 1.84	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92 1.249 1.637	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4 0.598 0.768 1.291 1.652 2.239 2.874	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.685 0.83 1.58 2.36 3.294	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346 0.77 1.014 2.032	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656 0.87 1.058 1.52 2.27	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715 1.022 1.441 2	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 1.568 0.497 0.08 0.08 0.192 0.416 0.692 0.864	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.231 3.025 0.292 0.005 0.092 0.204 0.286 0.598	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89 1.024 1.54	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 0.752 0.206 0.458 0.577 0.646 0.825 0.924 1.13 1.702	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 -0.383 2.258 0.682 0.103 0.26 0.509 0.582 0.795 0.918	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1 1.321 1.485 2.006 3.093 4.261	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.571 0.868 1.144 1.257 1.46 2.053	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568 0.568 0.594 0.632 0.671 1.23 2.831	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 0.67 1.205 2.007 2.81 3.463	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 5.011 6.17 7.3 8.516 9.757	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.235 0.284 0.49 0.834
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693 0.957 1.3 1.74 2.6 3.85 6.374	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6 0.76 1.01 1.35 1.81	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92 1.249 1.637 4.44 4.14	157 2 0.005 15 2.18 2.86 1.314 1.654 157 0.02 2.059 1.02 0.191 0.4 0.598 1.291 1.652 2.239 2.874 4.709	14 0.31 11.09 2.56 3.159 1.233 9.1918 14 0.329 1.281 1.39 0.318 0.498 0.648 0.685 0.83 1.58 2.36 3.294 6.302	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346 0.77 1.014 2.032 3.82 6.616	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656 0.87 1.058 1.52 2.27	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715 1.022 1.441 2.3.185	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 0.497 0.08 0.192 0.416 0.64 0.752 0.864 0.996 1.148	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.23 0.292 0.005 0.992 0.204 0.286 0.5 0.546 0.593 0.939 1.386	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89 1.024 1.54 1.86 2.818	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.285 0.752 0.206 0.458 0.577 0.646 0.825 0.924 1.13 1.702 2.837	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 0.383 2.258 0.682 0.103 0.26 0.509 0.582 0.795 0.918 1.476 2.232 4.012	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1 1.485 2.006 3.093 4.261 6.233	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868 1.144 1.257 1.46 2.053 2.665 3.069	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568 0.568 0.594 0.632 0.671 1.23 2.831 4.431	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 1.205 2.007 2.81 3.463 3.817 4.171	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 4.238 5.011 6.17 7.33 8.516 9.757	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 0.433 0.2 0.22 0.22 0.225 0.284 0.435 0.49 0.834 1.078
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 20% 30% 40% 50% 60% 70% 80% 90%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693 0.957 1.3 1.74 2.6 3.85	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.46 0.6 0.76 1.01 1.35 1.84 2.81	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92 1.249 1.637 2.524 4.14 6.191	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.4 0.598 0.768 1.291 1.652 2.239 2.874 4.709 8.43	14 0.31 11.09 2.56 3.159 1.233 9.98 1.918 14 0.329 1.281 1.39 0.318 0.498 0.648 0.685 0.83 1.58 2.36 3.294 6.302 8.332	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 0.934 0.934 0.256 0.328 0.346 0.77 1.014 2.032 3.82 6.616 7.142	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.542 0.656 0.87 1.058 1.52 2.27 3.982 6.223	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715 1.022 1.441 2 3.185 4.16	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 0.97 0.08 0.08 0.192 0.416 0.64 0.752 0.864 0.996 1.148 1.224	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 3.025 0.292 0.292 0.092 0.204 0.286 0.598 0.938 0.598 0.938 1.386 1.	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89 1.024 1.54 1.86 2.818 4.24	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.286 1.605 0.752 0.256 0.458 0.577 0.646 0.825 0.924 1.13 1.702 2.837 6.248	103 1 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 2.258 0.682 0.103 0.26 0.509 0.582 0.795 0.918 1.476 2.232 4.012 4.484	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 1.293 1.666 0.788 1.1 1.321 1.485 2.006 3.093 4.261 6.233 7.415	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.571 0.868 1.144 1.257 1.46 2.053 2.665 3.069 3.129	3 0.568 6.032 2.43 3.118 1.282 9.724 1.779 3 0.29 1.714 1.336 0.568 0.568 0.568 0.568 0.568 0.568	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 1.205 2.81 3.463 3.817 4.171	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 5.011 6.17 7.33 8.516 9.757 10.998 11.618	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 1.377 0.433 0.2 0.22 0.225 0.284 0.495 0.894 1.049 0.894 1.049 0.894 0.894 0.994 0.
Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	10 0.005 30 2.70 4.081 1.513 16.653 3.84 1360 0.209 1.92 1.232 0.24 0.53 0.693 0.957 1.3 1.74 2.6 3.85 6.374	1260 6 0.005 25 2.10 3.191 1.518 10.181 3.789 1260 -0.001 1.716 0.999 0.21 0.46 0.6 0.76 1.01 1.35 1.81	423 5 0.005 14 1.75 2.298 1.311 5.28 3.038 423 -0.094 1.608 0.911 0.236 0.41 0.561 0.722 0.92 1.249 1.637 4.44 4.14	157 2 0.005 15 2.18 2.86 1.314 8.181 2.684 157 0.02 2.059 1.02 0.191 0.4 0.598 0.768 1.291 1.652 2.239 2.874	14 0.31 11.09 2.56 3.159 1.233 9.1918 14 0.329 1.281 1.39 0.318 0.498 0.648 0.685 0.83 1.58 2.36 3.294 6.302	12 0.088 7.31 2.19 2.698 1.234 7.277 1.266 12 -0.068 2.124 0.934 0.112 0.256 0.328 0.346 0.77 1.014 2.032 3.82 6.616	182 0.005 18.3 1.74 2.488 1.434 6.191 3.46 182 -0.131 1.548 0.877 0.23 0.374 0.542 0.656 0.87 1.058 1.52 2.27	273 1 0.005 8.5 1.26 1.393 1.106 1.941 1.959 273 -0.435 1.79 0.647 0.102 0.24 0.417 0.59 0.715 1.022 1.441 2.3.185	4 0.08 1.3 0.74 0.514 0.699 0.264 -0.468 4 -0.698 0.497 0.08 0.192 0.416 0.64 0.752 0.864 0.996 1.148	18 1 0.005 2.5 0.65 0.672 1.043 0.452 1.62 18 -1.23 0.292 0.005 0.992 0.204 0.286 0.5 0.546 0.593 0.939 1.386	162 0.02 7.29 1.34 1.301 0.97 1.693 2.228 162 -0.108 0.946 0.898 0.3 0.524 0.599 0.744 0.89 1.024 1.54 1.86 2.818	119 3 0.005 8 1.40 1.796 1.28 3.225 2.553 119 -0.285 0.752 0.206 0.458 0.577 0.646 0.825 0.924 1.13 1.702 2.837	103 1 0.005 10 1.49 1.872 1.257 3.505 2.398 103 0.383 2.258 0.682 0.103 0.26 0.509 0.582 0.795 0.918 1.476 2.232 4.012	19 0.093 8.43 2.68 2.434 0.909 5.924 1.204 19 0.511 1.293 1.666 0.279 0.788 1.1 1.485 2.006 3.093 4.261 6.233	7 0.4 3.19 1.73 1.079 0.625 1.165 0.386 7 0.339 0.553 1.404 0.4 0.571 0.868 1.144 1.257 1.46 2.053 2.665 3.069	3 0.568 6.032 2.43 3.118 1.282 9.724 1.729 3 0.29 1.714 1.336 0.568 0.568 0.568 0.594 0.632 0.671 1.23 2.831 4.431	3 0.67 4.525 2.85 1.975 0.694 3.901 -1.063 3 0.772 1.054 2.164 0.67 0.67 1.205 2.007 2.81 3.463 3.817 4.171	3 4.238 12.239 8.19 4.001 0.488 16.01 0.102 3 2.014 0.286 7.49 4.238 4.238 4.238 4.238 5.011 6.17 7.33 8.516 9.757	31 1 0.02 6 0.78 1.11 1.418 1.233 3.79 31 -0.837 0.433 0.2 0.22 0.22 0.225 0.284 0.435 0.49 0.834 1.078

Table 14-207 Statistics and top-cuts for Kurara domains.

1m Comps 50% Resid Tol		Kı	ırara Hang	ing Wall M	ineralisatio	on			Kurar	a Foot Wa	l Mineralis	ation	
Domain	3020	3021	3022	3023	3024	3025	3026	3062	3063	3064	3065	3066	3067
Decluster Grid	-	-	-	-	-	-	-	-	-	-	-	-	-
Samples	5	3	7	80	117	53	13	220	79	607	132	124	47
Minimum	0.55	0.29	0.23	0.01	0.005	0.01	0.13	0.005	0.05	0.01	0.03	0.005	0.02
Maximum	3.96	1.3	1.96	6.4	10.8	9.96	8.07	32.11	17.8	75.3	8.69	33.3	4.39
Mean	1.70	0.87	0.92	0.97	1.08	1.58	2.11	1.67	1.20	2.04	1.34	3.17	1.21
Standard deviation	1.367	0.523	0.546	0.954	1.628	1.612	2.484	2.992	2.106	4.805	1.503	5.168	1.061
CV	0.806	0.599	0.596	0.985	1.51	1.02	1.178	1.793	1.753	2.36	1.122	1.633	0.875
Variance	1.869	0.273	0.298	0.911	2.652	2.597	6.171	8.951	4.434	23.091	2.258	26.706	1.126
Skewness	1.48	-1.227	1.078	3.166	3.631	3.006	1.508	6.601	6.569	8.451	2.393	3.622	1.484
Log samples	5	3	7	80	117	53	13	220	79	607	132	124	47
Log mean	0.279	-0.315	-0.258	-0.499	-0.884	-0.051	0.012	-0.159	-0.364	-0.246	-0.2	0.364	-0.203
Log variance	0.624	0.652 0.73	0.449	1.419	2.688	1.534	1.855	1.499	1.045	2.015	1.065	1.789	1.01
Geometric mean 10%	1.321 0.55	0.73	0.773	0.607 0.14	0.413	0.95 0.186	1.012 0.136	0.853 0.17	0.695 0.16	0.782	0.819 0.222	1.439 0.354	0.816 0.258
20%	0.55	0.29	0.25	0.14	0.03	0.186	0.136	0.17	0.16	0.13	0.222	0.608	0.238
30%	0.62	0.29	0.546	0.52	0.221	0.676	0.138	0.6	0.554	0.481	0.55	0.892	0.52
40%	0.69	0.438	0.658	0.62	0.406	0.070	0.642	0.69	0.596	0.481	0.608	1.146	0.672
50%	1.115	0.66	0.83	0.74	0.63	1.13	0.995	0.88	0.735	0.8	0.79	1.38	0.84
60%	1.54	0.882	0.972	0.89	0.762	1.47	1.316	1.15	0.884	1.102	0.956	1.72	1.114
70%	1.64	1.057	0.979	1.14	0.949	1.686	1.865	1.47	1.016	1.59	1.318	2.594	1.348
80%	1.74	1.138	1.022	1.41	1.452	2.26	3.426	1.85	1.372	2.34	1.792	3.484	1.738
90%	2.85	1.219	1.323	1.8	2.606	3.192	5.247	3.37	2.46	4.186	3.406	7.532	2.926
95%	3.405	1.26	1.642	2.38	3.838	3.882	6.335	4.95	3.076	6.925	4.434	11.77	3.395
98%	3.683	1.28	1.801	2.58	4.922	4.448	7.202	7.22	4.038	10.492	5.436	21.995	4.001
99%	3.849	1.292	1.896	4.936	8.951	7.13	7.723	15.99	7.791	25.997	7.023	26.268	4.263
Top Cut	-	-	-	3.50	8.00	5.50	-	12.50	8.00	30.00	-	17.50	-
No Values Cut	0	0	0	2	2	1	0	3	1	4	0	4	0
% Data		0.0%	0.0%	2.5%	1.7%	1.9%		1.4%	1.3%	0.7%		3.2%	
		0.070	0.070	2.570	1.770	1.570		1.4/0	1.3/0	0.770		0.270	
% Metal		0.0%	0.0%	-5.1%	-3.6%	-5.3%		-8.4%	-10.4%	-4.5%		-9.3%	
% Metal		0.0%	0.0%	-5.1%	-3.6%	-5.3%							
Au_cut		0.0% Kı	0.0% urara Hang	-5.1% ing Wall M	-3.6% ineralisatio	-5.3% on		-8.4%	-10.4% Kurar	-4.5% a Foot Wa	l Mineralis	-9.3% sation	
Au_cut Domain	3020	0.0%	0.0%	-5.1%	-3.6%	-5.3%	3026		-10.4%	-4.5%	l Mineralis	-9.3%	3067
Au_cut	3020	0.0% Kı	0.0% urara Hang	-5.1% ing Wall M	-3.6% ineralisatio	-5.3% on	3026	-8.4%	-10.4% Kurar	-4.5% a Foot Wa		-9.3% sation	3067
Au_cut Domain Decluster Grid		0.0% Ki 3021	0.0% urara Hang 3022	-5.1% ing Wall M 3023	-3.6% ineralisatio	-5.3% on 3025		-8.4% 3062	-10.4% Kurar 3063	-4.5% a Foot Wal 3064	3065	-9.3% sation 3066	
Au_cut Domain Decluster Grid	020 AU_PP1	0.0% Ki 3021 021 AU_PPI	0.0% urara Hang 3022	-5.1% ing Wall M 3023	-3.6% ineralisatio 3024 024 AU_PPI	-5.3% on 3025	026 AU_PPI	-8.4% 3062 062 AU_PPN	-10.4% Kurar 3063	-4.5% a Foot Wa 3064	3065 065 AU_PPN	-9.3% sation 3066	067 AU_PP
Au_cut Domain Decluster Grid Samples		0.0% Ki 3021	0.0% urara Hang 3022	-5.1% ing Wall M 3023	-3.6% ineralisatio 3024 024 AU_PPF 117	-5.3% on 3025 025 AU_PPI 53		-8.4% 3062 062 AU_PPN 220	-10.4% Kurar 3063 063 AU_PPP 79	-4.5% a Foot Wa 3064 064 AU_PPI 607	3065	-9.3% sation 3066 066 AU_PPP 124	
Au_cut Domain Decluster Grid Samples Top Cut Count	020 AU_PPI 5	0.0% Ki 3021 021 AU_PPI 3	0.0% urara Hang 3022 022 AU_PPI 7	-5.1% ing Wall M 3023 1023 AU_PPP 80 2	-3.6% ineralisatio 3024 024 AU_PPP 117 2	-5.3% on 3025 025 AU_PPI 53 1	026 AU_PPI 13	-8.4% 3062 062 AU_PPN 220 3	-10.4% Kurar 3063 063 AU_PPP 79 1	-4.5% a Foot Wal 3064 064 AU_PPI 607 4	3065 065 AU_PPN 132	-9.3% sation 3066 066 AU_PPP 124 4	067 AU_PP 47
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum	020 AU_PPI 5 0.55	0.0% Ki 3021 021 AU_PPI 3 0.29	0.0% urara Hang 3022 022 AU_PPI 7 0.23	-5.1% ing Wall M 3023 1023 AU_PPI 80 2 0.01	-3.6% ineralisatio 3024 024 AU_PPI 117 2 0.005	-5.3% on 3025 025 AU_PPI 53 1 0.01	026 AU_PPI 13 0.13	-8.4% 3062 062 AU_PPN 220 3 0.005	-10.4% Kurar 3063 063 AU_PPP 79 1 0.05	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01	3065 065 AU_PPN 132 0.03	-9.3% sation 3066 066 AU_PPP 124 4 0.005	067 AU_PP 47 0.02
Au_cut Domain Decluster Grid Samples Top Cut Count	020 AU_PPI 5	0.0% Ki 3021 021 AU_PPI 3	0.0% urara Hang 3022 022 AU_PPI 7	-5.1% ing Wall M 3023 1023 AU_PPP 80 2	-3.6% ineralisatio 3024 024 AU_PPP 117 2	-5.3% on 3025 025 AU_PPI 53 1	026 AU_PPI 13	-8.4% 3062 062 AU_PPN 220 3	-10.4% Kurar 3063 063 AU_PPP 79 1	-4.5% a Foot Wal 3064 064 AU_PPI 607 4	3065 065 AU_PPN 132	-9.3% sation 3066 066 AU_PPP 124 4	067 AU_PP 47
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum	020 AU_PPI 5 0.55 3.96	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96	-5.1% ing Wall M 3023 1023 AU_PPI 80 2 0.01 3.5	-3.6% ineralisatio 3024 024 AU_PPI 117 2 0.005 8	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5	026 AU_PPI 13 0.13 8.07	-8.4% 3062 062 AU_PPP 220 3 0.005 12.5	-10.4% Kurar 3063 063 AU_PPP 79 1 0.05 8	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30	3065 065 AU_PPP 132 0.03 8.69	-9.3% ation 3066 066 AU_PPP 124 4 0.005 17.5	067 AU_PP 47 0.02 4.39
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean	020 AU_PPI 5 0.55 3.96 1.70	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92	-5.1% ing Wall M 3023 023 AU_PPP 80 2 0.01 3.5 0.92	-3.6% ineralisati 3024 024 AU_PPI 117 2 0.005 8 1.04	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50	026 AU_PPI 13 0.13 8.07 2.11	3062 3062 062 AU_PPI 220 3 0.005 12.5 1.53	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95	3065 065 AU_PPN 132 0.03 8.69 1.34	-9.3% ation 3066 066 AU_PPI 124 4 0.005 17.5 2.87	067 AU_PP 47 0.02 4.39 1.21
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation	020 AU_PPI 5 0.55 3.96 1.70 1.367	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239	026 AU_PPI 13 0.13 8.07 2.11 2.484	-8.4% 3062 0062 AU_PPI 220 3 0.005 12.5 1.53 1.959	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806	3065 065 AU_PPN 132 0.03 8.69 1.34 1.503	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849	067 AU_PP 47 0.02 4.39 1.21 1.061
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV	020 AU_PPI 5 0.55 3.96 1.70 1.367 0.806	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829	026 AU_PPI 13 0.13 8.07 2.11 2.484 1.178	-8.4% 3062 0062 AU_PPI 220 3 0.005 12.5 1.53 1.959 1.282	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957	3065 065 AU_PPN 132 0.03 8.69 1.34 1.503 1.122	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance	020 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535	026 AU_PPI 13 0.13 8.07 2.11 2.484 1.178 6.171	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.959 1.282 3.838	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487	065 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness	020 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276	026 AU_PPI 13 0.13 8.07 2.11 2.484 1.178 6.171 1.508	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06	065 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples	020 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117	025 AU_PPI 53 1 0.01 5.5 1.239 0.829 1.535 1.276 53	026 AU_PPI 13 0.13 8.07 2.11 2.484 1.178 6.171 1.508	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean	020 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.99 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601	-3.6% ineralisatio 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411	-5.3% on 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939	0.13 0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012	-8.4% 3062 0062 AU_PPI 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819	-9.3% ation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10%	0.20 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29	0.0% urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.992 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14	-3.6% ineralisatio 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03	-5.3% OOD 3025 025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136	-8.4% 3062 0062 AU_PPIP 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20%	0.20 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.55	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 -1.227 3 -0.315 0.652 0.73 0.29 0.29	0.0% Jurara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.928 1.078 7 -0.258 0.449 0.773 0.23 0.35	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198	-8.4% 3062 062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4	-9.3% sation 3066 0066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30%	0.20 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.55 0.62	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.597 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.29	0.0% Jurara Hang 3022 022 AU_PPI 7 0.23 1.96 0.992 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.0778 117 -0.888 2.661 0.411 0.03 0.11 0.221	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347	-8.4% 3062 062 AU_PPR 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6	-10.4% Kurar 3063 063 AU_PPR 79 1 0.05 8 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55	-9.3% sation 3066 066 AU_PPI 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40%	0.20 AU_PPI 5 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.55 0.62 0.69	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.593 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.29 0.438	0.0% Jurara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.598 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912	026 AU_PPI 13 0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642	-8.4% 3062 062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69	-10.4% Kurar 3063 063 AU_PPR 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6	3065 0065 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608	-9.3% sation 3066 0066 AU_PPP 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50%	0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.593 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.29 0.438 0.66	0.0% Jurara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.598 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13	0.13 0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995	-8.4% 3062 062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8	3065 005 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79	-9.3% sation 3066 0066 AU_PPN 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60%	0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.529 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.29 0.438 0.66 0.882	0.0% Jurara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47	0.13 0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316	-8.4% 3062 062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102	3065 005 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79 0.956	-9.3% sation 3066 0066 AU_PPN 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40% 50% 60% 70%	0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54 1.64	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.29 0.438 0.66 0.882 1.057	0.0% Jarara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972 0.979	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89 1.14	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.88 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762 0.949	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47 1.686	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316 1.865	-8.4% 3062 062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15 1.47	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884 1.016	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102 1.59	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79 0.956 1.318	-9.3% ation 3066 0066 AU_PPN 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72 2.594	067 AU_PP 47 0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114 1.348
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	0.55 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54 1.64 1.74	0.0% KI 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.438 0.66 0.882 1.057 1.138	0.0% Januara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972 0.979 1.022	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89 1.14 1.41	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762 0.949 1.452	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47 1.686 2.26	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316 1.865 3.426	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15 1.47 1.85	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884 1.016 1.372	-4.5% a Foot Wal 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102 1.59 2.34	0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79 0.956 1.318 1.792	-9.3% ation 3066 0066 AU_PPN 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72 2.594 3.484	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114 1.348 1.738
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80% 90%	0.55 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54 1.64 1.74 2.85	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.438 0.66 0.882 1.057 1.138 1.219	0.0% Urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972 0.979 1.022 1.323	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89 1.14 1.8	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762 0.949 1.452 2.606	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47 1.686 2.26 3.192	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316 1.865 3.426 5.247	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15 1.47 1.85 3.37	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884 1.016 1.372 2.46	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102 1.59 2.34 4.186	3065 005 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79 0.956 1.318 1.792 3.406	-9.3% sation 3066 0066 AU_PPP 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72 2.594 3.484 7.532	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114 1.348 1.738 2.926
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%	0.55 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54 1.64 1.74 2.85 3.405	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.438 0.66 0.882 1.057 1.138 1.219 1.26	0.0% Urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972 0.979 1.022 1.323 1.642	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89 1.14 1.8 2.38	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762 0.949 1.452 2.606 3.838	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47 1.686 2.26 3.192 3.882	0.26 AU_PPI 13 0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316 1.865 3.426 5.247 6.335	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15 1.47 1.85 3.37 4.95	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884 1.016 1.372 2.46 3.076	-4.5% a Foot Wa 3064 0064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102 1.59 2.34 4.186 6.925	3065 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.955 0.608 0.79 0.956 1.318 1.792 3.406 4.434	-9.3% ation 3066 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72 2.594 3.484 7.532 11.77	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114 1.348 1.738 2.926 3.395
Au_cut Domain Decluster Grid Samples Top Cut Count Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80% 90%	0.55 0.55 3.96 1.70 1.367 0.806 1.869 1.48 5 0.279 0.624 1.321 0.55 0.62 0.69 1.115 1.54 1.64 1.74 2.85	0.0% Ki 3021 021 AU_PPI 3 0.29 1.3 0.87 0.523 0.599 0.273 -1.227 3 -0.315 0.652 0.73 0.29 0.29 0.438 0.66 0.882 1.057 1.138 1.219	0.0% Urara Hang 3022 022 AU_PPI 7 0.23 1.96 0.92 0.546 0.596 0.298 1.078 7 -0.258 0.449 0.773 0.23 0.35 0.546 0.658 0.83 0.972 0.979 1.022 1.323	-5.1% ing Wall M 3023 023 AU_PPI 80 2 0.01 3.5 0.92 0.73 0.794 0.533 1.461 80 -0.51 1.375 0.601 0.14 0.28 0.52 0.62 0.74 0.89 1.14 1.8	-3.6% ineralisatic 3024 024 AU_PPI 117 2 0.005 8 1.04 1.418 1.364 2.01 2.778 117 -0.888 2.661 0.411 0.03 0.11 0.221 0.406 0.63 0.762 0.949 1.452 2.606	025 AU_PPI 53 1 0.01 5.5 1.50 1.239 0.829 1.535 1.276 53 -0.063 1.487 0.939 0.186 0.548 0.676 0.912 1.13 1.47 1.686 2.26 3.192	0.13 8.07 2.11 2.484 1.178 6.171 1.508 13 0.012 1.855 1.012 0.136 0.198 0.347 0.642 0.995 1.316 1.865 3.426 5.247	-8.4% 3062 0062 AU_PPN 220 3 0.005 12.5 1.53 1.959 1.282 3.838 3.323 220 -0.167 1.453 0.847 0.17 0.44 0.6 0.69 0.88 1.15 1.47 1.85 3.37	-10.4% Kurar 3063 063 AU_PPI 79 1 0.05 8 1.08 1.216 1.129 1.479 3.268 79 -0.374 0.987 0.688 0.16 0.298 0.554 0.596 0.735 0.884 1.016 1.372 2.46	-4.5% a Foot Wa 3064 064 AU_PPI 607 4 0.01 30 1.95 3.806 1.957 14.487 5.06 607 -0.248 1.999 0.78 0.13 0.28 0.481 0.6 0.8 1.102 1.59 2.34 4.186	3065 005 AU_PPN 132 0.03 8.69 1.34 1.503 1.122 2.258 2.393 132 -0.2 1.065 0.819 0.222 0.4 0.55 0.608 0.79 0.956 1.318 1.792 3.406	-9.3% sation 3066 0066 AU_PPP 124 4 0.005 17.5 2.87 3.849 1.341 14.817 2.458 124 0.351 1.716 1.42 0.354 0.608 0.892 1.146 1.38 1.72 2.594 3.484 7.532	0.02 4.39 1.21 1.061 0.875 1.126 1.484 47 -0.203 1.01 0.816 0.258 0.36 0.52 0.672 0.84 1.114 1.348 1.738 2.926

14.6.1.4 Density

Density values were allocated based on historical density test-work. Density values are allocated by weathering for mineralised and unmineralised rock. No discrimination was made between lithology types in the model due to the limited historic density test-work, except for Phoenix for which density values have been estimated based on test-work on similar lithology in the wider Reedy area.

Table 14-208 Boomerang – Kurara model density values.

Rock Type	Oxide	Transitional	Fresh
Mineralised – Boomerang, Kurara, Washdown, Gidgee laterite.	1.80	2.20	2.85
Unmineralised – Boomerang, Kurara, Washdown, Gidgee laterite.	1.90	2.40	2.80
Mineralised – Phoenix.	1.80	2.20	2.70
Unmineralised – Phoenix.	1.80	2.20	2.70
Backfill.	1.30		
Air / Void.	0.00		

14.6.1.5 Variography

A geostatistical analysis of down-hole composited Boomerang - Kurara data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are backtransformed from the Gaussian distribution using Hermite polynomials.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

For the current reportable resource model, the variogram models and estimation parameters from the 2016 model were reviewed with the new data and found to be robust. But for the Gidgee Laterite domains, the mineralisation domains were further split into high-grade and low-grade sub-domains to control grade smearing from the grade-control drilled area to the wider spaced, lower grade domain strike extensions. A comparison estimate was also completed for the Boomerang mineralisation domains without using underground face samples, with new variogram parameters determined based on drillhole data only. A summary of the parameters is tabled below.

Table 14-209 Boomerang - Kurara model estimation parameters - part 1.

Simile	uk bomme	dham	deliberation of	mark tens			ti sela dama		IS No denier		(6 Feet from)	Allente				
	23.000	man	1982	44444 7	1201	3000	-	10042	Separate Sep	20000	2001 2001	2004	3000	2011	Service .	2054
Sensir Calc				10011			30002		300.1			3004			3033	
	7				7	Y	7	Y		7	7	T			T	*
PSYMPHI	- 1	- 7	- 1	- 2	- 2		- 7	- 2		- 3			- 3		- 1	-
- 4	6.50	1.93	6.50	0.30	0.90			0.49	548							0.80
- 41	1.11	1.5	0.00	2.81	0.84			1.30	038							0.01
16	82.00	12.00	11.00	12.00	4.00			12,00	12,00							6.0
11	0.18	4.00	0.18				0.00	-616	-0.04	4.36	10.00	- 12.25	110	8.22	2.00	0.5
10	177.00	177.00	37790	10.00	\$100	65.00	45.00	85.00	45.00	211.00	36.00	30.00	19.00	10.00		15.00
	33	0.6			10.00				917	1.0	64	- 10	100	3.3		
1.146	340		2.944	5/5		11.100	7.840	1,6/6	1,436	1.11	1,034	1.04	1 1996	1 1542	1 89	1. 99
1016.0%	0.90	0.80	0.96	0.86	0.00	1/2	1.00	100	3.00	1.00	1.00	100	1.00	1.00	1,00	0.8
L Major Harr Major	14	14	1.4	14	-		-	- 1		1	1	1		1	1	
4 Major (Wiles)	14.3	1.2	1.3	1.3	-		- 4	- 4		1. 1.7	1.7	1	1	1	1	
S Major - Intel Major	2.0	2.6	1.8	21	1.1	2.7	1.7	1.17	- 1				1	- 1	- 1	
I Main West	14	- 10	ta					11	- 1	- 1		\vdash		-		_
EMain Int Mon		-	_		- 11-	_		_		-		_				
1 Main West																
	11.	(2)	- 22				-	100		7		100				
10045.3.018	1.0		00		180				32.8						- 9	
SURFIC RUNGE	- 0	- 1	0						- 48		-4		100	- 8		
DESCRIP.	- 0	- 6	- 0	- 0	- 4	603	60.5	60.5	60.5	347	317	- 40	-80	-80	- 40	- 4
- Name					-											
Birthol	TUPSOD	11/F100 1	SLF500	EURIOD	BLIP 5010	64/500	BURNOO	5U2500	SLPSOD	ELEPSOID	FLIPPOR	BUFFEE	BUFFEE	BURSON	FL/FICO	ELIPSOD
DESCRIPTION DOORS.						26,25,30				10, 30, 10					26,30,10	
Brooken Boot Star 3		10.00	10		Marie Co.				20					X		
Denien San Sert	10	- 2	10			- 2	- 2	20	- 25		20			×		- 0
Deserto Reposed	- 1				-	- 6			10			20	10			- 0
	-	- 1	- 1	- 11	- 4			- "	- 1					100		
(Inches)	-	- 1	-1						_							-
Distant Distant	-	- 1		- 4			-	-	_	1 1		-	-	- 1		_
Delivers.	-			- 1		-	_	_				-	-	-	_	
THE DOMESTITUTE OF	4	6 J	N 1	N .	N	N.	No.	4	4	4.	14	N	9	9.	H .	H.
- Waterbay																
MAINTAINMAIN																
sine began by world.	N .	v .		N	W	N	8	N .	N	lu 1	N	15	N	la l	h I	
MALIERANE	.00		00						10			- 51			- 52	- 20
Max turner per more	- 5		1.5			-										
1000																
1,860.0	7	Y		F	,			,	7	Y			Y .	Υ		-
80	- 10		- 10													
Mia:	15	- 1	. 1		- 19				- 30							
May Source:	40	4	- 4	- 4	- 1			_					-	-	-	35
Mondan	1.5	1.5	1.5					- 2		. 1		1	. 1	1		
Rainfro	1.5	1.6	1.6	1.6	- 15	- 2	- 1	- 1		- 1	- 1	1	- 1	1	- 1	-
Sut Fair)	V	7				-		v ·	Ÿ	v	r .	le .	ý ·	V	R.	
Parties -	1.79	1.20	5.00	8.2		1.90	1.76	1.76	1.79	1.76			-			-
Security and	1.5	1.9	1.5	1.5	12			1.5	1.7		-	1	-	- 7	-	-
Page/Most		1.50												-	- 1	
Min	-12	- 10	-15	- 1				-	-	- 1	-		-	- 1		-
Mar	- 1	- 1	21		- 4	- 1			80							- 1
1147/11		S 7										3 3		3 77.75		
Appropriate Common Comm	r	4			-	-			4		14	5	4	14	1	-
of the second distribution of the second distrib	-															
Maritim.	1.5					1.5						_	-		_	_
them/Mose	1.5					-						-				
Section 1994	- 23									-		_				

Table 14-210 Boomerang - Kurara model estimation parameters - part 2.

Comments						UG Face domain e	All data											
			ngingwall								Boomerang							
Domain Code	3022	3023	3024	3025	20400	20401	20410	20411	20412	2042	2043	2046	2047	2049	2050	2051	2052	2058
Estimate	Υ	Υ	Υ	Y	Υ	Y	Y	Y	Υ	Y	Y	Y	Y	Υ	Y	Υ	Υ	Υ
# Structures	1	. 2	2	2	. 2	2	2	2	. 2	2	2	2	2	1	2	2	2	2
CO	0.63	0.59	0.56			0.54	0.52		0.52	0.54	0.56	0.54	0.79		0.57	0.37	0.51	0.56
C1	0.37		0.15			0.25	0.31	0.31		0.20	0.28	0.20	0.37		0.28	0.20	0.11	0.11
a1	28.00		21.00			56.00	30.00	30.00		47.00	49.00	5.00	6.00		17.00	17.00	8.00	8.00
C2	0.00	0.20	0.29		0.20	0.20	0.17	0.17	0.17	0.26	0.16	0.26	0.14		0.15	0.43	0.38	0.34
a2	0.00	40.00	173.00	56.00	362.00	362.00	223.00	223.00	223.00	259.00	211.00	53.00	51.00		120.00	75.00	41.00	41.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.30	1.00	1.00	1.00	1.00	1.01
1. Major : Semi Major	1	1	1	1	3.7	3.7	2	l 2	2	1.3	1	1	1	1	1.7	4.25	2	2
1. Major : Minor	1	11	21	1 -	18.7	18.7	10	10	10	15.7	8.2	1	1	1	8.5	8.5	Z	4
2. Major : Semi Major	1	1	1	1	1.7	1.7	2.8	2.8		1.2	1	1	1	1	2	1.6	1.7	1.7
2. Major : Minor	1	2	34.6	i 11	40.2	40.2	24.8	24.8	24.8	37	12	1	1	1	2	15	8.2	8.2
3. Major : Semi Major	*		34.0		40.2	40.2	24.0	24.0	24.0	31	12	•	-	1		- 13	0.2	0.2
3. Major : Minor																		
SURPAC STRIKE	0	270	18.3	18.7	321.7	321.7	340.2	340.2	340.2	312.5	360	0	0	0	10.7	8.3	286	286
SURPAC PLUNGE	90		24.2	18.1	-29.5	-29.5	-11.4	-11.4		-35.9	0	90	90		27	29.5	-44	-44
SURPAC DIP	-90		51			42.4	49			37.4	70	-90	-90	-90		42.4	26.7	26.7
					•													
Search																		
Method		ELLIPSOID							ELLIPSOID								OCTANT	OCTANT
Estimation Block Size (x,y,z)	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10	20, 20, 10
Estimation Block Size X	20		20		20	20	20	20		20	20	20	20	20	20	20	20	20
Estimation Block Size Y	20					20	20			20	20	20	20		20	20	20	20
Estimation Block Size Z	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Disc Point X	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Disc Point Y	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Disc Point Z	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Conda Describert Describer	l.	N		N	I.	N	N	I.	N				N	N	N			. 1
Grade Dependent Parameters Threshold Max	N	N	N	N	N	IN	N	N	N	N	N	N	IN	N	IN	N	N	N
Search Limitation																		
Search Ellitation																		
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2			D2		D2	D2	D2		D2	D2	D2	D2				D2	D2
Max Samps per Hole	5	5	5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	6				10	10	10	10	10	8	8	10	10		10	10	10	
Max	31					30	35			28	34		30		26		30	30
Max Search	250					100	100	100		47	150	75	75		100	75	75	50
Major/Semi	1	1	1	. 1	_	1	1	1	1	1	1	1	1	1	1.5	1.5	1.5	1.5
Major/Minor	1	1	1	. 1	1	1	1	1	. 1	1	1	1	1	1	1.5	1.5	1.5	1.5
D D2	lv	I. I	v	l _v	L.		v	lv.	lu I	v	v	v I	L.	l _v	v	, 1	v	, 1
Run Pass2	Y	Υ	Υ	1 2.22	2.25	7 2.25	7 2.25	2.00	7 2 25	Y 4 ===	Y .	4 57	1	T a		Y 1.67	Y 4.00	7
Factor Major/Somi	2	2.5	2.5	2.23	2.25	2.25	2.25	2.25	2.25	4.79	4	1.67	1.67	2	1.5	1.67	1.67	2.5 1.5
Major/Semi Major/Minor	1	1 2	2	2 2	1	1	1	1	1	1	1	1	1	1	1	1	1	
Major/Minor Min	6			2 2	1 1	4	1	1 1	1	4	1 0	1	6	1	4		6	
Max	30		30		30		35	35	35	28	34	30	30	30			30	
1100	30	1 30	30	1 20	1 30	30	33	1 33	1 33	20	34	30	30	30	20	31	30	30
Run Pass 3	N	N	N	N	N	N	N	N	Υ	N	N	N	N	N	N	N	N	N
Factor				1					4									
Major/Semi									1									
Major/Minor									1									
Min									4									
Max									35									
	. —	. —				. —						. —		. —	. —			

Table 14-211 Boomerang - Kurara model estimation parameters - part 3.

	Total Total Total Total Total								laf year		come come come come come				
Discours Corde	3061	3063	3068	306	3066	3067	4070	4071	4074	4675	5000	5081.	5002	5000	5004
britan	*		*	9.0	- Y	. *	- Y	¥		Y	Ψ	- Y	1	1	. W
Appropries				2		17.7				1		200	- 1	1	
:00	0.60	0.66	0.54	0.46		0.50	0.52	2.46	0.62	0.60	0.53	. 350	3.0	0.95	0.
12	0.24	0.21	0.34	0.05	0.20	0.25	0.47	0.50	0.23	0.32	0.21	0.32	0.40	0.65	0.
41	42.00	46.00	30.00	14.00	5.00	6.00	34-00	36.00		20.00	6.00	6.00	500.00	394.00	
.0	0.06	0.33	0.10	0.44	9.00	0.23	0.00	0.0	9.16	0.00	0.20	0.16	- 0.00	- 0.00	0.
- 14	65.00		82.00		37.00			39.00		10.00	32.00				
.0			-		. 41.00		3.30		-					20.100	-
al .		-0.0	1975		-	0.00	0.50	121			0.17	100	73.73	200	1
TEOM DIS.	100	1.00		1.00	1.00			10	0.09	100	1.00	1.00	1.00	124	L
T DOMESTIC	200	3.00	- 144	1.00	4/00	1 110	1,10	-548	7.29	140	4.0	1 100	1000	1.545	1
	_	3.3	_				1	_	1	_			-		
1.Mayor - Sent Mayor	1.				1	-	- 1	_			- 1	-			-
1. Major : Winer	- 61	5.5					-		1.7			- 1	. 30		-
Z.Major, feet Major	1.0				1	. 1	- 1	-	1		1 4			+	
EMigar History	6.1	1.4	1,1	11.75	. 1	111	1		1.1	- 1		1.2	1	- 1	1
J. Mayer Sect Missier										1					
S.Migar (Minor)		1		11			11,				1	11		11	
	100	e no		6 0 44						1 1				C	
50 PM 5 TRVE	- 17	18.3	90	385.4	- 0		- 3	- 1	38.4	. 0	- 0	230	324.7		1 2
Spiritacing	-24.7				- 90			- 3							
NAME OF	. 1				-80			-30							
AMPEL ST			_	20.0		-30			80.4	-90		-	1.704.1		
			_			_	_	_	_			_		_	-
Section							-								1
Michael		\$14F5010													
Didmart at Mack Stat Nau A	20, 20, 30	20, 20, 10	30, 30, 30	20, 20, 30	20,00	20, 20, 33	20, 20, 10	20,25,30	20,25,10	30, 10, 10	10, 91, 5	30,25,30	观观即	20, 20, 30	10, 10, 5
Setromer Back Size K		20	20	. 20	20	20	20	20	20	20	30	20	. 20	. 20	
* Estimator Rack Staff /		. 29	35	20	20	. 20	20	. 7		30	30		20		
Sales proper Branch State S.	- 50				30					30				10	
Bis Paris E		- 4			- 4		- 4		- 4						_
					- 4		-		4			_			
Banforery	_		_					_			- 4	1			-
We finded 1		4	- 4	- 3	34		- 4		4	4		4	- 4		-
			_	_					_	_	_	_	_		
in substitution of Parameters	N	N	N .	M :	4	W.	M	M.	N	4	V.	N:	34	N	N
Terrenment district														100	1.5
Search provinced:							21.		12			110		1/2	100
							7.								
ESS Specially treat	N:	N 00	N	DH	14	4	N	N	76	N	N	N .	H	14	34
New York Published	- 00	Do	20	02	00			. 00			- 00				4
Martines on Fare	1		- 0		- 1				1						
And better per rare			_			_		_	-	_	-				
			_	_								_	_	_	
field	T	Y	-	_	7	1	4	F	4	1	F	Y	-	-	-
Min						30	30							19	
Miles	21	30	32	26	20	132	30	3	30	30	- 23	26	. 30	30	
Monthcock	21	50	32	- 50	- 30	95		. 39		150	- 33		- 25	25	
Major/Sent	1.5	1.5	- 1				- 1		1			1.7	1.5	- 3	1
Majaribina	T						1	_	1.5						
	_	1 - 22				_		_		_	_		_		
- THE CO.			_					-							-
Aut have	Υ.	l'				7		-	7			Y	7	F	-
Factor	2.5				2.5		3.68	3.2			1.70				
Major/Servi	1.1			1.0	- 1	1	1		1	3	1				
MajorMoon	1.5	1.5	1.5	1.5	1	1	1	1	1.3	1		1.2		- 3	
Un:	. 4				- 6		- 4								1
Ania	- 25				- 25			- 1							4
	-	_			_	_					_			-	-
7848447	N	IN.	Dia .	N.	-	14	The same		-	6		le:	W.	No.	Tu-
April 1944	-			N .	4		N:	N.	74	-	4	N.	H:	N .	14
Factor															-
Majarferal	1									(1)					
MajorMenal															
														-	-
Min.						1									

14.6.1.6 Block Model and Grade Estimation

The model is in Reedy 2014 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-212 Boomerang - Kurara block model parameters.

	Υ	X	Z
Min	49,500	19,200	-150
Max	51,360	21,100	550
Extents	1,860	1,900	700
Parent size	20.00	20.00	10.00
Sub-Block size	2.50	0.50	0.625

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the

average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For Boomerang - Kurara, most of the interpolation was conducted in two passes which was sufficient to fill all blocks in the estimation domains. An increased search distance between $1.5\,\mathrm{x}$ to $5\,\mathrm{x}$ and a reduction of minimum informing samples was used for the second interpolation pass. A select number of domains conducted a third estimation pass to fill the remainder of the blocks, with a further increase of search distance and a reduction of minimum informing samples.

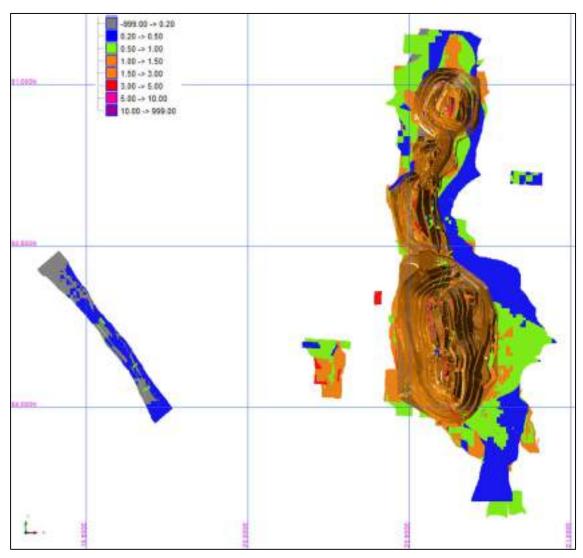


Figure 14-80 Boomerang - Kurara depleted resource model, plan view, all domains - Source: Westgold.

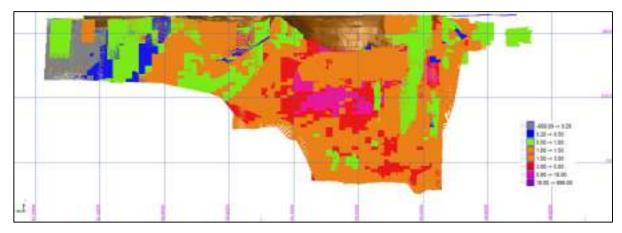


Figure 14-81 Boomerang - Kurara depleted resource model, long section view looking east. Phoenix and Washdown hidden - Source: Westgold.

14.6.1.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data, as part of the production data was reconstructed from reserve estimates and not mill reconciled production records.

14.6.1.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Boomerang - Kurara Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource classification was not applied to any material.
- (2) The Indicated Mineral Resource classification was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource classification was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

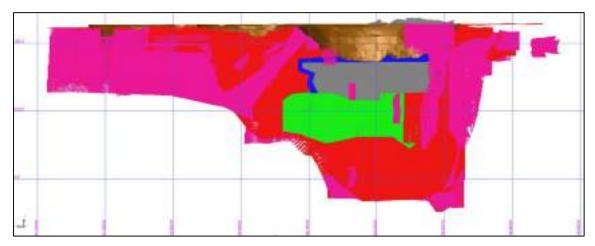


Figure 14-82 Boomerang Kurara resource classification, long-section view looking east. Phoenix and Washdown hidden. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted - Source: Westgold.

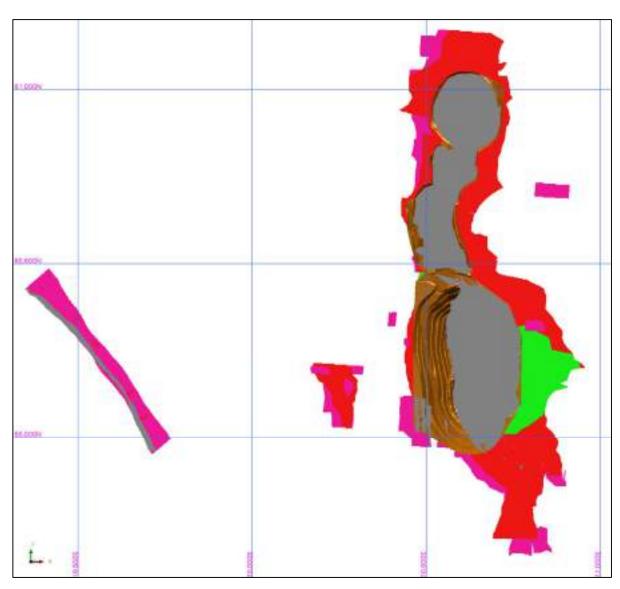


Figure 14-83 Boomerang Kurara resource classification, plan view. Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = depleted - Source: Westgold.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Boomerang - Kurara Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.6.1.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-213 Boomerang - Kurara Open Pit Mineral Resources on June 30, 2024.

Boomerang - Kurara Open Pit Mineral Resource Statement - Rounded for Reporting 30/06/2024													
	Measured Indicated Measured and Indicated										Inferred		
Project	kt	g/t	koz	kt g/t koz		kt	g/t	koz	kt	g/t	koz		
Boom – Kur OP	0	0.00	0	188	1.00	6	188	1.00	6	737	1.65	39	
Total	0	0.00	0	188	1.00	6	188	1.00	6	737	1.65	39	

>=0.7g/t Au

Table 14-214 Boomerang - Kurara Underground Mineral Resources on June 30, 2024.

	Boomerang - Kurara Underground											
Mineral Resource Statement - Rounded for Reporting												
30/06/2024												
	Measured Indicated Measured and Indicated Inferred											
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz
Boom – K UG	0	0.00	0	432	4.56	63	432	4.56	63	2,769	2.74	244
Total	0	0.00	0	432	4.56	63	432	4.56	63	2,769	2.74	244

>=2.0g/t Au

The Boomerang - Kurara Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$2,000/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.2 Callisto

14.6.2.1 Summary

The Callisto mineralised trend is located 45 km south of Bluebird mill and forms part of the Reedy Project.

Historic open pit production from Callisto was 63,181 t at 2.42 g/t for 4,916 oz by Metana Minerals between 1991 and 1995 (Hollingsworth, 2022).

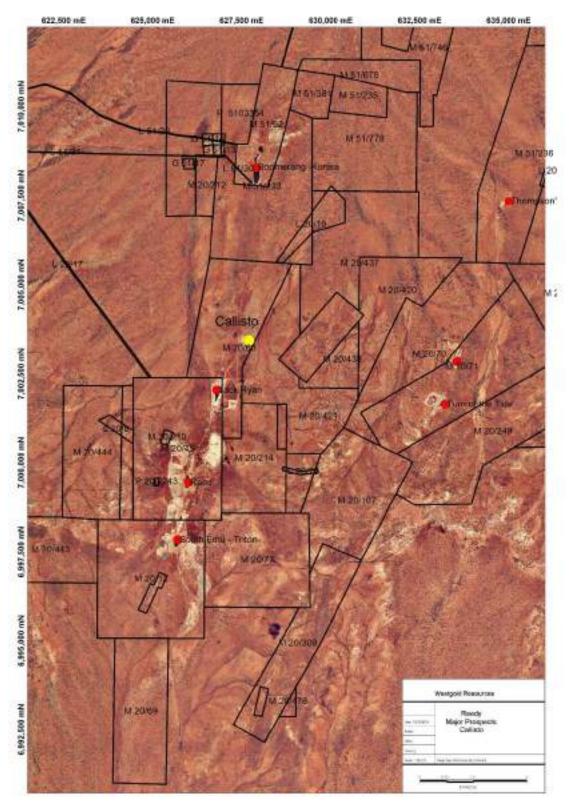


Figure 14-84 Location of the Callisto deposit - Source: Westgold.

14.6.2.2 Modelling Domains

All modelling and estimations were performed using Surpac. Geostatistical analysis of the dataset was conducted in Supervisor.

Geological interpretation of the Callisto deposit was carried out using a systematic approach to ensure that the resultant resource figure was both sufficiently constrained and representative of the expected subsurface conditions. In all aspects of the Mineral Resource Estimate, the factual and interpreted geology was used to guide the development of the model.

Initially a three-dimensional viewing of the data was undertaken to establish a feel for the basic form and continuity of the individual domains. This was followed by sectional viewing. Strings were digitised on section to establish a 0.5 g/t cut-off envelope around the individual mineralised zones. Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike / down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two meters was modelled.

All strings were digitised in a clockwise direction, with a common extent of interpretation defined as 0.5 x drill spacing beyond the last intersecting drillhole. Strings were snapped to drillholes at sample interval boundaries, with no artificial complexities introduced into the mineralisation geometry (although points were created between drillholes to ensure accuracy during wireframing).

Wireframing of mineralisation sectional perimeters was performed via the linking of appropriate perimeters on adjacent sections. The wireframes were sealed by triangulation within the end member perimeters, leading to the creation of a volume model.

Modelling was undertaken in Map Grid of Australia 1994 (Zone 50), with a nominal sectional spacing of twenty metres used during interpretation.

Four geologically mineralised domains were identified: steep west dipping mineralisation striking north-northeast (domain 100), steep west dipping mineralisation striking north (domain 400), flat lying supergene mineralisation (domain 200) and sub-horizontal supergene mineralisation (domain 300). The steep west dipping mineralisation striking north-northeast contains most of the gold. Geological domain wireframes are displayed in figures below.

The Base of Complete Oxidation (BOCO), and Top of Fresh Rock (TOFR) surfaces were created via the digitising of strings on sections corresponding to the geologically logged oxidation states down-hole. In the first instance strings were based on information from the oxidation table. The digitised strings were expanded as appropriate to extend beyond the borders of the block model, with a DTM created by

triangulating between adjacent strings. Limited information was available from historic holes regarding sub-surface oxidation states, primarily the boundaries were based on 2014 logging completed by MLX.

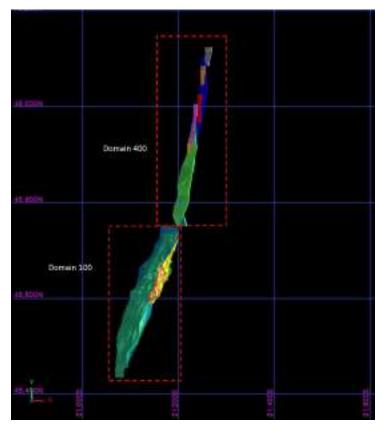


Figure 14-85 Mineralisation interpretation of Callisto primary domains - Source: Westgold.

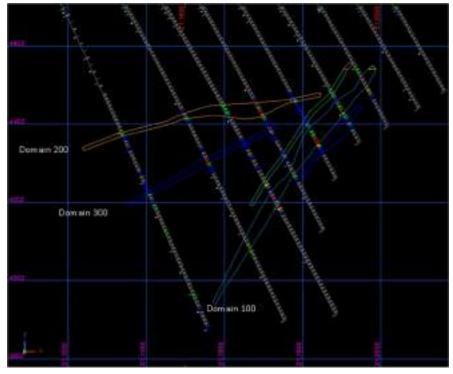


Figure 14-86 Mineralisation interpretation cross section of Callisto supergene domains - Source: Westgold.

14.6.2.3 Statistical Analysis and Compositing

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database. Comparisons of the different composite lengths showed that 100% of composites were 1 metre which contained 100% of the total metal.

Statistical comparisons were completed on all domains to determine whether domains could be statistically combined or whether further sub-domaining is required. Statistical analysis of domain 100 showed sub domaining was necessary above the 454 mRL.

A top-cut analysis was performed for data included in the Callisto resource estimation. The one metre composite files of downhole assay data were ranked. Datasets were then graphed and analysed for disintegrations, which are defined as the first significant increase in percentage difference between adjacent values for assay values sufficiently above the mean assay value for the dataset. From this analysis several common measures of determining an appropriate top-cut were reviewed.

Table 14-215 Raw and cut statistics for domains at Callisto.

Domain – Au raw	100	200	300	400
Samples	1764	130	40	151
Imported	1764.00	130.00	40.00	151
Minimum	0.01	0.04	0.02	0.06
Maximum	168.00	68.00	3.70	41.13
Mean	3.26	1.48	0.77	1.617
Standard deviation	8.03	6.08	0.88	3.524
CV	2.46	4.12	1.14	2.179
Variance	64.41	36.92	0.77	12.419
Skewness	9.54	10.38	2.11	9.614
Top Cut applied	20	6	nil	8
Domain – Au cut	100	200	300	400
Samples	1764	130	40	151
Imported	1764.00	130.00	40.00	151.00
Minimum	0.01	0.04	0.02	0.06
Maximum	20.00	6.00	3.70	8.00
Mean	2.73	0.94	0.77	1.40
Standard deviation	3.93	1.29	0.88	1.50
CV	1.44	1.37	1.14	1.07
Variance	15.45	1.66	0.77	2.23
Skewness	2.78	2.58	2.11	2.17

14.6.2.4 Density

Bulk density measurements were derived from various sources. Oxide density is from test-work of Callisto material. Transitional and fresh rock density are allocated from test-work from the Jack Ryan deposit on material of similar lithology. Density values are tabled below.

Table 14-216 Callisto assigned densities.

Material	Density
Oxide	1.9
Transitional	2.13
Fresh	2.5

14.6.2.5 Variography

Variograms were analysed in Snowden Supervisor software. Normal scores transforms were applied to limit the influence of extreme grades. Composites within lodes that exhibited common style, geology and univariate statistics were grouped for variogram modelling.

A summary of variogram groupings and resulting parameters are tabled below.

Table 14-217 Callisto variogram model parameters.

Domain	100	200	300	400
Count	1687	92	29	132
MAJOR RANGE	48	none	none	none
SEMI-MAJOR RANGE	19			
MINOR RANGE	4			
SEMI-MAJOR RATIO	2.53			
MINOR RATIO	12.00			
LOG VARIANCE	1.47			
NUGGET	0.62			
SILL 1	0.32			
RANGE 1	13.00			
SILL 2	0.06			
RANGE 2	48.00			
TOTAL SILL	1.00			
BEARING	179.639			
PLUNGE	22.521			
DIP	-45.905			
SEARCH DISTANCE	48			

14.6.2.6 Block Model and Grade Estimation

The model is in Reedy 2014 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50).

A single block model was created (callisto_20150820_depleted.mdl) that encompassed all mineralisation at the Callisto deposit.

	Υ	Х	Z
Min	45,300	20,920	300
Max	46,300	21,580	500
Extents	1,000	660	200
Parent size	10.00	2.00	2.00
Sub-Block size	5.00	1.00	1.00

Table 14-218 Callisto block model parameters.

The ordinary kriging method of interpolation (OK) was used to fill the blocks within the domain 100. This estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

The inverse distance to a power of two (ID²) interpolation method was used to fill the 200, 300 and 400 domains. This method was adopted as it allows for block interpolation based on the values of the sample points closest to the block centroid. The weighting of the surrounding samples is calculated based on the inverse of their distance to the block centroid raised to the second power. Given the data density within these domains, along with invalid variogram modelling; Inverse Distance Squared is considered to be an appropriate technique to estimate the saprolite and alluvial domains.

The variogram model for domain 100 was used to determine search ellipse / interpolation parameters. Search ellipse parameters for the inverse distance estimated domains were defined by 2.5 x the nominal drill spacing (20 m) within the mineralised domain. The second and third pass estimations were expanded by varying factors to allow for estimation of all cells that did not fill during the first pass. An isotropic search was utilised on the semi-major axis on all passes. The orientation was determined by visual interpretation of the mineralised lodes.

Interpolation parameters are tabled below.

Table 14-219 Interpolation parameters used within the Callisto resource.

Domain	100	200	300	400
Count	1687			
ESTIMATION	ОК	ID ²	ID ²	ID ²
MAJOR RANGE	48	50	50	48
SEMI-MAJOR RANGE	19	50	50	48
MINOR RANGE	4	2.5	2.5	4
SEMI-MAJOR RATIO	2.53	1.00	1.00	1.00
MINOR RATIO	12.00	20.00	20.00	12.00
BEARING	179.639	0	0	6
PLUNGE	22.521	0	0	0
DIP	-45.905	5	25	65
SEARCH DISTANCE	48	50	50	48
PASS 1	48	50	50	48
PASS 2	96	75	75	96
PASS 3	192	112.5	112.5	192
MIN SAMPLES	6	6 (4 pass 3)	4	6 (2 pass 3)
MAX SAMPLES	28	28	28	28
DISCRETINISATION	3x3x3	3x3x3	3x3x3	3x3x3
NUGGET	0.62			
SILL 1	0.32			
RANGE 1	13.00			
SILL 2	0.06			
RANGE 2	48.00			
TOTAL SILL	1.00			

14.6.2.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model.

Model validation appears reasonable although block grades show a smoothing effect in areas of sparse data. Model validation plots for the major domains are shown below.

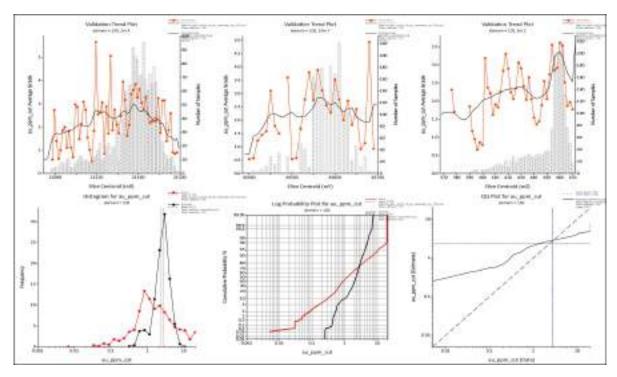


Figure 14-87 Callisto domain 100 model validation - Source: Westgold.

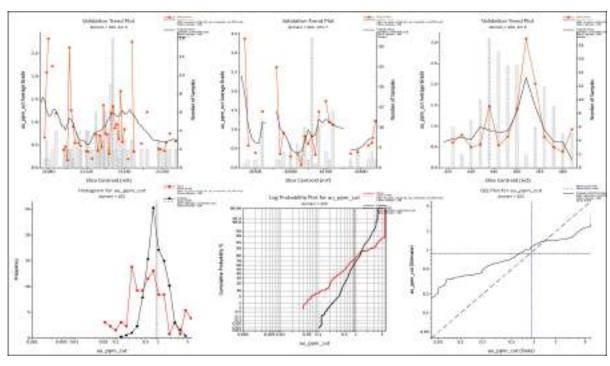


Figure 14-88 Callisto domain 200 model validation - Source: Westgold.

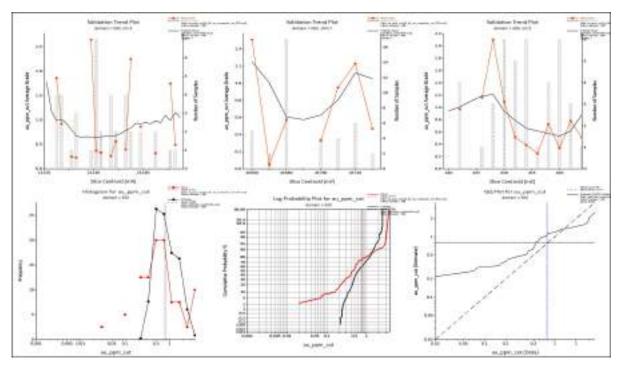


Figure 14-89 Callisto domain 300 model validation - Source: Westgold.

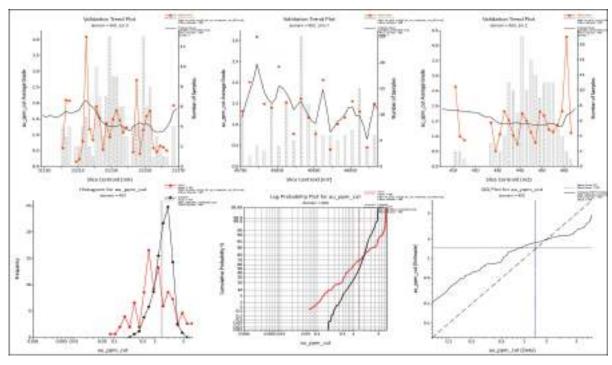


Figure 14-90 Callisto domain 400 model validation - Source: Westgold.

14.6.2.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Callisto Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with open pit grade control drilling.
- (2) The Indicated Mineral Resource category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with reasonable sample support from a drillhole spacing of 20 m, and the model blocks were filled in the first or second interpolation pass.
- (3) The Inferred Mineral Resource category was applied where tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

The Callisto Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

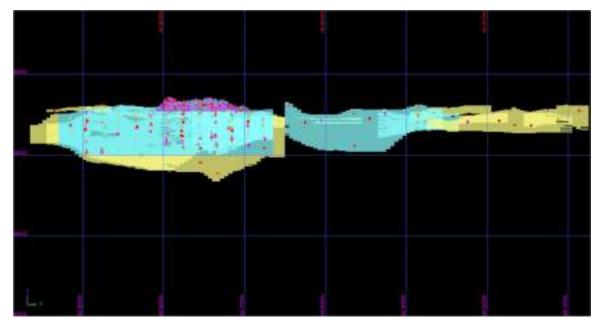


Figure 14-91 Long section of the Callisto block model with blocks coloured by classification - Source: Westgold.

14.6.2.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Callisto Mineral Resource Statement - Rounded for Reporting 30/06/2024 Measured Indicated Measured and Indicated Inferred **Project** kt g/t koz kt g/t koz g/t koz kt g/t koz Callisto 0 0.00 0 113 2.03 7 2.03 7 70 1.59 113 4 0 4 Total 0.00 0 113 2.03 7 113 2.03 7 70 1.59

Table 14-220 Callisto Mineral Resources on June 30, 2024.

>= 0.7 g/t Au.

The Callisto Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.

- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.3 Culculli

14.6.3.1 Summary

The Culculli Group is located approximately 65 km by road south of the Bluebird mill, accessible from the Great Northern Highway and private mining haul road.

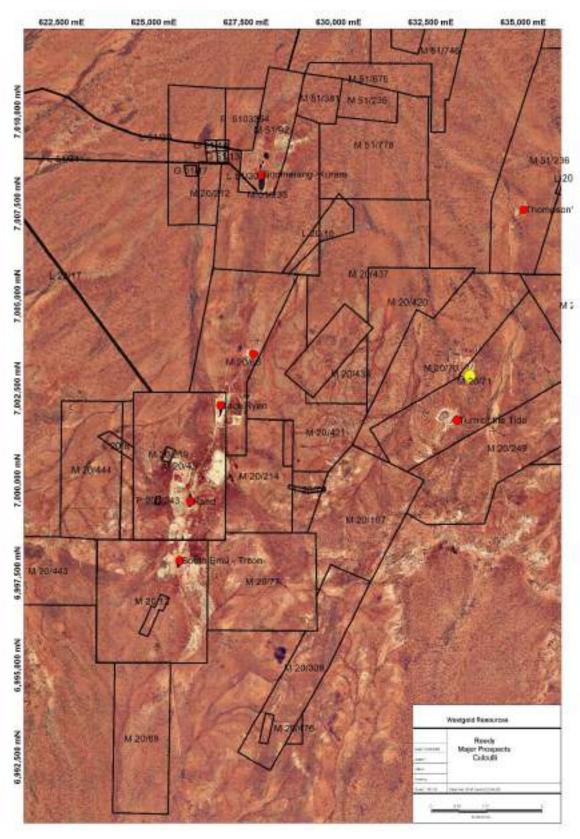


Figure 14-92 Location of the Culculli deposit - Source: Westgold.

There are minor historical workings along the mineralisation trend. Mining of the Culculli open pit by Metana in 1991-1992 produced 207,364 t of ore processed at the

Reedy mill (production grade not available). Production figures for the Culculli North open pit are not available. The pit was mined by Metana in 1994-1995.

The Westgold Mineral Resource Estimate was completed in October 2016 before open pit mining commenced at Culculli in April 2017, continuing though to July 2017. Culculli North was mined by Westgold in July 2017. Total production from the Westgold open pit mining is tabled below.

Table 14-221 Westgold open pit production for the Culculli Group.

Open Pit	Tonnes (t)	Grade (g/t)	Gold (oz)
Culculli	122,594	1.38	5,447
Culculli North	19,209	1.35	831

14.6.3.2 Modelling Domains

Geological interpretation of the Culculli deposit was carried out using a systematic approach to ensure that the resultant Mineral Resource Estimate was both sufficiently constrained and representative of the expected subsurface conditions. In all aspects of Mineral Resource Estimation, the factual and interpreted geology was used to guide the development of the model.

Initially a three-dimensional viewing of the data was undertaken to establish trend and continuity of the individual mineralisation domains. This was followed by sectional viewing. The broad geologically modelled mineralisation domains represent the altered and sheared felsic material that contains quartz veining that hosts the variable gold mineralisation. These broad domains coincide with a wireframing cut-off of 0.3 g/t that generally coincides with logged quartz veining. Strings were digitised on section to establish the 0.3 g/t cut-off envelope around the individual mineralised zones. Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two metres was modelled.

All strings were digitised in a clockwise direction, with a common extent of interpretation defined as 0.5 x drill spacing beyond the last intersecting drillhole. Strings were snapped to drillholes at sample interval boundaries, with no artificial complexities introduced into the mineralisation geometry (although points were created between drillholes to ensure accuracy during wireframing and aid triangulation of solids).

Wireframing of mineralisation sectional perimeters was performed via the linking of appropriate perimeters on adjacent sections. The wireframes were sealed by triangulation within the end member perimeters, leading to the creation of a volume model. Modelling was undertaken in Turn of the Tide (2015) local grid, with a nominal sectional spacing of 5-10 m, dependant on the drill spacing.

All mineralisation domains were grouped as the same style of mineralisation.

Domains 101 to 106 represent the Culculli open pit mineralised lodes. Domain 201 represents the unmined mineralised lode to the east of the Culculli open pit. Domains 301 to 304 represent the unmined mineralised lodes to the east of the Culculli North open pit. Domain 401 represents the Culculli North open pit mineralised lode.

14.6.3.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-222 Statistics and top-cuts for Culculli Group mineralisation domains.

Aurew	Asseys hip-	out to 100 pp	н та геточе	extreme su	tien:							
Domain	101	102	103	104	105	106	201	90t	302	363	304	401
VOLUME	200,301	181,106	50,233	66,480	5,691	25,158	154,956	89,733	18,798	20,516	1,829	74,533
% datal Valume	22.5%	20.4%	5.6%	7.5%	0.6%	2.8%	17.4%	10.2%	2.2%	2.3%	0.2%	8.4%
Onlikoles	499	252	250	239	15	12	83	47	33	22	8	225
Samples	5324	1906	1716	1600	91	65	203	375	159	89	26	1937
imported	11771	11771	11771	11771	11771	11771	11771	2586	2586	2586	2585	2586
Minimum	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.13	0.01
N/asimum	87.00	77.00	100.00	100.00	13.30	3.71	53.00	50,00	8.10	9.62	4.01	48.20
Mean	1.05	1.35	1.40	1.30	0.96	0.58	1.05	1.10	0.86	1.04	0.74	2.33
Standard deviation	3.90	2.88	4.94	4.36	1.61	0.62	2.59	3.26	1.72	1.57	0.84	4.63
CY	2.35	2.14	3.54	3.34	1.00	1.07	2.46	2.50	1.44	1.46	1.14	1.56
Variance	15.20	8.31	24,43	18.98	2.59	0.38	6.70	10.60	1.52	2.30	0.70	21.27
Skevness	8.79	12.48	13.62	14.22	5,51	2.67	12.12	10.32	3.09	3.88	2.83	4.23
52% (Median)	0.68	0.60	0.55	0.53	0.52	0.37	0.45	0.54	0.43	0.63	0.43	0.71
90%	3.64	3.00	2.33	2.21	1,87	1.41	2.23	2.84	2.19	1.85	1.55	3.34
95%	6.10	4.78	3.92	4.38	3.12	1.78	3.86	3.55	3.44	2.87	2,07	10.15
97,5%	9.03	6.84	6.57	6.46	3.89	1.90	5,46	6.85	4.50	5.78	2.81	16.43
99.0%	17.94	12.30	15.51	11.60	6.04	2.61	8.76	11.48	6.14	8.36	3.53	23.25
Top Cut	15.00	15.00	12.00	12.00	8.00		12.00	6.00	5.00	4.00	2.50	22/00
No Values Cut	73	11	19	15	2		. 7	10		. 3	1	
% Date % Metal	1.4%	0.6%	1.1%	0.9%	2.2%		0.7%	2.7%	1.9%	3.4%	3.8%	1.19

Au_cut									F			LI POPA
Domein	101	102	103	104	105	106	201	301	302	365	304	401
Samples	5324	1986	1716	1600	91	- 65	569	375	139	89	26	1937
imported	14557	14357	14357	14357	14357	14357	14357	14357	14357	14157	14357	14357
Minimum.	0.005	0.005	0.005	0.005	0.02	0.005	0.01	0.005	0.005	0.005	0.13	0.005
Maximum	15	15	12	12	4	3.71	12	- 6	. 5	4	2.5	22
Mean	1.49	1.28	2.31	1.08	0.86	0.38	0.97	1.05	0.82	0.91	0.68	2.21
Standard deviation	2.45	2.014	1.78	1.735	0.936	0.618	1.615	1.331	1.077	0.922	0.626	3.87
CV	1.04	1.57	1.61	1.60	1,09	1.07	1.05	1.27	1.31	1.02	0.92	1,75
Variance	6.005	4,055	3.169	3.012	0.877	0.382	2.608	1,771	1.16	0.85	0.392	14,977
Skewress	3,577	3,954	4.094	3,993	2.025	2.673	4.111	2.21	2,356	1,557	1.817	3,386
S0% (Median)	0.63	0.6	0.55	0.53	0.52	0.37	0.445	0.535	0.43	0.63	0.43	0.78
90%	3.636	3.002	2.33	2.21	1.872	1.41	2,231	2.835	2.194	1.854	1.552	5.336
95%	6.104	4,777	3.924	4.18	3.115	1.778	3.856	3.945	3.441	2.872	2.071	10.192
97.5%	9.027	6.844	6.571	6.46	3.885	1.904	5.464	5.914	4.503	3,998	2.286	16.473
99.0%	15	12.801	12	11.6	4	2.605	8.758	. 0	5	4	2.414	22

14.6.3.4 Density

Density values were allocated based on values determined from density test work for the Culculli open pit during pre-mining studies by Metana Minerals (1991) and for Culculli North. Density values are allocated by weathering. No discrimination was made between mineralised and unmineralised lithology types.

Table 14-223 Culculli Group model density values.

Rock Type	Oxide	Transitional	Fresh
Ore	1.90	2.20	2.60
Waste	1.90	2.20	2.60
Backfill	1.90		
Air / Void	0.00		

14.6.3.5 Variography

A geostatistical analysis of down-hole composited Culculli data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

Due to the variability of gold mineralisation within the geological alteration domain, a grade indicator ordinary kriged estimation was undertaken to determine the probability of the blocks within the domain to be above or below 0.5 g/t. Assay composites were allocated a 0 of below 0.5 g/t, and 1 if above 0.5 g/t, with indicator estimated blocks resulting in a decimal value (a probability) between 0 and 1. This allowed for the geologically domained wireframes to be sub-domained into mineralised waste (indicator block probability below 0.5) and mineralised zone (indicator block probability above 0.5) sub-domains.

The indicator probability interpolation was constrained within the wireframe generated from the geological sectional interpretation of the mineralisation (i.e. within the plane of mineralisation). This interpolation was estimated into a model utilising 2.5 m XYZ parent block dimensions (the SMU model, double the resolution of the grade estimate parent blocks), with the block centroids imported into the 5 m x 5 m x 5 m block model by utilising a common 1.25 m sub-block dimension.

Each domain estimated in this method has variogram parameters for a 0.5 g/t grade indicator to define mineralised zone (MZ) and mineralised waste (MW) sub-domains, then variogram parameters for the grade distribution of each sub-domain. The remaining major domains were estimated as whole domain ordinary kriging. The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

The other major domains were estimated using Ordinary Kriging. Domain 304 with poor sample support was estimated with Inverse Distance Squared.

A summary of the parameters is tabled below.

Table 14-224 List of Culculli domains with estimation parameters applied from major domains.

Domain 105 is estimated as a whole domain, using OK parameters for whole domain 104.

Domain 106 is estimated as a whole domain, using OK parameters for whole domain 102.

Domain 302 will use domain 301 MZ MW parameters (spatially similar)

Domain 303 will use domain 301 MZ MW parameters (spatially similar)

Domain 304 is estimated as a whole domain, using ID2 with a 20m spherical search.

Table 14-225 Culculli MW MZ domain estimation parameters.

DOMAIN		101 MW	101 MZ	102 MW	102 MZ	103 MW	103 MZ	104 MW	104 MZ	201 MW	201 MZ
Numbe	er of comps	1850	3318	698	1176	715	918	750	776	587	371
NUGGET	СО	0.73	0.48	0.65	0.57	0.82	0.72	0.80	0.63	0.58	0.51
SILL 1	c1	0.16	0.43	0.35	0.37	0.05	0.17	0.20	0.25	0.25	0.26
SILL 2	c2	0.11	0.09	0.00	0.06	0.13	0.11	0.00	0.12	0.17	0.23
SILL 3	с3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Major									•		
RANGE 1	a1	6.00	9.00	45.00	6.00	7.00	10.00	40.00	12.00	22.00	12.00
RANGE 2	a2	45.00	20.00	0.00	10.00	20.00	40.00	0.00	70.00	30.00	40.00
RANGE 3	a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Semi-Major											
RANGE 1		3.00	7.00	10.00	4.00	7.00	10.00	10.00	3.00	11.00	12.00
RANGE 2		15.00	15.00	0.00	10.00	20.00	20.00	0.00	7.00	15.00	20.00
RANGE 3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Minor		,							,		
RANGE 1		2.00	4.00	10.00	3.00	4.00	10.00	8.00	3.00	6.00	12.00
RANGE 2		5.00	8.00	0.00	5.00	10.00	20.00	0.00	7.00	10.00	20.00
RANGE 3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Structure 1 ratio	os										
Major : Semi Ma	ijor	2	1.286	4.5	1.5	1	1	4	4	2	1
Major : Minor		3	2.25	4.5	2	1.75	1	5	4	3.67	1
Structure 2 ratio	os										
Major : Semi Ma	ijor	3	1.333	0	1	1	2	0	10	2	2
Major : Minor		9	2.5	0	2	2 2		0	10	3	2
Structure 3 ratio	os										
Major : Semi Ma	ijor	0	0	0	0	0	0	0	0	0	0
Major : Minor		0	0	0	0	0	0	0	0	0	0
DIRECTION 1		0> 000	0> 000	-54> 026	0> 355	-20> 004	-30> 000	59> 299	0> 000	29> 337	-18> 014
DIRECTION 2		-80> 090	-80> 090	-28> 164	-70> 085	-68> 154	-60> 180	-9>015	-70> 090	-36> 042	-58> 136
DIRECTION 3		10> 090	10> 090	20> 085	20> 085	10> 090	0> 090	30> 100	20> 090	40> 095	25> 095
SURPAC STRIKE	(Z-ROT)	0	0	25.6	355	3.6	0	299.4	0	336.7	13.7
SURPAC PLUNGE	(X-ROT)	0	0	-54.5	0	-19.7	-30	58.5	0	29.5	-18.1
SURPAC DIP	(Y-ROT)	-80	-80	-54	-70	-79.4	-90	-16.7	-70	-42.4	-63.6
Discretisation ()	XYZ)	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z
Search distance	pass 1	45	20	45	10	20	40	40	70	30	40
Search distance	pass 2	67.5 (x1.5)	30 (x1.5)	67.5 (x1.5)	20 (x2)	30 (x1.5)	60 (x1.5)	60 (x1.5)	105 (x1.5)	45 (x1.5)	60 (x1.5)
Search distance		90 (x2)	40 (x2)	90 (x2)	40 (x4)	40 (x2)	80 (x2)	80 (x2)	140 (x2)	60 (x2)	80 (x2)
Min/max sampl		min 8 max 28	min 8 max 28	min 8 max 30	min 12 max 26	min 12 max 30		min 12 max 30		min 8 max 28	min 6 max 30
Min/max sampl	_	min 8 max 28	min 8 max 28	min 8 max 30	min 12 max 26	min 12 max 30	min 10 max 30	min 12 max 30	min 12 max 30	min 8 max 28	min 6 max 30
Min/max sampl	-	min 4 max 20	min 4 max 20	min 4 max 20	min 6 max 20	min 6 max 20	min 5 max 20	min 6 max 20	min 6 max 20	min 4 max 20	min 4 max 20
Max samples pe	r drillhole	X	X	X	X	X	X	X	X	X	X

Table 14-226 Culculli North MW MZ domain estimation parameters.

Number of comps	DOMAIN		401 MW	401 MZ	301 MW	301 MZ	
NUGGET	Numbe	r of comps	497	1352	208	144	
SILL 1		Quality	good	moderate	moderate	poor	
SILL 2	NUGGET	C0	0.26	0.26	0.52	0.71	
SILL 3	SILL 1	c1	0.52	0.46	0.48	0.29	
TOTAL SILL	SILL 2	c2	0.22	0.28	0.00	0.00	
Major RANGE 1		с3	0.00	0.00	0.00	0.00	
RANGE 1 a1 6.00 6.00 15.00 28.00 RANGE 2 a2 16.00 15.00 0.00 0.00 RANGE 3 a3 0.00 0.00 0.00 0.00 0.00 Semi-Mojor RANGE 1 24.00 3.00 25.00 28.00 RANGE 2 32.00 15.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 0.00 Semi-Mojor Semi Major 0.00 0.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.66 1 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 0.5 1 0 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL SILL		1.00	1.00	1.00	1.00	
RANGE 2 a2 16.00 15.00 0.00 0.00 0.00 Semi-Major RANGE 1 24.00 3.00 25.00 28.00 0.00 Minor RANGE 2 32.00 15.00 0.00 0.00 0.00 0.00 Minor RANGE 1 12.00 3.00 5.00 8.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 0.00 0.00 0.00 0.00 0	Major						
RANGE 3							
Semi-Major RANGE 1 24.00 3.00 25.00 28.00 RANGE 2 32.00 15.00 0.00 0.00 Minor RANGE 1 12.00 3.00 5.00 8.00 RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 Major : Semi Major 0.5 1 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
RANGE 1 24.00 3.00 25.00 28.00 RANGE 2 32.00 15.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Minor RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 0 Major : Semi Major 0.5 1 0 0 0 Structure 3 ratios Major : Semi Major 0 0.5 1 0 0 0 Major : Minor 0 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 0 Structure 3 ratios 0 0 0 0 0 0 0 0 0 DIRECTION 1 -9>013 0>000 0 0>000 8>354 DIRECTION 2 -68>127 -65>090 -55>090 -49>075 DIRECTION 3 20>100 25>090 35>090 40>090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z		a3	0.00	0.00	0.00	0.00	
RANGE 2 32.00 15.00 0.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 0.00 Minor RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Semi Major 0.5 2 3 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 DIRECTION 1 -9> 013 0> 000 0> 000 0 8> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 64 (x4) Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) 5 Search distance pass 3 min 8 max 28 min 8 max 20 min 4 ma							
RANGE 3 0.00 0.00 0.00 0.00 0.00 0.00 Minor RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 0.00 0.00 0.00 0.00 0							
Minor RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 Major : Minor 1 2 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 Major : Semi Major 0 0 0 0 0 0 Major : Minor 0							
RANGE 1 12.00 3.00 5.00 8.00 RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0.5 1 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 0 DIRECTION 1 0 0 0 0 0 0 0 0 0 0 DIRECTION 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.00	0.00	0.00	0.00	
RANGE 2 16.00 7.50 0.00 0.00 RANGE 3 0.00 0.00 0.00 0.00 Structure 1 ratios Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 SURECTION 1 0 0 0 0 0 0 0 0 DIRECTION 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
Structure 1 ratios							
Structure 1 ratios							
Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios 0.5 1 0 0 Major : Semi Major 0 0 0 0 Major : Semi Major 0 0 0 0 Major : Minor 0 0 0 0 DIRECTION 1 -9 -> 013 0 -> 000 0 -> 000 8 -> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 <t< td=""><td>RANGE 3</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	RANGE 3		0.00	0.00	0.00	0.00	
Major : Semi Major 0.25 2 0.6 1 Major : Minor 0.5 2 3 3.5 Structure 2 ratios 0.5 1 0 0 Major : Semi Major 0 0 0 0 Major : Semi Major 0 0 0 0 Major : Minor 0 0 0 0 DIRECTION 1 -9 -> 013 0 -> 000 0 -> 000 8 -> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Major : Minor 0.5 2 3 3.5 Structure 2 ratios Major : Semi Major 0.5 1 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios Major : Semi Major 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 DIRECTION 1 -9 -> 013 0 -> 000 0 -> 000 8 -> 354 DIRECTION 2 -68 -> 127 -65 -> 090 -55 -> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z Search distance pass 1 16 15 15							
Structure 2 ratios Major : Semi Major 0.5 1 0 0 Major : Minor 1 2 0 0 0 Structure 3 ratios 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 DIRECTION 1 -9 -> 013 0 -> 000 0 -> 000 8 -> 354 0 0 49> 075 0 0 20> 000 -55> 090 -49> 075 0 0 353-5 0 0 353-5 0 0 353.5 0 0 353.5 0 0 353.5 0 0 7.6 0 0 7.6 0 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 0 7.6 0 <td< td=""><td colspan="2"></td><td></td><td>2</td><td>0.6</td><td></td></td<>				2	0.6		
Major : Semi Major 0.5 1 0 0 Major : Minor 1 2 0 0 Structure 3 ratios 0 0 0 0 Major : Semi Major 0 0 0 0 Major : Minor 0 0 0 0 DIRECTION 1 -9 -> 013 0 -> 000 0 -> 000 8 -> 354 DIRECTION 2 -68 -> 127 -65 -> 090 -55 -> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4)	-		0.5	2	3	3.5	
Major : Minor 1 2 0 0 Structure 3 ratios 0 0 0 0 0 Major : Semi Major 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 DIRECTION 1 -9> 013 0> 000 0 -55> 090 -49> 075 0 0 -49> 075 0 0 35> 090 -49> 075 0 0 35> 090 40> 090 0 0 35> 090 40> 090 0 35> 090 40> 090 0 7.6 0 0 35> 090 40> 090 0 7.6 0 0 7.6 7.6 7.6 0 0 7.6 7.6 7.6 7.6 7.6 7.6 7.5 7.6 7.6 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6			0.5		0	0	
Structure 3 ratios Major : Semi Major 0 0 0 0 0 0 Major : Minor 0 0 0 0 0 0 0 DIRECTION 1 -9> 013 0> 000 0> 000 8> 354 0 0 -49> 075 0 -49> 075 0 0 -9> 000 -49> 075 0 0 35> 090 40> 090 0 40> 090 0 35> 090 40> 090 0 7.6 0 0 353.5 0 0 353.5 0 0 7.6 0 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 7.6 0 0 0 7.6 0 0 0 0 </td <td></td> <td>jor</td> <td></td> <td>1</td> <td></td> <td></td>		jor		1			
Major : Semi Major 0 0 0 0 Major : Minor 0 0 0 0 DIRECTION 1 -9> 013 0> 000 0> 000 8> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 20 min 4 max 20 min 4 max 20 min 4 max 2		_	1	Z	U	U	
Major : Minor 0 0 0 0 DIRECTION 1 -9> 013 0> 000 0> 000 8> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 28 min 9 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20			0	0	0	0	
DIRECTION 1 -9> 013 0> 000 0> 000 8> 354 DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20		jor					
DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20	iviajoi . iviilioi		U	U	U	U	
DIRECTION 2 -68> 127 -65> 090 -55> 090 -49> 075 DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20	DIRECTION 1		-9> 013	0> 000	0> 000	8> 354	
DIRECTION 3 20> 100 25> 090 35> 090 40> 090 SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max 28 min 9 max							
SURPAC STRIKE (Z-ROT) 13.5 0 0 353.5 SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 2 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 3 min 4 max 20	DIRECTION 3						
SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 8 max 20 min 4 max 20							
SURPAC PLUNGE (X-ROT) -9.4 0 0 7.6 SURPAC DIP (Y-ROT) -69.7 -65 -55 -49.6 Discretisation (XYZ) 5x 5y 5z 5x 5y 5z 5x 5y 5z 5x 5y 5z Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 8 max 20 min 4 max 20	SURPAC STRIKE	(Z-ROT)	13.5	0	0	353.5	
Discretisation (XYZ) 5x 5y 5z 5x 5y 5z<	SURPAC PLUNGE	(X-ROT)	-9.4	0	0	7.6	
Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 2 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 3 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20	SURPAC DIP	(Y-ROT)	-69.7	-65	-55	-49.6	
Search distance pass 1 16 15 15 28 Search distance pass 2 32 (x2) 30 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 2 min 8 max 28 min 8 max 28 min 8 max 28 min 8 max 28 Min/max samples pass 3 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20				,			
Search distance pass 2 32 (x2) 30 (x2) 54 (x2) Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28 min 9 max	Discretisation ()	(YZ)	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	
Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28	Search distance	pass 1	16	15	15	28	
Search distance pass 3 64 (x4) 60 (x4) 60 (x4) 112 (x4) Min/max samples pass 1 min 8 max 28	Search distance	pass 2	32 (x2)	30 (x2)	30 (x2)	54 (x2)	
Min/max samples pass 2 min 8 max 28 Min/max samples pass 3 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20	Search distance	pass 3		60 (x4)	60 (x4)	112 (x4)	
Min/max samples pass 3 min 4 max 20 min 4 max 20 min 4 max 20 min 4 max 20	Min/max sampl	es pass 1	min 8 max 28	min 8 max 28	min 8 max 28	min 8 max 28	
	Min/max sampl	es pass 2	min 8 max 28	min 8 max 28	min 8 max 28	min 8 max 28	
Max samples per drillhole X X X X	Min/max sampl	es pass 3	min 4 max 20	min 4 max 20	min 4 max 20	min 4 max 20	
	Max samples pe	r drillhole	Х	Х	Х	Х	

Table 14-227 Culculli and Culculli North whole domain OK estimation parameters.

	DOMAIN	105	106		DOMAIN	301	401	
Nur	iber of compa	91	65	Nove	ber of comps	375	1937	
	Quality	poor	poor		Quality	moderate	moderate	
NUGSET:	C0-	0.49	0.43	NUSCET	.00	0.57	0.2	
SHL1	ct	0.34	0.26	9111	£1	0.20	0.57	
58L2	c2	0.17	0.35	5112	42	0.23	0.2	
9013	c8	0.00	0.00	9113	- 3	0.00	0.00	
TOTAL SELL	1.1572	1.00	1.00	TOTAL SEL		1.00	1.00	
Major	-7-5	1000		Mojar	-	1,19000		
RANGE 1	93	18.00	22.00	FANGE 1	#1	20.00	8.0	
RANGE 2	- 02	25.00	35.00	RANGE 2:	12	40.00	18.00	
RANGE 3	a3	0.00	0.00	RANGE 3	25	0.00	0.0	
Sersi-Major	1 5 7 1	1 10		Servi-Mujor	10 20 0	1,000		
BANCE 1		9.00	11.00	RANGE 1		10.00	8.00	
RANGE 2		12.50	25.00	RANGE 2		20.00	18.00	
RANGE 3		0.00	0.00	RANGE 3		0.00	0.00	
Minor		5.10		Minor			****	
BANCE 1		3.00	11.00	RANGE I		5.00	4.00	
RANGE 2		5.00	20.00	RANGE 3	-		20.00	
RANGE 3		0.00	0.00	RANGE 3		10.00	0.00	
100000000		V.000	0.00	Transaction .		, 30,000	20.90	
Structure 1 ra	tios	- v		Structure I in	tios			
Major : Serol Major		2	2	Major: Semi N	Aujor	. 2	7	
Major: Minor		6	2	Major: Minor	1000	-		
Mousture I re	ities		- 3	Structure 2 re	lice			
Major Semi I	Major	2	1.4	Major: Sem N	Aujor	2	3	
Major : Minu	ė.	5	1.75	Major: Minor		4	1.0	
Structure 3 re	tios			Structure 3 ra	tios			
Major: Seni	Major	- 0	0	Major: Semi h	Anjar	. 0		
Major : Mino		.0	9	Major: Miner		. 0		
DIRECTION 1		3 -> 351	0> 000	DIRECTION 1		0>000	0->00	
DIRECTION 2		-20 -> 079	-80> 090		DIRECTION 2		-65 -> 090	
DIRECTION 3		70 -> 090	10->090	DIRECTION 3		-50> 000 40> 100	25 -> 090	
SURPAC STRIK	E (Zaon)	350.6	o	SUPPAC STRIKE	(teon)	10		
SURPAC PILIN	And the Party of t	3,4	0	SURPAC PIUNO	Control Control Control	10		
SURPAC DIP	(Y-ROT)	-19.7	-80	SURPAC DIP	(FROT)	-50	+60	
TOTAL STREET	- Control			entransistania (
Discretisation (NYZ)		5x 5y 5z	5x 5y 5z	Discretivation		5x 5y 5c	5x 5y 5z	
Search distance pass T		25	25	Search distance pass 1.		40	18	
Search distan		37.5 (x1.5)	37.5 (x1.5)	Search distant		60(x1.5)	36 (x2)	
Search distant	the second second	50(x2)	50 (x2)	Sourch distant	AND PROPERTY.	80 (x2)	72 (x4)	
Min/max sam	The second second	min 8 max 30	min 8 max 30	Min/max sam		min 8 max 28	min 8 max 28	
Mir/man sam	ples juss 2	min 8 mas 30	min 8 max 30	Mie/max same		min 8 max 28	min 8 max 28	
Min/max sam	ples mass 3	min 6 max 20	min 6 max 20	Min/max same	ples pass 1	min-4 max 20	min 4 max 20	
Max samples	per drillhole	×	X	Max samples :	per drillhole	×	×	

14.6.3.6 Block Model and Grade Estimation

The model is in Turn of the Tide (2015) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-228 Culculli Group block model parameters.

	Υ	Х	Z
Min	11,032.5	9,660	350
Max	12,012.5	10,300	510
Extents	980	640	160
Parent size	5.00	2.50	2.50
Sub-Block size	1.25	1.25	1.25

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

Due to the variability of gold mineralisation within the geological alteration domain, a grade indicator ordinary kriged estimation was undertaken to determine the probability of the blocks within the domain to be above or below 0.5 g/t. Assay composites were allocated a 0 of below 0.5 g/t, and 1 if above 0.5 g/t, with indicator estimated blocks resulting in a decimal value (a probability) between 0 and 1. This allowed for the geologically domained wireframes to be sub-domained into mineralised waste (indicator block probability below 0.5) and mineralised zone (indicator block probability above 0.5) sub-domains.

The indicator probability interpolation was constrained within the wireframe generated from the geological sectional interpretation of the mineralisation (i.e. within the plane of mineralisation). This interpolation was estimated into a model utilising 2.5 m XYZ parent block dimensions (the SMU model, double the resolution of the grade estimate parent blocks), with the block centroids imported into the 5 m x 5 m x 5 m block model by utilising a common 1.25 m sub-block dimension.

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks of the other major domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the un-sampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The inverse distance to a power of two (ID²) interpolation method was also used to fill domain 304. The ID² method is adopted as it allows for block interpolation based on the values of the sample points closest to the block centroid. The weighting of the surrounding samples is calculated based on the inverse of their distance to the block centroid raised to the second power. Given the data density, Inverse Distance Squared is an appropriate technique to estimate domain 304.

For the Culculli and Culculli North domains, all interpolation was conducted in three passes, with increased search distance $1.5\,\mathrm{x}$ for the second pass and $2\,\mathrm{x}$ for the third pass. For the Culculli domains only, the minimum and maximum samples for the third pass was reduced.

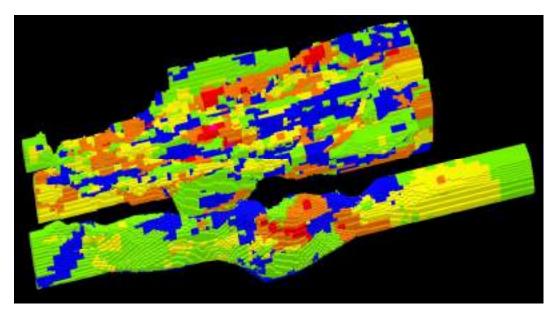


Figure 14-93 Mineral Resource Estimate, Culculli mineralisation domains, pre-WGX mining depletion - Source: Westgold.

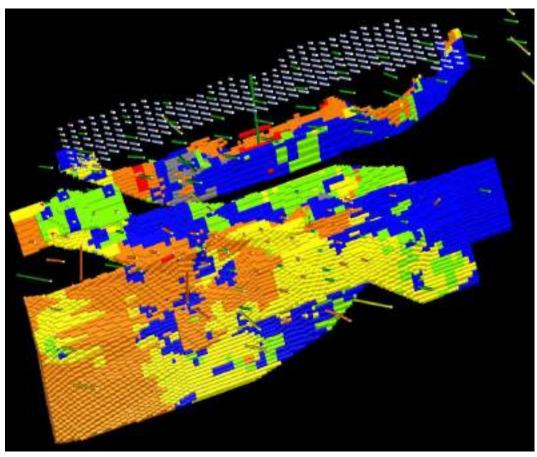


Figure 14-94 Mineral Resource Estimate, Culculli North mineralisation domains, pre-WGX mining depletion - Source: Westgold.

14.6.3.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data, due to incomplete historic production records. Over the life of the Westgold project for Culculli from April 2017 to July 2017, and for Culculli North in July 2017, claimed production vs mill reconciled actual production was within 3% and 7% variation respectively.

Table 14-229 Culculli and Culculli North production reconciliation, Westgold project to date.

		Actual		(Claimed		% Variance			
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz	
Culculli	122,594	1.38	5,447	125,162	1.40	5,644	-2%	-1%	-3%	
Culculli North	19,209	1.35	831	18,640	1.45	869	+3%	-7%	-4%	

14.6.3.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Culculli Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource category was not applied to any material.
- (2) The Indicated Mineral Resource category was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource category was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat' as Unreported = 4.

No material was required to be flagged as sterilised. The model was depleted for Westgold open pit mining for reporting.

The Culculli Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

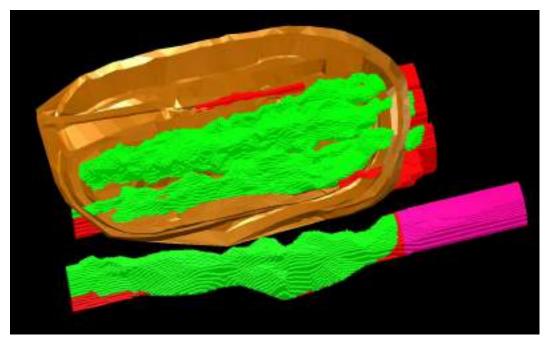


Figure 14-95 Culculli mineralisation domain classification before historic open pit (shown) and WGX mining depletion - Source: Westgold.

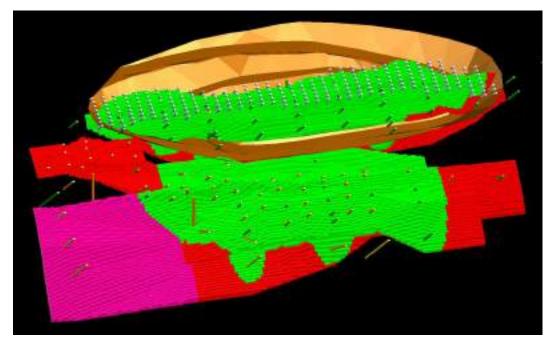


Figure 14-96 Culculli North mineralisation domain classification before historic open pit (shown) and WGX mining depletion - Source: Westgold.

14.6.3.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource Estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-230 Culculli Mineral Resources on June 30, 2024.

Culculli Mineral Resource Statement - Rounded for Reporting 30/06/2024												
	Measured Indicated Measured and Indicated Inferred											
Project	kt	g/t	koz	kt	g/t	koz	kt g/t koz			kt	g/t	koz
Culculli	0	0.00	0	99	1.25	4	99	1.25	4	300	1.41	14
Total	0	0.00	0	99	1.25	4	99	1.25	4	300	1.41	14

>=0.7g/t Au

The Culculli Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.4 Jack Ryan

14.6.4.1 Summary

The Jack Ryan deposit is located approximately 60 km by road south of the Bluebird Mill, accessible from the Great Northern Highway and private mining haul road.

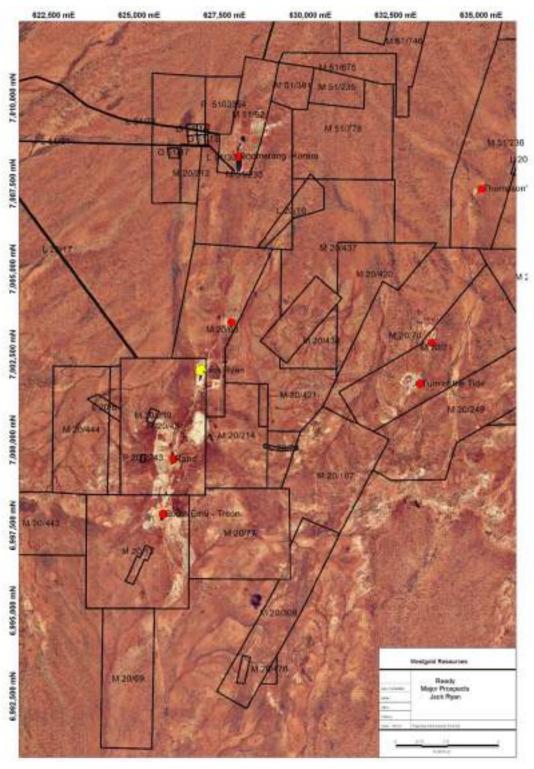


Figure 14-97 Location of the Jack Ryan deposit - Source: Westgold.

It has been mined historically as an open pit from February 1992 to August 1994 by Metana Minerals, producing 480,000 t at 2.65 g/t Au.

Westgold undertook an open pit cutback from January 2016 to September 2017, producing 522,325 t at 2.14 g/t for 35,912 oz. Westgold later developed an underground mine from February 2018 to January 2019, producing 80,966 t at 3.39 g/t for 8,825 oz.

Westgold first conducted a Mineral Resource Estimate for Jack Ryan in 2015 after drillhole validation and resource development drilling to the north of the deposit (Finch, 2015). This report led to development of the open pit cutback. Westgold updated the Mineral Resource Estimate in 2017 prior to developing the underground mine, incorporating all open pit grade control drilling data, and further resource development drilling including diamond drilling further to the north and at depth (Witten, 2017d). The model was updated in 2019 to combine all the final underground development and grade control drilling data, and to add post-mining resource drilling further to the north and a depth. The Mineral Resource Estimate was depleted with the final underground void survey and flagged with the underground waste backfilled into the depleted open pit.

14.6.4.2 Modelling Domains

The geologically modelled mineralisation domains represent the altered and sheared felsic tuff volcaniclastic material that hosts the gold mineralisation. These domains coincide with a wireframing cut-off of 0.5 g/t that generally coincides with logged geology and sulphides.

Strings were digitised on section to establish the 0.5 g/t cut-off envelope around the individual mineralised zones. Generally, a maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two metres was modelled.

Figure 14-98 Mineralisation in the north wall of the Jack Ryan open pit. September 22, 2017 - Source: Westgold.

Figure 14-99 Jack Ryan mineralisation. Bedded volcaniclastic rock, weak alteration and sulphides, weak foliation - Source: Westgold.

Figure 14-100 Jack Ryan mineralisation. Mylonite texture. Strongly sheared/foliated, intense silicification and sulphides - Source: Westgold.

Figure 14-101 Jack Ryan mineralisation. Material approaching footwall, fine to medium grained mafic rock with disseminated sulphides, localised foliation and alteration - Source: Westgold.

Figure 14-102 Jack Ryan mineralisation. Carbonate stockwork veining approaching footwall - Source:

Westgold.

From Witten (2017d). The mineralised material on the hangingwall is a bedded volcaniclastic with weak silicification and sericite alteration, and low amounts of disseminated pyrite. The unmineralised hangingwall is the same volcaniclastic unit but without pyrite or silica alteration.

The core of the mineralisation is dominated by strongly sheared / foliated mylonite volcaniclastic rock, intensely silicified and sericite altered, with intense disseminated pyrite throughout. It is visually distinct from the surrounding lower grade material within the broader mineralisation domain.

The material approaching the footwall appears to be a mafic rock which is fine to medium grained, massive or weakly foliated, with reduced amounts of disseminated pyrite throughout, but there are localised intense patches of sulphides. There are moderate localised shearing or foliation zones (20-40 cm) that are silicified, and sericite altered and have increased disseminated pyrite. These zones correspond with high grade assays (+5 g/t Au) in the interval. Stockwork carbonate veining is increasing to the base of the interval at the footwall. The footwall is a massive mafic (basalt or dolerite) lithology.

14.6.4.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Table 14-231 Jack Ryan domain statistics and top-cuts.

<u>Au raw</u>															
Domain	1010	1011	1012	1014	1015	1020	1030	1031	1040	1051	1052	1053	1060	1070	1100
Drillholes	701	150	38	91	27	17	137	19	20	95	91	3	9	3	28
Samples	5982	714	125	389	168	74	408	39	75	459	255	12	35	22	107
Imported	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865
Minimum	0.01	0.01	0.04	0.01	0.01	0.06	0.02	0.05	0.02	0.01	0.06	0.24	0.31	0.11	0.04
Maximum	32.00	98.35	6.01	10.70	6.68	29.80	76.93	9.90	42.33	11.51	11.20	2.04	57.75	3.38	12.25
Mean	2.76	2.04	1.27	1.67	1.10	3.36	1.80	0.99	3.17	1.18	0.76	0.78	7.49	1.08	1.46
Standard deviation	3.37	5.47	1.07	1.34	1.14	5.50	4.34	1.65	5.74	1.45	0.78	0.48	12.78	0.84	2.20
CV	1.29	2.69	0.84	0.80	1.05	1.64	2.41	1.67	1.81	1.23	1.02	0.62	1.71	0.78	1.50
Variance	11.38	29.88	1.14	1.79	1.31	30.21	18.80	2.72	32.91	2.10	0.61	0.23	163.33	0.70	4.85
Skewness	3.97	11.47	1.60	2.48	1.83	2.92	13.20	4.50	4.81	4.48	9.74	1.73	2.70	1.30	3.22
50% (Median)	1.53	0.91	0.91	1.32	0.81	1.27	0.76	0.52	1.07	0.78	0.61	0.66	2.01	0.74	0.68
90%	5.93	3.79	2.57	3.19	2.85	7.12	4.18	1.76	7.70	2.08	1.23	1.17	18.99	2.21	3.63
95%	8.10	5.89	3.49	4.17	3.61	17.76	5.72	2.74	11.61	3.14	1.71	1.55	36.66	2.36	6.40
97.5%	11.09	9.00	4.24	4.97	3.94	18.86	10.18	3.81	15.17	4.89	2.00	1.80	42.09	2.83	8.22
99.0%	16.50	18.71	4.42	7.02	4.65	22.62	11.86	7.46	22.50	9.69	2.21	1.94	51.49	3.16	11.70
Top Cut	32.00	10.00	Х	5.00	4.00	10.00	10.00	5.00	10.00	10.00	3.00	Х	20.00	Х	10.00
No Values Cut	16.00	15		8	4	7	11	1	6	3	1		4		2
% Data	0.3%	2.1%		2.1%	2.4%	9.5%	2.7%	2.6%	8.0%	0.7%	0.2%		11.4%		1.9%
% Metal	1.8%	19.8%		2.9%	2.3%	24.9%	11.0%	12.7%	20.1%	0.7%	2.8%		28.3%		2.6%

Au_cut															
Domain	1010	1011	1012	1014	1015	1020	1030	1031	1040	1051	1052	1053	1060	1070	1100
Samples	5982	714	125	390	168	74	408	39	75	459	255	12	35	22	107
Imported	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865	8865
Minimum	0.005	0.005	0.04	0.005	0.005	0.057	0.02	0.05	0.02	0.005	0.06	0.24	0.31	0.11	0.04
Maximum	32	10	6.01	5	4	10	10	5	10	10	3	2.04	20	3.38	10
Mean	2.71	1.63	1.27	1.62	1.07	2.52	1.60	0.86	2.54	1.17	0.73	0.78	5.37	1.08	1.43
Standard deviation	3.373	1.871	1.015	1.122	1.054	2.737	2.049	1.024	3.052	1.344	0.438	0.429	6.272	0.877	1.825
cv	1.29	1.22	0.83	0.69	0.96	1.16	1.33	1.19	1.12	1.17	0.61	0.59	1.30	0.75	1.39
Variance	11.378	3.502	1.031	1.258	1.111	7.49	4.198	1.048	9.316	1.806	0.192	0.184	39.343	0.769	3.332
Skewness	3.974	2.567	1.371	1.16	1.415	1.733	2.629	2.611	1.584	4.26	1.856	1.655	1.504	1.527	2.809
50% (Median)	1.531	0.89	0.89	1.4	0.836	1.178	0.747	0.53	1.091	0.77	0.61	0.637	1.715	0.774	0.67
90%	5.93	3.38	2.49	3.14	2.863	5.866	3.807	1.764	8.731	1.915	1.22	0.997	16.476	2.244	2.453
95%	8.1	5.4	3.233	4.048	3.67	10	5.676	2.744	10	2.982	1.667	1.364	20	2.62	4.93
97.5%	11.094	7.741	3.595	4.779	3.94	10	9.659	3.755	10	4.312	1.992	1.702	20	3	7.607
99.0%	16.5	10	4.329	5	4	10	10	4.502	10	8.987	2.213	1.905	20	3.228	9.346

14.6.4.4 Density

Density laboratory test-work of oxide and transitional rock was undertaken by Westgold mine geologists whilst mining the Jack Ryan open pit. Results from this testwork has been adopted as the oxide and transitional density values for the Jack Ryan resource. It should be noted that there is an increase in density though transitional material with increasing depth whilst approaching the fresh rock contact, however, detailed sampling along strike and vertically down the deposit has not been conducted, so a gradational density change cannot be applied to the resource.

Diamond core from Westgold resource drilling was used to measure fresh rock density of samples of fresh rock, later confirmed by bulk density test-work on grab samples from underground production.

Table 14-232 Jack Ryan model density values.

Material Type	Oxide	Transitional	Fresh
Rock	1.73	2.10	2.60
Fill	1.40		
Air / Void	0.00		

14.6.4.5 Variography

A geostatistical analysis of down-hole composited Jack Ryan data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are back-transformed from the Gaussian distribution using Hermite polynomials.

The variogram model and estimation parameters for the major domains were used for the remainder of the mineralisation domains with insufficient samples for geostatistical analysis.

For the current reportable resource model, only the domains updated with new data since the 2017 resource model underwent geostatistical analysis. All other domains underwent comprehensive geostatistical analysis in 2017 for the resource report (Witten, 2017d). A summary of the parameters is tabled below.

Table 14-233 Jack Ryan estimation parameters.

Domain Code	1010	1011	1012	1014	1015	1020	1030	1031	1040	1051	1052	1053	1060	1070	1100
Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
# Structures	2	1	1	2	2	1	1	1	2	1	1	1	2	2	1
CO	0.35	0.67	0.22	0.30	0.37	0.31	0.70	0.70	0.37	0.69	0.69	0.69	0.37	0.37	0.94
C1	0.40		0.78	0.40	0.37	0.69		0.30		0.31		0.31	0.37	0.37	0.06
a1	18.00		50.00	6.00	18.00	60.00		22.00		15.00		15.00	18.00		
C2	0.25		0.00	0.30	0.26	0.00	0.00	0.00	0.26	0.00	0.00	0.00	0.26		0.00
a2	90.00		0.00	40.00	90.00	0.00	0.00	0.00	90.00	0.00	0.00	0.00	90.00		0.00
C3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL SILL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
TOTALSTEE	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1. Major : Semi Major	1.5	5 2	1.43	1	1.286	3	1.1	1.1	1.286	3.5	3.5	3.5	1.286	1.286	1
1. Major : Minor	1.5		1.43	1	1.200	3	1.1	1.1	1.200	3.5		3.5	3	1.200	1
2. Major : Semi Major	2		0	2	2.25	0	0	0	2.25	3.3			2.25	2.25	1
			0	2	2.25		0	0	2.23	0	0	0	2.23	2.23	0
2. Major : Minor	0		0	0	0	C		0	0		0	0		0	0
3. Major : Semi Major			_	0	0	U	0	0		0		0	0	0	0
3. Major : Minor		0	0	U	0	U	0	U	0	U	0	0	U	U	0
SURPAC STRIKE	359.7	356.5	9.7	3.9	359.7	15	351.5	351.5	359.7	358.5	358.5	358.5	359.7	359.7	359.7
SURPAC PLUNGE	-17.2		-17.2	-25.7	-17.3	-8.6		-28.9		-7.6		-7.6	-17.3	-17.3	17.2
SURPAC DIP	-17.2		-17.2 58.4	-25.7 56.3	-17.3 58.4	-8.6		-28.9 72.8		-7.6 49.6					
JUNE AL DIP	58.4	9.7	58.4	50.3	58.4	-59.6	1 /2.8	/2.8	58.4	49.6	49.6	49.6	58.4	58.4	-58.4
Search															
Method	FILIDCOID	FILIDCOID	FLLIDCOID	FILIDCOID	FLLIDCOID	FILLIDGOID	FILLIDGOID	FILIDCOID	FILLIDCOLD	FILLIDGOID	FILLIDGOID	FILLIDCOID	FILLIDGOID	FILLIDGOID	FILLIDGOLD
Estimation Block Size (x,y,z)	5, 5, 5			ELLIPSOID											
		5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5	5, 5, 5
Estimation Block Size X	5		5	5	5		,	5	5	5	5	5	5		5
Estimation Block Size Y	5		5	5	5		,	5	5	5		5	5		
Estimation Block Size Z	5		5	5	5			5	5	5		5	5		_
Disc Point X	5		5	5	5		_	5	5	5		5	5		
Disc Point Y	5		5	5	5			5	5	5		5	5		
Disc Point Z	5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max															
Search Limitation															\Box
Limit Samples by Hole Id	Y	Υ	Υ	-	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ		Υ	Υ
Hole Id D Field	d2		d2	d2	d2	d2		d2		d2		d2	d2		
Max Samps per Hole	5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5
Pass1															
Min	6		4	10	8			16		12					
Max	22		24	26	28			30					28		
Max Search	60		45	36	60	40		22		35		35	60		
Major/Semi	2		1.5	2	2.25	3		1.1	2.25	3.5			2.25		
Major/Minor	6	2	2	2	9	3	2	2	9	3.5	3.5	3.5	9	9	1
Run Pass 2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	1.5	2	2	1.5	1.5	1.5	2	2	1.5	2	_	2	1.5		
Major/Semi	2	2	1.5	2	2.25	3	1.1	1.1	2.25	3.5	3.5	3.5	2.25	2.25	1
Major/Minor	6		2	2	9			2	9	3.5		3.5	9		
Min	6		4	10	8			16					8		
Max	22	30	24	26	28	26	30	30	28	28	28	28	28	28	30
							_				_		_	_	
Run Pass 3	Υ		Υ	Υ		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2		2	2	2	1.5	2	2	2				2		
Major/Semi	2		1.5	2	1.5	3	1.1	1.1		3.5		3.5	1.5		
Major/Minor	6	2	2	2	2.25	3	2	2	2.25	3.5	3.5	3.5	2.25	2.25	1
Min	3	4	4	5	4	4	. 8	8	4	6	6	6	4	4	6
Max	11	14	12	13	14	14	14	14	14	14	14	14	14	14	14
				13											

14.6.4.6 Block Model and Grade Estimation

The model is in Reedy 2014 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Table 14-234 Jack Ryan block model parameters.

	Υ	X	Z
Min	43,350	20,350	0
Max	45,010	20,810	520
Extents	1,660	560	520
Parent size	5.00	5.00	5.00
Sub-Block size	2.50	1.25	1.25

The Ordinary Kriging (OK) method of interpolation was used to fill the blocks within all domains. The OK estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For Jack Ryan, all interpolation was conducted in three passes to fill all blocks in the estimation domains. An increased search distance either 1.5 x or 2 x was used for the second and third estimation passes. A reduction of minimum and maximum informing samples was used for the third interpolation pass.

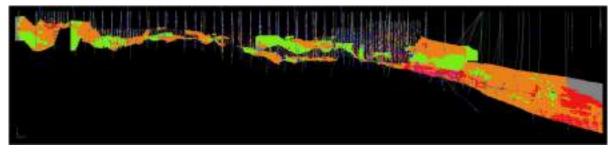


Figure 14-103 Jack Ryan depleted Mineral Resource Estimate, all domains - Source: Westgold.

14.6.4.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic or Westgold production data. However, over the life of the Westgold open pit from January 2016 to September 2017, claimed production vs mill reconciled production has been within 5% variation.

Table 14-235 Jack Ryan open pit production reconciliation, Westgold project to date.

		Actual		(Claimed		% Variance			
	Tonnes Grade Oz		Tonnes	Grade Oz		Tonnes	Grade	Oz		
Open Pit	522,325	2.14	35,912	524,927	2.25	37,970	0%	-5%	-5%	

Over the life of the Westgold underground mine from February 2018 to January 2019, claimed high grade stope and development production (CMS survey of the mined void v. estimated model, adjusted for external dilution sources) v. mill reconciled actual stope production has been within 7% variation. Low grade production was minimal.

Table 14-236 Jack Ryan underground production reconciliation, Westgold project to date.

		Actual		C	Claimed		% Variance			
	Tonnes	Grade	Oz	Tonnes	Grade	Oz	Tonnes	Grade	Oz	
High-	60,949	3.37	6,606	57,007	3.40	6,227	+7%	-1%	+6%	
Grade										
Low-Grade	509	1.20	20	622	1.17	23	-18%	+2%	-16%	

14.6.4.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Jack Ryan Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence, generally coincident with areas of the resource with open pit grade control drilling or underground development face sampling, with the mineralisation interpretation supported by open pit, face and backs mapping and validated by face photos during mineralisation domain interpretation.
- (2) The Indicated Mineral Resource category was applied where Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 10-20 m.
- (3) The Inferred Mineral Resource category was applied where Tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The Jack Ryan Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

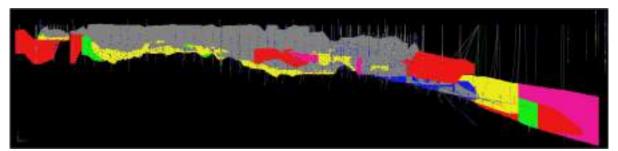


Figure 14-104 Jack Ryan resource classification. Yellow Measured, Green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised, grey = Depleted - Source: Westgold.

14.6.4.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral

Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-237 Jack Ryan Open Pit Mineral Resources on June 30, 2024.

	Jack Ryan Open Pit Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred													
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Jack Ryan OP	70	1.29	3	7	1.53	0.04	77	1.31	3	86	1.32	4	
Total 70 1.29 3 7 1.53 0.04 77 1.31 3 86 1.32 4													

>=0.7g/t Au

Table 14-238 Jack Ryan Underground Mineral Resources at June 30, 2024.

	Jack Ryan Underground Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred													
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	
Jack Ryan UG	43	2.39	3	62	2.51	5	105	2.46	8	82	2.92	8	
Total	Total 43 2.39 3 62 2.51 5 105 2.46 8 82 2.92 8												

>=2.0g/t Au

The Jack Ryan Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.

- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.5 Rand

14.6.5.1 Summary

The Rand deposit is located within the Reedy mining area 60 km southwest of the town of Meekatharra (48 km south of Bluebird mill and 40 km north of the Tuckabianna mill) and forms part of the Reedy Project.

Rand was first mined using open pit methods by Metana Minerals NL in 1984 and produced 603,000 t at 5.0 g/t Au for 97,000 oz of gold. During the mid-1990's Gold Mines of Australia (GMA) cutback the existing pit and produced a further 199,000 t at 2.82 g/t for 18,000 oz with the final pit reaching approximately 120 m below surface in the southern portion of the deposit and 45 m below surface in the northern portion of the deposit.

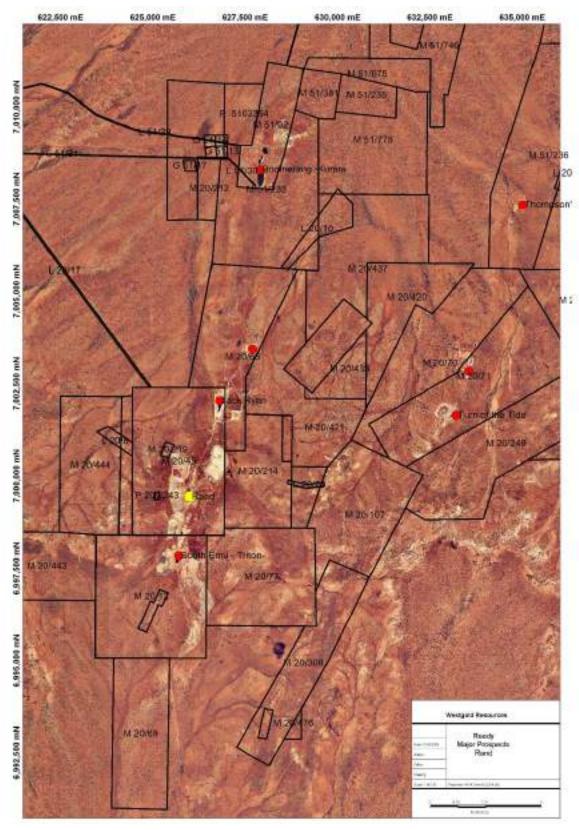


Figure 14-105 Location of the Rand deposit - Source: Westgold.

14.6.5.2 Modelling Domains

All modelling and estimations were performed using Surpac. Geostatistical analysis was conducted in Supervisor. Where possible, the known geological controls on mineralisation within the Rand deposit were used to guide mineralisation strings.

Mineralisation strings were digitised on section at 10 m spaced intervals to establish a 0.5 g/t Au cut-off envelope around the interpreted mineralisation. A maximum of two metres of downhole internal dilution was included, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along strike control on the location of the mineralised structure. An assumed minimum mineralisation width of 2 m was defined.

Strings were snapped to drillholes at sample interval boundaries, with no artificial complexities introduced into the mineralisation geometry (although points were created between drillholes to ensure accuracy during wire framing). No automatic string smoothing functions were used.

Wire framing of mineralisation sectional perimeters was performed via the linking of appropriate perimeters on adjacent sections. The wireframes were sealed by triangulation within the end member perimeters, leading to the creation of a volume model.

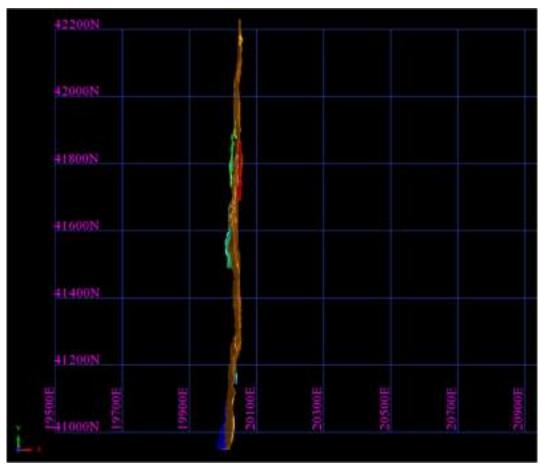


Figure 14-106 Mineralisation Interpretation of the Rand deposit in plan view - Source: Westgold.

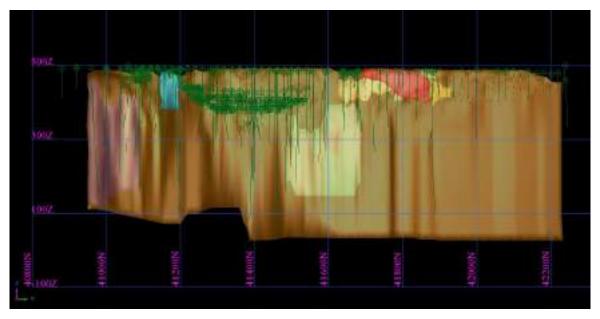


Figure 14-107 Mineralisation Interpretation of the Rand deposit in long-section view with drill hole traces shown - Source: Westgold.

14.6.5.3 Statistical Analysis and Compositing

A top-cut analysis was performed for data included in the resource estimate. The one metre composite samples of downhole assay data were ranked. Datasets were then graphed and analysed for disintegrations, which are defined as the first significant increase in percentage difference between adjacent values for assay values sufficiently above the mean assay value for the dataset.

The analysis for top cut determination was conducted on all mineralisation domains. Common measures of determining an appropriate top cut were reviewed such as log probability plots, histograms, and review of percentiles. During this review factors such as the number of composites cut, the percentage of data cut, and the percentage of metal content cut were considered to ensure an appropriate value where required was chosen.

For domain 1 the fresh and oxidised data was analysed separately. There are marked statistical differences between an upper 'gold rich' zone within the existing Rand pit and the remnant material. Inclusion of the mined material showed a top cut of 50 g/t was appropriate for both the oxidised and fresh material. However, analysis of the remnant data showed that a lower top cut of 30 g/t was more suitable and using a higher top cut was not supportable statistically and would bias the estimate for the remnant material. As such a top cut of 30 g/t was chosen.

Table 14-239 Raw and top-cut statistics for domains at Rand.

Domain	186	1:		1141	\$1	40	9.	- 1	
flam Date:									
Count	14842	16	118	134	160	10	207	193	9
bleam	436	4.58	1-28	3.73	1.62	3.10	1.17	2.29	1.01
Stod Overe	190.10	1.42	1.55	3.93	3.67	1.26	1.49	2.90	3.79
Variance	36903.43	103	8.79	15.48	11.76	10.64	7.11	8.30	11.00
D/	42.18	0.90	1.57	141	1.11	1.49	1.25	1.25	1.24
Sinnachess	111.04	1.67	3.25	231	0.30	8.64	2.86	3.33	1.64
Nartosia:	34123.43	2.97	14.42	6.32	97,57	24.02	9.00	21.20	1.47
Belon Maan	0.00	1.27	0.57	1.11	4.88	1.00	0.65	537	2.38
Light Mean	2.77	0.57	5.92	9.27	1.58	3.62	1.23	2.27	2.10
Maximum	21000.00	9.67	38.46	29.25	49.00	15.96	8.97	25.00	10:91
75%	2.23	2.79	1.50	2.83	1.85	2.43	1.22	2.78	1.58
Median	0.94	1.03	0.505	1.25	0.80	1.30	0.66	1.25	1.07
25%	0.57	0.64	0.067	0.52	0.50	0,61	0.60	0.62	0.54
Minimum	0.300	0.186	0.030	0.013	0.017	0.905	9.005	0.005	9.275
Range	23000.00	5.35	23.38	19.28	39.95	15.06	5.97	35.00	1000
Au. Del		5007	1000V	(40,00	0.77	2007/04	- ///	200	
Densis		2		14.5			9:		
Top Cut Applied:	10	16:	40	18.99	10.47	-	100	11.2	10
PSEMPLE OF	117					1		7	1
% Data-Eat	0.80%	0.02%	0.00%	6.32K	8.71%	5.00%	0.00%	1.04%	_
Cur Data:			1000	1000		1000			
Chart	14542	1 - 1 - 1	155911 1	134	140	20		193	
Maan:	3.11	1.11	1.21	2.46	141	160	1.17	2.17	
Std Day	2.01			2.98	1.65	1.44	17.7	2.41	
Verance	14.69			0.65	133	2.08		6.90	
CV .	181			1.21	1.17	0.65		112	
Seenen	4.76			1.71	5.18	3.07		2.15	
Vartoris	27.77			2.18	18.64	0.38		6.28	
George Means	6.83			1.18	0.65	0.07		1.16	
Log-Eit Mexit	144			2.019	111	1.03		1.16	
Marmon	10.00			30.89	10.67	8.00		11.30	
79%	2.29			2.811	1.88	2.41		2.74	
Median	0.94			1.26	0.00	130		1.25	
35%	0.37			0.33	0.90	2.61		0.60	
Marija	0.000			810.0	0.017	0.005		0.006	
	14 51 07 1	1000	0.00				174447		-
Range	10.00	0.00	0.00	22.84	10.69	3.00	8.00	32.30	1

14.6.5.4 Density

Where no drill core or other direct measurements are available, density factors have been taken from the preceding Snowden (Graindorge, 2011c) and Cube Consulting (2005b) models. Fresh density values are based on measurements taken from Metals X holes drilled at the nearby Triton deposit to the south that has the same lithology and mineralisation controls as Rand.

Density values were assigned to the Rand resource model based on geologically modelled oxidation surfaces. The values have been assigned to the Rand model are tabled below.

Table 14-240 Rand assigned densities.

Material	Density
Air	0.00
Cover	N/A
Oxide	2.00
Transitional	2.20
Fresh	2.85
Backfill	2.00

14.6.5.5 Variography

Geostatistical analysis of Au within the largest domain (domain 1) was conducted within the Snowden Supervisor software package for the May 2015 resource model. The results of this analysis have been deemed acceptable to be applied to the updated (September 2015) model.

Parameters derived from the analysis of domain 1 were applied to all other estimation domains due to the small number of informing samples present in the other domains and similar mineralisation characteristics.

A normal scores transformation was applied to the dataset to reduce the effect of the higher grades on the data pairs to enable experimental variograms to be modelled. The down hole (omnidirectional) variogram and directional variograms were modelled on the normal scores data and then back-transformed into raw space. A shallow southerly plunge was identified and modelled.

The directional variogram modelling results are shown below. Anisotropy ratios of 2.00 for the major / semi-major direction and 2.00 for the major / minor direction were assigned and are consistent with the style of mineralisation.

The plunge direction as defined by the variograms is consistent with the grade trends observed in the raw data and in the contouring of the raw data using an isotropic inverse distance method.

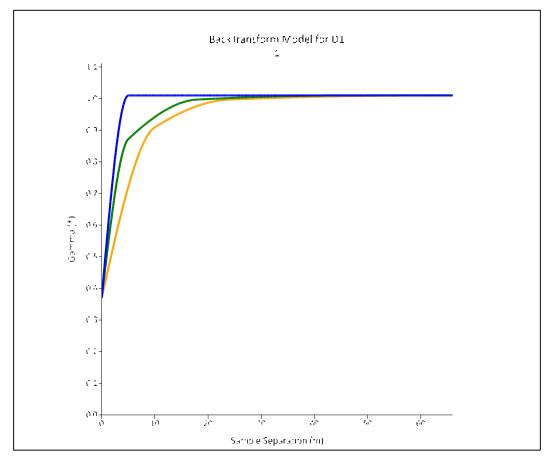


Figure 14-108 Rand continuity models for domain 1- Source: Westgold.

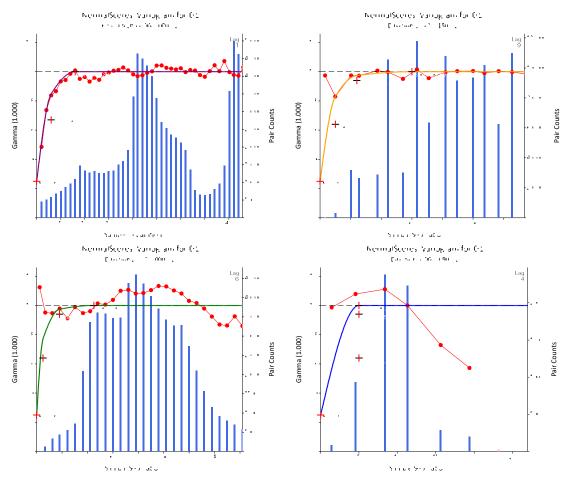


Figure 14-109 Rand directional variograms for domain 1 - Source: Westgold.

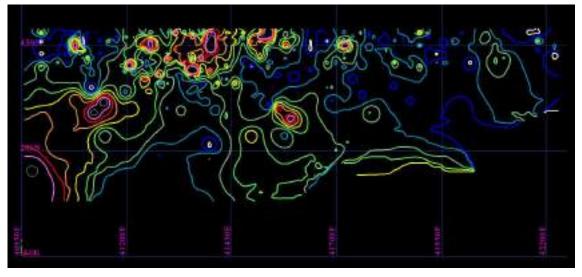


Figure 14-110 Domain 1 grade contours. Contours were generated using an ID² interpolation method at 0.5 g/t Au intervals within the range from 0.0 g/t Au to 5.0 g/t Au. Warmer colours indicate higher grade - Source:

Westgold.

14.6.5.6 Block Model and Grade Estimation

The model is in Reedy 2014 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50).

A single block model was created (rand_150918_depl.mdl) that encompassed all mineralisation at the Rand deposit.

Table 14-241 Rand block model parameters.

	Υ	Х	Z
Min	40,750	19,750	0
Max	42,350	20,350	550
Extents	1,600	600	550
Parent size	10.00	5.00	5.00
Sub-Block size	2.50	1.25	1.25

The ordinary kriging method of interpolation (OK) was used to fill the blocks within all domains. This estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Kriging Neighbourhood Analysis (KNA) was completed on interpolation parameters for domain 1 to optimise the estimate. When conducting a kriged estimate, the search volume or 'kriging neighbourhood' is defined by the user. The definition of this search can have a significant impact on the outcome of the estimate. In essence KNA is one of adjusting the neighbourhood to arrive at good regression statistics to reduce or eliminate conditional bias (Vann, 2003).

Neighbourhood parameters reviewed include block size, minimum and maximum number of informing samples, search range and block discretisation.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation) and carried out in three passes. Interpolation parameters for the Rand model are tabled

Table 14-242 Interpolation parameters used within the Rand resource.

#interp	object element	comp	field	min_sam	max_sam	maj_dis	semi	minor	strike	dip	plunge	c0	c1	a1	semi1	minor1	c2	a2	semi2	minor2	c3	a3	semi3	minor3	pass 1
interp	1 au_cut_ok	10	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	2 au_cut_ok	20	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	3 au_cut_ok	30	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	4 au_cut_ok	40	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	5 au_cut_ok	50	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	6 au_cut_ok	60	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	7 au_cut_ok	70	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	8 au_cut_ok	80	1	14	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	9 au_cut_ok	90	1	4	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	1
interp	1 au_cut_ok	10	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	2 au_cut_ok	20	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	3 au_cut_ok	30	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	4 au_cut_ok	40	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	5 au_cut_ok	50	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	6 au_cut_ok	60	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	7 au_cut_ok	70	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	8 au_cut_ok	80	1	8	40	60	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	2
interp	1 au_cut_ok	10	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	2 au_cut_ok	20	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	3 au_cut_ok	30	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	4 au_cut_ok	40	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	5 au_cut_ok	50	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	6 au_cut_ok	60	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	7 au_cut_ok	70	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3
interp	8 au_cut_ok	80	1	4	40	120	2.00	2.00	180	90	-20	0.37	0.42	10	2.00	2.00	0.19	24	1.33	4.80	0.03	60.00	1.33	12.00	3

14.6.5.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model.

Overall, the estimation for domain 1 which accounts for 83% of the total metal above a 0.5 g/t COG is robust with some smoothing of the block grades apparent when viewing the swath plots. There appears to be some over-estimation of the blocks north of 41,400 mN and above the 450 mRL. However, globally the estimated blocks are within 2% of the input data.

The block means versus the declustered input mean grade for domains 2-8 are tabled below. Except for domains 2 and 3 the percentage difference is less than 5% between input and output grades. The Mineral Resource classification for domain 2 reflects the small number of composites informing the domain and the apparent overestimation (+11%). Overestimation within domain 3 (+24%) is caused by isolated high-grade assays at the bottom of the domain influencing a large number of blocks. However, globally the domain accounts for only 0.5% of the total metal within the model above a 0.5 g/t COG.

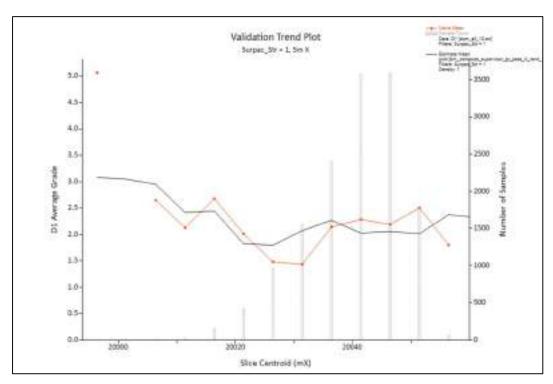


Figure 14-111 Rand block model validation - Domain 1 swath plot by easting (X) - Source: Westgold.

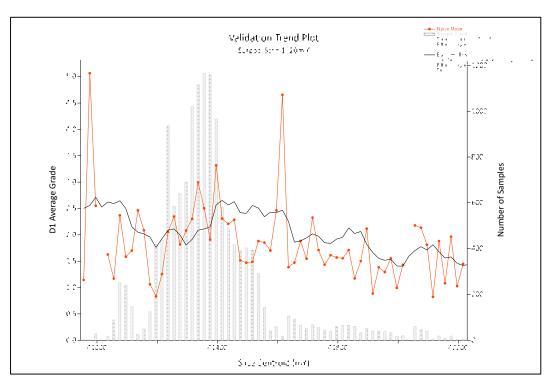


Figure 14-112 Rand block model validation – Domain 1 swath plot by northing (Y) - Source: Westgold.

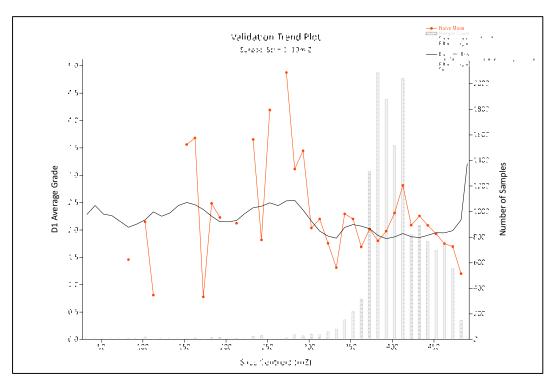


Figure 14-113 Rand block model validation - Domain 1 swath plot by elevation (Z) - Source: Westgold.

Table 14-243 Rand domains estimate block mean versus declustered input composite mean grade.

Domain	Mean	Declustered Mean	Block Mean	% Difference	% of Total Metal
1	2.12	2.085	2.127	2%	82.8%
2	1.58	1.577	1.743	11%	2.7%
3	1.24	1.382	1.708	24%	0.5%
4	2.46	2.452	2.508	2%	12.8%
5	1.41	1.389	1.421	2%	0.1%
6	1.69	1.681	1.636	-3%	0.1%
7	1.17	1.086	1.116	3%	0.5%
8	2.17	1.959	2.000	2%	0.4%

14.6.5.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Rand Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource category was not applied to any material.
- (2) The Indicated Mineral Resource category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, where estimate blocks were informed with reasonable sample support from a drillhole spacing of 10-20 m.

(3) The Inferred Mineral Resource category was applied where tonnage, grade, and mineral content can be estimated with a reduced level of confidence, such as where mineralisation domains are only broadly defined by wide-spaced drill sections >20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat' as Unclassified = 4.

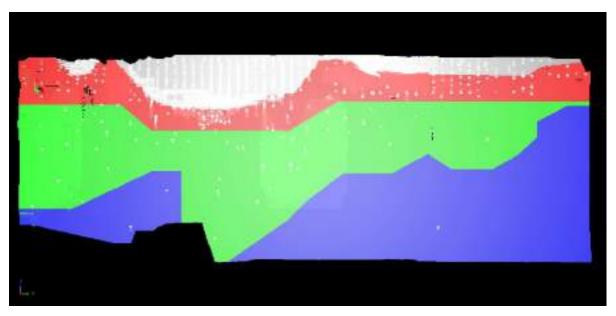


Figure 14-114 Mineral Resource Classification of Rand with drill hole composites shown. Red = Indicated, green = Inferred, blue = Unclassified, grey = Depleted - Source: Westgold.

The Rand Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.6.5.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Table 14-244 Rand Open Pit Mineral Resources on June 30, 2024.

	Rand Mineral Resource Statement - Rounded for Reporting 30/06/2024														
	Measured Indicated Measured and Indicated Inferred														
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
Rand	0	0.00	0	1,124	1.75	63	1,124	1.75	63	3,182	2.36	241			
Total	0	0.00	0	1,124	1.75	63	1,124	1.75	63	3,182	2.36	241			

>= 0.7 g/t Au.

The Rand Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.6 South Emu - Triton

14.6.6.1 Summary

The South Emu - Triton deposit is located within the Reedy mining area 60 km southwest of the town of Meekatharra (50 km south of Bluebird mill and 37 km north of the Tuckabianna mill) and forms part of the Reedy Project. Triton underground was originally mined by Western Mining during the period of 1935 to 1948 and produced a total of 245,277 oz of gold. South Emu produced 66,200 oz of gold. Triton (Remnants) produced 116,000 t at 3.6 g/t for 12,800 oz between 1994 and 1995.

Westgold recommenced underground mining at South-Emu in late-2018, producing 892 kt at 3.09 g/t Au for 88,500 oz up to the mine being up on care and maintenance on June 30th, 2023.

The resource model was updated during the reporting period to enable ongoing mining feasibility studies. This included a change to the parent and sub-cell block size.



Figure 14-115 Location of the Triton – South Emu deposit - Source: Westgold.

14.6.6.2 Modelling Domains

Mineralisation domain modelling was completed in Leapfrog Geo.

The general orientation of the interpreted estimation domains strikes north-south and dip vertically or steeply towards the west or east. The domain selection criteria were based upon:

- >1 g/t Au threshold, as defined from log-probability plots and boundary analysis.
- An approximate minimum mining width of ~2 m.

The interpretation is based on percussion, RC, diamond drilling and face sampling data. The open pit grade control information was used to guide the interpretation. The South Emu mineralised area is characterised by a series of stacked lodes associated with deposit scale folding within the regional shearing that hosts the mineralisation. The Triton mineralisation consists of a primary shear with minor hanging wall and footwall splays. The Triton shear extends to the South Emu mineralised area.

The geological and estimation domains were interpreted initially on cross sections. It was assumed the entire historic underground face sample falls within the mineralised domain. The additional underground drill holes sourced from the archive at Triton North indicated continuity of the mineralisation into the hanging wall and footwall of the drive at predominantly level 12 and level 14. Additional domains were interpreted to consider these new observations, and they extend over 150 m strike length overall.

The 2022 interpretation was checked against historical drillholes and face data with material issues noted with the previous interpretation regarding selective use of historical face samples in guiding the Triton mineralised domains. These issues were corrected in undepleted areas of the resource and in areas of the depleted resource where the samples may influence the remnant resource.

For Triton, previous models have used a 2.0g/t lower wireframing COG for defining the mineralisation domains. For the 2024 resource model, log probability plot analysis of the MSI lithology unit hosting mineralisation shows a clear inflection point in the data at 1.0g/t Au. As a result, re-interpretation of the remnant mineralisation for Triton used a 1g/t COG to define the mineralisation domain boundary.

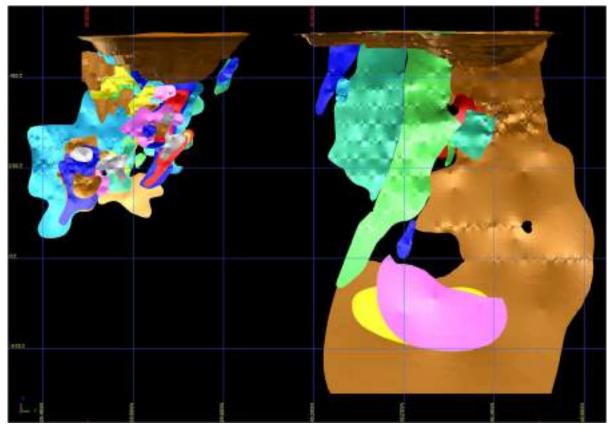


Figure 14-116 South Emu - Triton interpreted mineralisation domains - Source: Westgold.

14.6.6.3 Statistical Analysis and Compositing

A top-cut analysis was performed for data included in the resource estimate. The one metre composite samples of downhole assay data were ranked. Datasets were then graphed and analysed for disintegrations, which are defined as the first significant increase in percentage difference between adjacent values for assay values sufficiently above the mean assay value for the dataset.

The analysis for top cut determination was conducted on all mineralisation domains. Common measures of determining an appropriate top cut were reviewed such as log probability plots, histograms, and review of percentiles. During this review factors such as the number of composites cut, the percentage of data cut, and the percentage of metal content cut were considered to ensure an appropriate value where required was chosen.

Top-cuts for the mineralisation domains area tabled below. Distance-based (limiting) top cuts were applied to the waste (9999) domain were samples >3.06 g/t Au were removed from the block estimate once the distance to the block centroid exceeded 15m.

Table 14-245 South Emu domains statistics and top-cuts. Part 1.

Au raw - Domain	1001	1002	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051
Samples	305	991	7	393	333	584	6	114	23	151	161	21	14	21
Minimum	0.02	0.00	0.26	0.00	0.02	0.05	1.27	0.12	0.21	0.00	0.02	0.10	1.23	0.26
Maximum	1176.00	80.30	6.63	43.63	573.00	166.83	7.31	222.51	137.79	37.63	131.00	20.73	11.92	30.87
Mean	16.41	5.67	3.10	4.09	7.79	8.74	3.26	7.42	10.34	4.18	6.20	6.06	4.27	4.46
Standard deviation	81.04	7.81	2.03	4.42	33.32	14.04	2.08	21.37	27.27	4.32	13.03	5.63	2.56	6.17
CV	4.94	1.38	0.66	1.08	4.28	1.61	0.64	2.88	2.64	1.03	2.10	0.93	0.60	1.39
Variance	6566.78	61.04	4.13	19.50	1110.28	197.08	4.33	456.80	743.40	18.66	169.83	31.72	6.54	38.09
Skewness	12.44	3.85	0.30	3.98	15.13	6.44	0.96	9.02	4.43	3.99	7.02	1.48	1.69	3.68
50% (Median)	6.58	3.33	2.33	2.83	3.26	4.61	2.47	3.23	4.16	3.17	3.11	3.72	3.83	3.26
90%	19.90	12.97	5.28	7.58	11.50	19.25	5.50	12.46	7.42	7.86	10.46	14.47	6.13	5.83
95%	33.94	18.96	5.96	11.64	18.10	24.56	6.41	20.94	10.30	10.04	16.54	18.53	7.90	7.01
97.5%	39.03	27.67	6.29	15.70	30.36	39.35	6.86	36.16	64.77	14.02	27.82	19.69	9.91	18.37
99.0%	69.30	37.66	6.50	21.89	40.46	68.59	7.13	38.79	108.58	19.89	63.97	20.31	11.12	25.87
Top Cut	26	43	24	25	9999	32	45	9999	15	15	9999	24	9999	9999
Au cut - Domain	1001	1002	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051
0														
Samples	305	991	7	393	333	584	6	114	23	151	161	21	14	21
Samples Minimum	305 0.02	991 0.001	7 0.255	393 0.001	333 0.02	584 0.053	6 1.269	114 0.123	23 0.21	151 0.001	161 0.02	21 0.1	14 1.23	21 0.26
			-											
Minimum	0.02	0.001	0.255	0.001	0.02	0.053	1.269	0.123	0.21	0.001	0.02	0.1	1.23	0.26
Minimum Maximum	0.02 26	0.001 43	0.255 6.631	0.001 43.63	0.02 32	0.053 45	1.269 7.312	0.123 15	0.21 15	0.001 37.63	0.02 24	0.1 20.73	1.23 11.92	0.26 30.87
Minimum Maximum Mean	0.02 26 8.90	0.001 43 5.56	0.255 6.631 3.10	0.001 43.63 4.09	0.02 32 5.52	0.053 45 7.96	1.269 7.312 3.26	0.123 15 4.78	0.21 15 5.00	0.001 37.63 4.18	0.02 24 4.92	0.1 20.73 6.06	1.23 11.92 4.27	0.26 30.87 4.46
Minimum Maximum Mean Standard deviation	0.02 26 8.90 7.183	0.001 43 5.56 7.06	0.255 6.631 3.10 2.032	0.001 43.63 4.09 4.416	0.02 32 5.52 6.395	0.053 45 7.96 8.776	1.269 7.312 3.26 2.082	0.123 15 4.78 4.105	0.21 15 5.00 3.09	0.001 37.63 4.18 4.319	0.02 24 4.92 5.069	0.1 20.73 6.06 5.632	1.23 11.92 4.27 2.556	0.26 30.87 4.46 6.172
Minimum Maximum Mean Standard deviation CV	0.02 26 8.90 7.183 0.81	0.001 43 5.56 7.06 1.27	0.255 6.631 3.10 2.032 0.66	0.001 43.63 4.09 4.416 1.08	0.02 32 5.52 6.395 1.16	0.053 45 7.96 8.776 1.10	1.269 7.312 3.26 2.082 0.64	0.123 15 4.78 4.105 0.86	0.21 15 5.00 3.09 0.62	0.001 37.63 4.18 4.319 1.03	0.02 24 4.92 5.069 1.03	0.1 20.73 6.06 5.632 0.93	1.23 11.92 4.27 2.556 0.60	0.26 30.87 4.46 6.172 1.39
Minimum Maximum Mean Standard deviation CV Variance	0.02 26 8.90 7.183 0.81 51.597	0.001 43 5.56 7.06 1.27 49.849	0.255 6.631 3.10 2.032 0.66 4.128	0.001 43.63 4.09 4.416 1.08 19.501	0.02 32 5.52 6.395 1.16 40.902	0.053 45 7.96 8.776 1.10 77.01	1.269 7.312 3.26 2.082 0.64 4.334	0.123 15 4.78 4.105 0.86 16.853	0.21 15 5.00 3.09 0.62 9.55	0.001 37.63 4.18 4.319 1.03 18.657	0.02 24 4.92 5.069 1.03 25.69	0.1 20.73 6.06 5.632 0.93 31.721	1.23 11.92 4.27 2.556 0.60 6.535	0.26 30.87 4.46 6.172 1.39 38.089
Minimum Maximum Mean Standard deviation CV Variance Skewness	0.02 26 8.90 7.183 0.81 51.597 1.12	0.001 43 5.56 7.06 1.27 49.849 2.774	0.255 6.631 3.10 2.032 0.66 4.128 0.302	0.001 43.63 4.09 4.416 1.08 19.501 3.978	0.02 32 5.52 6.395 1.16 40.902 2.696	0.053 45 7.96 8.776 1.10 77.01 2.419	1.269 7.312 3.26 2.082 0.64 4.334 0.964	0.123 15 4.78 4.105 0.86 16.853 1.298	0.21 15 5.00 3.09 0.62 9.55 1.477	0.001 37.63 4.18 4.319 1.03 18.657 3.989	0.02 24 4.92 5.069 1.03 25.69 2.303	0.1 20.73 6.06 5.632 0.93 31.721 1.478	1.23 11.92 4.27 2.556 0.60 6.535 1.692	0.26 30.87 4.46 6.172 1.39 38.089 3.675
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	0.02 26 8.90 7.183 0.81 51.597 1.12 6.58	0.001 43 5.56 7.06 1.27 49.849 2.774 3.33	0.255 6.631 3.10 2.032 0.66 4.128 0.302 2.327	0.001 43.63 4.09 4.416 1.08 19.501 3.978 2.831	0.02 32 5.52 6.395 1.16 40.902 2.696 3.26	0.053 45 7.96 8.776 1.10 77.01 2.419 4.608	1.269 7.312 3.26 2.082 0.64 4.334 0.964 2.471	0.123 15 4.78 4.105 0.86 16.853 1.298 3.228	0.21 15 5.00 3.09 0.62 9.55 1.477 4.155	0.001 37.63 4.18 4.319 1.03 18.657 3.989 3.171	0.02 24 4.92 5.069 1.03 25.69 2.303 3.11	0.1 20.73 6.06 5.632 0.93 31.721 1.478 3.722	1.23 11.92 4.27 2.556 0.60 6.535 1.692 3.831	0.26 30.87 4.46 6.172 1.39 38.089 3.675 3.261
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	0.02 26 8.90 7.183 0.81 51.597 1.12 6.58 19.9	0.001 43 5.56 7.06 1.27 49.849 2.774 3.33 12.969	0.255 6.631 3.10 2.032 0.66 4.128 0.302 2.327 5.282	0.001 43.63 4.09 4.416 1.08 19.501 3.978 2.831 7.58	0.02 32 5.52 6.395 1.16 40.902 2.696 3.26 11.501	0.053 45 7.96 8.776 1.10 77.01 2.419 4.608 19.254	1.269 7.312 3.26 2.082 0.64 4.334 0.964 2.471 5.498	0.123 15 4.78 4.105 0.86 16.853 1.298 3.228 12.459	0.21 15 5.00 3.09 0.62 9.55 1.477 4.155 7.416	0.001 37.63 4.18 4.319 1.03 18.657 3.989 3.171 7.855	0.02 24 4.92 5.069 1.03 25.69 2.303 3.11 10.462	0.1 20.73 6.06 5.632 0.93 31.721 1.478 3.722 14.468	1.23 11.92 4.27 2.556 0.60 6.535 1.692 3.831 6.13	0.26 30.87 4.46 6.172 1.39 38.089 3.675 3.261 5.829

Table 14-246 South Emu domains statistics and top-cuts. Part 2.

Au raw - Domain	1052	1053	1054	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069
Samples	12	30	14	26	20	125	106	44	54	23	47	43	36	20
Minimum	2.03	0.30	0.60	0.06	0.02	0.73	0.14	0.72	0.06	0.72	0.09	0.68	0.96	1.04
Maximum	11.65	12.84	7.29	6.68	5.49	49.96	68.84	10.32	28.73	42.53	34.97	15.58	12.73	5.99
Mean	4.26	4.65	3.11	2.89	2.43	6.18	9.10	3.27	4.54	4.86	4.74	3.65	3.77	3.02
Standard deviation	2.88	3.06	2.06	1.47	1.60	5.38	12.07	2.14	5.44	8.20	6.46	2.58	2.87	1.36
CV	0.68	0.66	0.66	0.51	0.66	0.87	1.33	0.65	1.20	1.69	1.36	0.71	0.76	0.45
Variance	8.31	9.34	4.25	2.16	2.56	28.95	145.60	4.57	29.60	67.20	41.76	6.63	8.23	1.85
Skewness	1.52	1.26	0.92	0.53	0.24	4.56	2.77	1.71	2.73	4.19	3.86	2.68	1.70	0.73
50% (Median)	2.87	4.09	2.27	2.85	2.23	4.91	3.99	2.61	2.81	2.65	3.10	3.04	2.49	2.60
90%	7.90	9.22	6.44	4.75	4.07	10.92	19.09	5.79	8.66	6.01	6.66	6.24	6.69	4.84
95%	9.58	11.48	7.11	5.28	5.45	13.02	37.02	7.94	15.06	7.29	9.63	7.17	10.59	5.56
97.5%	10.62	12.51	7.20	5.85	5.47	15.93	47.28	9.65	21.09	22.39	28.80	9.89	11.81	5.77
99.0%	11.24	12.71	7.25	6.35	5.48	18.36	58.16	10.09	26.18	34.47	33.89	13.22	12.36	5.90
Top Cut	9999	9999	9999	9999	9999	9999	25	25	9999	9999	9999	9999	25	25
Au cut - Domain	1052	1053	1054	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069
Samples	12	30	14	26	20	125	106	44	54	23	47	43	36	20
Minimum	2.027	0.297	0.604	0.050										
		0.237	0.004	0.059	0.02	0.728	0.139	0.721	0.056	0.722	0.091	0.68	0.959	1.035
Maximum	11.648	12.844	7.29	6.684	0.02 5.49	0.728 49.96	0.139 68.837	0.721 10.32	0.056 28.73	0.722 25	0.091 25	0.68 15.579	0.959 12.726	1.035 5.988
Maximum Mean	11.648 4.26													
		12.844	7.29	6.684	5.49	49.96	68.837	10.32	28.73	25	25	15.579	12.726	5.988
Mean	4.26	12.844 4.65	7.29 3.11	6.684 2.89	5.49 2.43	49.96 6.18	68.837 9.10	10.32 3.27	28.73 4.54	25 4.10	25 4.37	15.579 3.65	12.726 3.77	5.988 3.02
Mean Standard deviation	4.26 2.883	12.844 4.65 3.055	7.29 3.11 2.062	6.684 2.89 1.468	5.49 2.43 1.599	49.96 6.18 5.38	68.837 9.10 12.067	10.32 3.27 2.139	28.73 4.54 5.441	25 4.10 4.75	25 4.37 4.8	15.579 3.65 2.575	12.726 3.77 2.868	5.988 3.02 1.361
Mean Standard deviation CV	4.26 2.883 0.68	12.844 4.65 3.055 0.66	7.29 3.11 2.062 0.66	6.684 2.89 1.468 0.51	5.49 2.43 1.599 0.66	49.96 6.18 5.38 0.87	68.837 9.10 12.067 1.33	10.32 3.27 2.139 0.65	28.73 4.54 5.441 1.20	25 4.10 4.75 1.16	25 4.37 4.8 1.10	15.579 3.65 2.575 0.71	12.726 3.77 2.868 0.76	5.988 3.02 1.361 0.45
Mean Standard deviation CV Variance	4.26 2.883 0.68 8.31	12.844 4.65 3.055 0.66 9.336	7.29 3.11 2.062 0.66 4.25	6.684 2.89 1.468 0.51 2.156	5.49 2.43 1.599 0.66 2.557	49.96 6.18 5.38 0.87 28.948	68.837 9.10 12.067 1.33 145.603	10.32 3.27 2.139 0.65 4.574	28.73 4.54 5.441 1.20 29.603	25 4.10 4.75 1.16 22.563	25 4.37 4.8 1.10 23.036	15.579 3.65 2.575 0.71 6.631	12.726 3.77 2.868 0.76 8.227	5.988 3.02 1.361 0.45 1.853
Mean Standard deviation CV Variance Skewness	4.26 2.883 0.68 8.31 1.517	12.844 4.65 3.055 0.66 9.336 1.262	7.29 3.11 2.062 0.66 4.25 0.919	6.684 2.89 1.468 0.51 2.156 0.528	5.49 2.43 1.599 0.66 2.557 0.241	49.96 6.18 5.38 0.87 28.948 4.561	68.837 9.10 12.067 1.33 145.603 2.771	10.32 3.27 2.139 0.65 4.574 1.708	28.73 4.54 5.441 1.20 29.603 2.727	25 4.10 4.75 1.16 22.563 3.658	25 4.37 4.8 1.10 23.036 3.353	15.579 3.65 2.575 0.71 6.631 2.679	12.726 3.77 2.868 0.76 8.227 1.696	5.988 3.02 1.361 0.45 1.853 0.726
Mean Standard deviation CV Variance Skewness 50% (Median)	4.26 2.883 0.68 8.31 1.517 2.866	12.844 4.65 3.055 0.66 9.336 1.262 4.085	7.29 3.11 2.062 0.66 4.25 0.919 2.27	6.684 2.89 1.468 0.51 2.156 0.528 2.845	5.49 2.43 1.599 0.66 2.557 0.241 2.23	49.96 6.18 5.38 0.87 28.948 4.561 4.91	68.837 9.10 12.067 1.33 145.603 2.771 3.987	10.32 3.27 2.139 0.65 4.574 1.708 2.61	28.73 4.54 5.441 1.20 29.603 2.727 2.812	25 4.10 4.75 1.16 22.563 3.658 2.651	25 4.37 4.8 1.10 23.036 3.353 3.097	15.579 3.65 2.575 0.71 6.631 2.679 3.04	12.726 3.77 2.868 0.76 8.227 1.696 2.494	5.988 3.02 1.361 0.45 1.853 0.726 2.598
Mean Standard deviation CV Variance Skewness 50% (Median) 90%	4.26 2.883 0.68 8.31 1.517 2.866 7.903	12.844 4.65 3.055 0.66 9.336 1.262 4.085 9.22	7.29 3.11 2.062 0.66 4.25 0.919 2.27 6.436	6.684 2.89 1.468 0.51 2.156 0.528 2.845 4.753	5.49 2.43 1.599 0.66 2.557 0.241 2.23 4.069	49.96 6.18 5.38 0.87 28.948 4.561 4.91 10.92	68.837 9.10 12.067 1.33 145.603 2.771 3.987 19.092	10.32 3.27 2.139 0.65 4.574 1.708 2.61 5.79	28.73 4.54 5.441 1.20 29.603 2.727 2.812 8.656	25 4.10 4.75 1.16 22.563 3.658 2.651 6.008	25 4.37 4.8 1.10 23.036 3.353 3.097 6.662	15.579 3.65 2.575 0.71 6.631 2.679 3.04 6.239	12.726 3.77 2.868 0.76 8.227 1.696 2.494 6.685	5.988 3.02 1.361 0.45 1.853 0.726 2.598 4.838

Table 14-247 South Emu domains statistics and top-cuts. Part 3.

Au raw - Domain	1070	1071	1072	1075	1077	1078	1079	1083	1084	1085	2001	2002	2003	2004
Samples	372	251	62	8	4	7	4	12	192	70	10	18	18	13
Minimum	0.06	0.01	0.44	1.99	1.75	1.12	2.66	0.16	0.26	0.51	2.29	0.58	1.14	1.07
Maximum	573.81	58.63	20.60	9.20	4.28	4.55	3.38	19.08	97.07	24.33	6.71	9.31	6.55	8.43
Mean	6.05	5.14	5.37	3.67	2.65	2.60	2.99	4.64	5.66	4.80	3.62	3.04	2.82	4.28
Standard deviation	29.93	6.69	4.08	2.16	0.99	0.96	0.29	5.01	8.00	4.93	1.23	1.88	1.41	2.03
CV	4.95	1.30	0.76	0.59	0.37	0.37	0.10	1.08	1.41	1.03	0.34	0.62	0.50	0.48
Variance	896.02	44.73	16.63	4.68	0.99	0.92	0.08	25.13	64.03	24.34	1.52	3.52	1.99	4.13
Skewness	18.36	4.38	1.73	1.98	0.83	0.68	0.17	1.87	8.15	2.36	1.33	1.94	0.98	0.37
50% (Median)	3.12	3.39	3.92	2.81	1.96	2.36	2.78	2.86	3.97	2.70	3.23	3.06	2.19	3.86
90%	8.66	9.57	10.71	4.95	3.62	3.48	3.29	8.42	9.66	9.70	4.32	4.48	4.27	6.63
95%	10.93	16.00	11.89	7.08	3.95	4.02	3.33	12.89	15.41	16.31	5.51	5.72	4.96	7.56
97.5%	16.46	23.60	15.70	8.14	4.11	4.28	3.35	15.99	19.48	19.77	6.11	7.52	5.76	7.99
99.0%	36.95	30.40	20.29	8.78	4.21	4.44	3.37	17.84	26.31	23.33	6.47	8.60	6.23	8.25
Top Cut	9999	25	9999	19	25	9999	9999	25	25	25	25	26	26	9999
Au cut - Domain	1070	1071	1072	1075	1077	1078	1079	1083	1084	1085	2001	2002	2003	2004
Samples	372	251	62	8	4	7	4	12	192	70	10	18	18	13
Minimum	0.057	0.04	0.44								0.00			
· ·············	0.037	0.01	0.44	1.99	1.75	1.12	2.664	0.157	0.258	0.512	2.29	0.584	1.14	1.069
Maximum	19	0.01 25	20.6	1.99 9.202	1.75 4.28	1.12 4.55	2.664 3.377	0.157 19.08	0.258 26	0.512 24.33	6.71	0.584 9.314	1.14 6.55	1.069 8.429
Maximum	19	25	20.6	9.202	4.28	4.55	3.377	19.08	26	24.33	6.71	9.314	6.55	8.429
Maximum Mean	19 4.28	25 4.85	20.6 5.37	9.202 3.67	4.28 2.65	4.55 2.60	3.377 2.99	19.08 4.64	26 5.28	24.33 4.80	6.71 3.62	9.314 3.04	6.55 2.82	8.429 4.28
Maximum Mean Standard deviation	19 4.28 3.672	25 4.85 5.057	20.6 5.37 4.078	9.202 3.67 2.163	4.28 2.65 0.993	4.55 2.60 0.957	3.377 2.99 0.286	19.08 4.64 5.013	26 5.28 4.678	24.33 4.80 4.933	6.71 3.62 1.231	9.314 3.04 1.875	6.55 2.82 1.41	8.429 4.28 2.033
Maximum Mean Standard deviation CV	19 4.28 3.672 0.86	25 4.85 5.057 1.04	20.6 5.37 4.078 0.76	9.202 3.67 2.163 0.59	4.28 2.65 0.993 0.37	4.55 2.60 0.957 0.37	3.377 2.99 0.286 0.10	19.08 4.64 5.013 1.08	26 5.28 4.678 0.89	24.33 4.80 4.933 1.03	6.71 3.62 1.231 0.34	9.314 3.04 1.875 0.62	6.55 2.82 1.41 0.50	8.429 4.28 2.033 0.48
Maximum Mean Standard deviation CV Variance	19 4.28 3.672 0.86 13.483	25 4.85 5.057 1.04 25.578	20.6 5.37 4.078 0.76 16.629	9.202 3.67 2.163 0.59 4.677	4.28 2.65 0.993 0.37 0.986	4.55 2.60 0.957 0.37 0.916	3.377 2.99 0.286 0.10 0.082	19.08 4.64 5.013 1.08 25.129	26 5.28 4.678 0.89 21.883	24.33 4.80 4.933 1.03 24.338	6.71 3.62 1.231 0.34 1.515	9.314 3.04 1.875 0.62 3.517	6.55 2.82 1.41 0.50 1.989	8.429 4.28 2.033 0.48 4.133
Maximum Mean Standard deviation CV Variance Skewness	19 4.28 3.672 0.86 13.483 2.01	25 4.85 5.057 1.04 25.578 2.514	20.6 5.37 4.078 0.76 16.629 1.727	9.202 3.67 2.163 0.59 4.677 1.98	4.28 2.65 0.993 0.37 0.986 0.825	4.55 2.60 0.957 0.37 0.916 0.678	3.377 2.99 0.286 0.10 0.082 0.165	19.08 4.64 5.013 1.08 25.129 1.872	26 5.28 4.678 0.89 21.883 2.423	24.33 4.80 4.933 1.03 24.338 2.362	6.71 3.62 1.231 0.34 1.515 1.331	9.314 3.04 1.875 0.62 3.517 1.938	6.55 2.82 1.41 0.50 1.989 0.984	8.429 4.28 2.033 0.48 4.133 0.368
Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	19 4.28 3.672 0.86 13.483 2.01 3.121	25 4.85 5.057 1.04 25.578 2.514 3.39	20.6 5.37 4.078 0.76 16.629 1.727 3.921	9.202 3.67 2.163 0.59 4.677 1.98 2.814	4.28 2.65 0.993 0.37 0.986 0.825 1.96	4.55 2.60 0.957 0.37 0.916 0.678 2.36	3.377 2.99 0.286 0.10 0.082 0.165 2.779	19.08 4.64 5.013 1.08 25.129 1.872 2.856	26 5.28 4.678 0.89 21.883 2.423 3.971	24.33 4.80 4.933 1.03 24.338 2.362 2.701	6.71 3.62 1.231 0.34 1.515 1.331 3.23	9.314 3.04 1.875 0.62 3.517 1.938 3.062	6.55 2.82 1.41 0.50 1.989 0.984 2.194	8.429 4.28 2.033 0.48 4.133 0.368 3.857
Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	19 4.28 3.672 0.86 13.483 2.01 3.121 8.663	25 4.85 5.057 1.04 25.578 2.514 3.39 9.574	20.6 5.37 4.078 0.76 16.629 1.727 3.921 10.71	9.202 3.67 2.163 0.59 4.677 1.98 2.814 4.951	4.28 2.65 0.993 0.37 0.986 0.825 1.96 3.618	4.55 2.60 0.957 0.37 0.916 0.678 2.36 3.479	3.377 2.99 0.286 0.10 0.082 0.165 2.779 3.287	19.08 4.64 5.013 1.08 25.129 1.872 2.856 8.416	26 5.28 4.678 0.89 21.883 2.423 3.971 9.656	24.33 4.80 4.933 1.03 24.338 2.362 2.701 9.7	6.71 3.62 1.231 0.34 1.515 1.331 3.23 4.316	9.314 3.04 1.875 0.62 3.517 1.938 3.062 4.483	6.55 2.82 1.41 0.50 1.989 0.984 2.194 4.273	8.429 4.28 2.033 0.48 4.133 0.368 3.857 6.631

Table 14-248 Triton domains statistics and top-cuts. Part 1.

Au raw - Domain	4001	4002	4003	4004	4006	4007	4009	4010	4011
Samples	236	25	1737	1849	4	87	249	1846	58
Minimum	0.01	0.33	0.00	0.01	1.09	0.06	0.02	0.00	0.02
Maximum	218.88	18.16	82.35	286.79	5.79	27.43	67.90	1113.00	45.31
Mean	12.11	4.06	14.34	9.31	3.52	4.01	4.32	4.80	8.73
Standard deviation	18.84	4.18	10.03	9.54	2.04	4.01	5.86	26.46	8.74
CV	1.56	1.03	0.70	1.02	0.58	1.00	1.35	5.51	1.00
Variance	355.02	17.46	100.58	90.97	4.16	16.07	34.30	699.97	76.31
Skewness	6.50	1.97	1.03	13.88	-0.04	3.01	6.21	39.94	1.60
50% (Median)	8.42	2.87	13.62	8.57	1.93	2.89	2.96	2.85	5.84
90%	22.65	8.55	26.94	17.22	5.58	7.20	8.34	9.03	21.65
95%	30.73	12.55	30.77	21.37	5.69	10.00	11.65	11.90	22.50
97.5%	60.56	15.22	36.12	26.02	5.74	15.09	14.42	15.29	24.89
99.0%	76.37	16.98	43.62	32.32	5.77	18.10	23.77	22.54	33.94
Top Cut	34	7	32	30	999	11	15	25	23
Au cut - Domain	4001	4002	4003	4004	4006	4007	4009	4010	4011
Samples	236	25	1737	1849	4	87	249	1846	58
Samples Minimum	236 0.01	25 0.33	1737 0	1849 0.01	4 1.09	87 0.06	249 0.02	1846 0	58 0.02
'					-				
Minimum	0.01	0.33	0	0.01	1.09	0.06	0.02	0	0.02
Minimum Maximum	0.01 34	0.33	0 32	0.01 30	1.09 5.79	0.06 11	0.02 15	0 25	0.02 23
Minimum Maximum Mean	0.01 34 10.26	0.33 7 3.24	0 32 13.98	0.01 30 9.06	1.09 5.79 3.52	0.06 11 3.70	0.02 15 3.93	0 25 4.07	0.02 23 8.28
Minimum Maximum Mean Standard deviation	0.01 34 10.26 9.29	0.33 7 3.24 2.22	0 32 13.98 8.96	0.01 30 9.06 6.56	1.09 5.79 3.52 2.04	0.06 11 3.70 2.8	0.02 15 3.93 3.5	0 25 4.07 4.07	0.02 23 8.28 7.39
Minimum Maximum Mean Standard deviation CV	0.01 34 10.26 9.29 0.91	0.33 7 3.24 2.22 0.69	0 32 13.98 8.96 0.64	0.01 30 9.06 6.56 0.72	1.09 5.79 3.52 2.04 0.58	0.06 11 3.70 2.8 0.76	0.02 15 3.93 3.5 0.89	0 25 4.07 4.07 1.00	0.02 23 8.28 7.39 0.89
Minimum Maximum Mean Standard deviation CV Variance	0.01 34 10.26 9.29 0.91 86.34	0.33 7 3.24 2.22 0.69 4.94	0 32 13.98 8.96 0.64 80.29	0.01 30 9.06 6.56 0.72 42.98	1.09 5.79 3.52 2.04 0.58 4.16	0.06 11 3.70 2.8 0.76 7.82	0.02 15 3.93 3.5 0.89 12.27	0 25 4.07 4.07 1.00 16.6	0.02 23 8.28 7.39 0.89 54.64
Minimum Maximum Mean Standard deviation CV Variance Skewness	0.01 34 10.26 9.29 0.91 86.34 0.93	0.33 7 3.24 2.22 0.69 4.94 0.57	0 32 13.98 8.96 0.64 80.29 0.25	0.01 30 9.06 6.56 0.72 42.98 0.81	1.09 5.79 3.52 2.04 0.58 4.16 -0.04	0.06 11 3.70 2.8 0.76 7.82	0.02 15 3.93 3.5 0.89 12.27 1.51	0 25 4.07 4.07 1.00 16.6 2.43	0.02 23 8.28 7.39 0.89 54.64 0.75
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	0.01 34 10.26 9.29 0.91 86.34 0.93 8.42	0.33 7 3.24 2.22 0.69 4.94 0.57 2.87	0 32 13.98 8.96 0.64 80.29 0.25 13.62	0.01 30 9.06 6.56 0.72 42.98 0.81 8.57	1.09 5.79 3.52 2.04 0.58 4.16 -0.04 1.93	0.06 11 3.70 2.8 0.76 7.82 1 2.89	0.02 15 3.93 3.5 0.89 12.27 1.51 2.96	0 25 4.07 4.07 1.00 16.6 2.43 2.85	0.02 23 8.28 7.39 0.89 54.64 0.75 5.84
Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	0.01 34 10.26 9.29 0.91 86.34 0.93 8.42 22.65	0.33 7 3.24 2.22 0.69 4.94 0.57 2.87	0 32 13.98 8.96 0.64 80.29 0.25 13.62 26.94	0.01 30 9.06 6.56 0.72 42.98 0.81 8.57 17.22	1.09 5.79 3.52 2.04 0.58 4.16 -0.04 1.93 5.58	0.06 11 3.70 2.8 0.76 7.82 1 2.89 7.2	0.02 15 3.93 3.5 0.89 12.27 1.51 2.96 8.34	0 25 4.07 4.07 1.00 16.6 2.43 2.85 9.03	0.02 23 8.28 7.39 0.89 54.64 0.75 5.84 21.65

Table 14-249 Triton domains statistics and top-cuts. Part 2.

Au raw - Domain	4012	4013	4014	4015	4018	4020	4022	4023	4024
Samples	14	53	29	23	26	110	39	10	2
Minimum	0.23	0.02	0.02	0.58	0.09	0.02	0.26	0.36	2.14
Maximum	137.03	116.16	15.92	21.10	5.41	22.76	16.47	5.19	5.16
Mean	26.24	5.36	4.31	3.73	1.69	3.77	3.68	2.39	3.65
Standard deviation	45.33	17.42	3.18	4.29	1.39	3.68	3.39	1.51	1.51
CV	1.73	3.25	0.74	1.15	0.83	0.98	0.92	0.63	0.41
Variance	2054.46	303.39	10.09	18.39	1.94	13.53	11.50	2.28	2.28
Skewness	1.60	5.44	1.70	2.96	0.83	2.28	2.14	0.49	0.00
50% (Median)	3.60	1.34	3.74	2.29	1.32	2.28	2.41	1.60	2.14
90%	100.20	5.64	7.71	6.20	3.51	7.57	7.37	4.12	4.56
95%	123.20	7.18	8.77	9.77	3.93	10.85	8.49	4.66	4.86
97.5%	130.12	43.20	11.29	14.86	4.53	14.47	14.10	4.92	5.01
99.0%	134.27	86.66	14.07	18.60	5.06	15.20	15.52	5.08	5.10
Top Cut	15	8	10	10	999	10	8	999	999
Top Cut Au cut - Domain	15 4012	4013	4014	4015	999	4020	8 4022	999 4023	999 4024
Au cut - Domain	4012	4013	4014	4015	4018	4020	4022	4023	4024
Au cut - Domain Samples	4012 14	4013 53	4014 29	4015 23	4018 26	4020 110	4022 39	4023	4024 2
Au cut - Domain Samples Minimum	4012 14 0.23	4013 53 0.02	4014 29 0.02	4015 23 0.58	4018 26 0.09	4020 110 0.02	4022 39 0.26	4023 10 0.36	4024 2 2.14
Au cut - Domain Samples Minimum Maximum	4012 14 0.23 15	4013 53 0.02 8	29 0.02 10	23 0.58 10	26 0.09 5.41	110 0.02 10	39 0.26 8	10 0.36 5.19	2 2.14 5.16
Au cut - Domain Samples Minimum Maximum Mean	14 0.23 15 5.96	53 0.02 8 2.32	29 0.02 10 4.10	23 0.58 10 3.24	26 0.09 5.41 1.69	110 0.02 10 3.47	39 0.26 8 3.30	10 0.36 5.19 2.39	2 2.14 5.16 3.65
Au cut - Domain Samples Minimum Maximum Mean Standard deviation	14 0.23 15 5.96 5.88	53 0.02 8 2.32 2.33	29 0.02 10 4.10 2.55	23 0.58 10 3.24 2.57	26 0.09 5.41 1.69 1.39	110 0.02 10 3.47 2.75	39 0.26 8 3.30 2.31	10 0.36 5.19 2.39 1.51	2 2.14 5.16 3.65 1.51
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV	14 0.23 15 5.96 5.88 0.99	53 0.02 8 2.32 2.33 1.00	29 0.02 10 4.10 2.55 0.62	23 0.58 10 3.24 2.57 0.79	26 0.09 5.41 1.69 1.39 0.83	110 0.02 10 3.47 2.75 0.79	39 0.26 8 3.30 2.31 0.70	10 0.36 5.19 2.39 1.51 0.63	2 2.14 5.16 3.65 1.51 0.41
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance	14 0.23 15 5.96 5.88 0.99 34.6	53 0.02 8 2.32 2.33 1.00 5.44	29 0.02 10 4.10 2.55 0.62 6.52	23 0.58 10 3.24 2.57 0.79 6.61	26 0.09 5.41 1.69 1.39 0.83 1.94	110 0.02 10 3.47 2.75 0.79 7.54	39 0.26 8 3.30 2.31 0.70 5.32	10 0.36 5.19 2.39 1.51 0.63 2.28	2 2.14 5.16 3.65 1.51 0.41 2.28
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness	14 0.23 15 5.96 5.88 0.99 34.6 0.77	53 0.02 8 2.32 2.33 1.00 5.44 0.89	29 0.02 10 4.10 2.55 0.62 6.52 0.66	23 0.58 10 3.24 2.57 0.79 6.61 1.49	26 0.09 5.41 1.69 1.39 0.83 1.94 0.83	110 0.02 10 3.47 2.75 0.79 7.54 1.03	39 0.26 8 3.30 2.31 0.70 5.32 0.91	10 0.36 5.19 2.39 1.51 0.63 2.28 0.49	2 2.14 5.16 3.65 1.51 0.41 2.28
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median)	14 0.23 15 5.96 5.88 0.99 34.6 0.77 3.6	53 0.02 8 2.32 2.33 1.00 5.44 0.89 1.34	29 0.02 10 4.10 2.55 0.62 6.52 0.66 3.74	23 0.58 10 3.24 2.57 0.79 6.61 1.49 2.29	26 0.09 5.41 1.69 1.39 0.83 1.94 0.83 1.32	110 0.02 10 3.47 2.75 0.79 7.54 1.03 2.28	39 0.26 8 3.30 2.31 0.70 5.32 0.91 2.41	10 0.36 5.19 2.39 1.51 0.63 2.28 0.49 1.6	2 2.14 5.16 3.65 1.51 0.41 2.28 0 2.14
Au cut - Domain Samples Minimum Maximum Mean Standard deviation CV Variance Skewness 50% (Median) 90%	4012 14 0.23 15 5.96 5.88 0.99 34.6 0.77 3.6 15	53 0.02 8 2.32 2.33 1.00 5.44 0.89 1.34 5.64	29 0.02 10 4.10 2.55 0.62 6.52 0.66 3.74 7.71	23 0.58 10 3.24 2.57 0.79 6.61 1.49 2.29 6.2	26 0.09 5.41 1.69 1.39 0.83 1.94 0.83 1.32 3.51	110 0.02 10 3.47 2.75 0.79 7.54 1.03 2.28 7.57	39 0.26 8 3.30 2.31 0.70 5.32 0.91 2.41 7.37	10 0.36 5.19 2.39 1.51 0.63 2.28 0.49 1.6 4.12	2 2.14 5.16 3.65 1.51 0.41 2.28 0 2.14 4.56

14.6.6.4 Density

99.0%

A total of 154 bulk density measurements for fresh material were collected within the South Emu and Triton mineralised area. The bulk density determinations were defined on diamond drill core using the water immersion method.

10

5.06

10

5.08

5.1

The assigned density for the oxide and transitional materials were based on measurements from neighbouring areas that contain similar rock types. The assigned density values are tabled below.

Table 14-250 South Emu - Triton model assigned densities.

9.86

Material	Density
Air	0.00
Oxide	2.00
Transitional	2.20
Fresh	2.90
Backfill – open pit	1.30
Backfill – underground void	1.90

14.6.6.5 Variography

Variogram modelling was undertaken using Snowden's Supervisor software and defined the spatial continuity. Normal score transformations were applied to the data to obtain interpretable experimental variograms. Variographic analysis was conducted on well-informed domains, and these were later applied to domains with insufficient samples for the analysis. Search ellipses were aligned parallel to the maximum continuity defined during the variographic analysis. The search dimensions, generally, approximated the ranges of the interpreted variograms.

The block model parent and sub-cell size was changed for the 2024 reportable resource. The Triton mineralisation domains estimation parameters were updated. The South Emu mineralisation domains remain unchanged from the 2023 resource model; the previous estimate was imported into the new block model so the documented estimation block size parameters for the South Emu mineralisation domains are based on the previous parent cell size.

Interpolation parameters for the South Emu - Triton MRE are tabled below.

Table 14-251 Triton mineralisation domain interpolation parameters. Part 1.

Domain Code	4001	4002	4003	4004	4007	4009	4010	4011	4012
Estimate	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ
#Structures	1	1	3	3	3	3	3	3	3
C0	0.220	0.300	0.215	0.329	0.375	0.333	0.420	0.364	0.441
C1	0.780	0.700	0.239	0.283	0.122	0.201	0.176	0.248	0.151
a1	24.00	75.00	4.00	5.00	5.00	60.00	15.00	2.00	15.00
C2			0.254	0.332	0.448	0.332	0.225	0.328	0.215
a2			16.00	27.00	14.00	64.00	40.00	6.00	40.00
C3			0.292	0.056	0.055	0.134	0.179	0.060	0.193
a3			30.00	39.00	24.00	95.00	60.00	15.00	60.00
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1. Major : Semi Major	4	1	1	1	1	1	1.875	1	1.875
1. Major : Minor	8	3	1	1.25	2	6	1.875	1	1.875
2. Major : Semi Major			1	1	1	1	. 2	1	2
2. Major : Minor			1	2.7	2	5.818	3.333	2	3.333
3. Major : Semi Major			1	1	1	1	1.875	1	1.875
3. Major : Minor			1	2.786	2	5.938	3.75	1.875	3.75
SURPAC STRIKE	0	0	180	180	5	177.119	175	180	175
SURPAC PLUNGE	80	10	-5	0	0	29.874	-50	0	-50
SURPAC DIP	-90	-90	-90	-90	80	-84.231	-90	85	-90
Search									
Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size (x,y,z)	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5
Estimation Block Size X	4	4	4	4	4	4	. 4	4	4
Estimation Block Size Y	5	5	5	5	5	5	5	5	5
Estimation Block Size Z	5	5	5	5	5	5	5	5	5
Disc Point X	2	2	2	2	2	2	2	2	2
Disc Point Y	5	5	5	5	5	5	5	5	5
Disc Point Z	5	5	5	5	5	5	5	5	5
			•						
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N
Threshold Max									
Search Limitation									
									<u>.</u>
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2								
Max Samps per Hole									
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	4	8	8	5	6	9	8	9
Max	22	16	14	14	14	12	15	16	15
MaxSearch	24	75	30	27	24	60	40	15	60
Major/Semi	4	1	1	1	1	1	. 2	1	1.875
Major/Minor	8	3	1	2.7	2	6	3.333	1.875	3.75
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	. 2	2	2
Major/Semi	4	1	1	1	1	1	. 2	1	1.875
Major/Minor	8	3	1	2.7	2	6	3.333	1.875	3.75
Min	2	2	8	8	5	6	9	8	9
Max	22	16	14	14	14	12	15	16	15
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	4	4	10	10	10	10	10	10	10
Major/Semi	2	1	1	1	1	1	1.875	1	1.875
Major/Minor	4	1.5	1	2.786	2	5.938		1.875	3.75
Min	2	2		2	2	2		2	2
Max	11	8							9

Table 14-252 Triton mineralisation domain interpolation parameters. Part 2.

C1	Domain Code	4013	4014	4015	4018	4020	4022	4023
C0	Estimate	Υ	Υ	Υ	Υ	Υ	Υ	Υ
C1	#Structures	2	3	3	2	2	2	3
C1	C0			0.415	0.623	0.368	0.299	
1	C1							
C2	a1							
According Acco	C2							
C3						1		
33								
TOTAL SILL	a3							
1. Major : Semi Major	TOTAL SILL	1.000				1.000	1.000	
1. Major : Semi Major							!	
2. Major: Semi Major	1. Major : Semi Major	1	1	1.875	1	1	1	1
2. Major : Minor 4	1. Major : Minor	4	2	1.875	1	5.5	4	6
3. Major : Semi Major 1 1.875	2. Major : Semi Major	1	1	2	1	1	1	1
3. Major : Semi Major 1 1.875	2. Major : Minor	4	2	3.333	1	5.273	4	5.818
SURPAC STRIKE	3. Major : Semi Major		1	1.875				1
SURPAC PLUNGE	3. Major : Minor		2	3.75				5.938
SURPAC PLUNGE		•	•	•		•		•
SURPAC PLUNGE	SURPAC STRIKE	180	5	175	0	169.07	180	177.119
Surpaction	SURPAC PLUNGE	-50	0					
Search Method ELLIPSOID SURPAC DIP						1		
Method ELLIPSOID ELLIPSO							!	
Estimation Block Size (x,yz)	Search							
Estimation Block Size X	Method	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID
Estimation Block Size X	Estimation Block Size (x,y,z)	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5	4, 5, 5
Estimation Block Size S S S S S S S S S	Estimation Block Size X	4	4	4	4		4	4
Estimation Block Size Z 5 5 5 5 5 5 5 5 5	Estimation Block Size Y	5	5	5	5	5	5	
Disc Point X	Estimation Block Size Z	5	5	5			5	
Disc Point Y 5 5 5 5 5 5 5 5 5	Disc Point X		2				2	
Disc Point Dis	Disc Point Y	5	5	5			5	
Threshold Max Search Limitation N N N N N N N N N N N N N N N N N N	Disc Point Z		5	5				
Threshold Max Search Limitation N N N N N N N N N N N N N N N N N N								
Limit Samples by Hole Id N N N N N N N N N	Grade Dependent Parameters	N	N	N	N	N	N	N
Limit Samples by Hole Id	Threshold Max							
Hole Id D Field	Search Limitation							
Hole Id D Field			•	•	•	•	•	•
Pass1	Limit Samples by Hole Id	N	N	N	N	N	N	N
Pass1	Hole ld D Field	D2						
Min 5 5 9 6 8 6 6 Max 13 14 15 12 14 13 12 Max Search 40 24 60 95 58 40 60 Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 6 Run Pass 2 Y	Max Samps per Hole							
Min 5 5 9 6 8 6 6 Max 13 14 15 12 14 13 12 Max Search 40 24 60 95 58 40 60 Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 6 Run Pass 2 Y								
Max 13 14 15 12 14 13 12 Max Search 40 24 60 95 58 40 60 Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 6 Run Pass2 Y </td <td>Pass1</td> <td>Υ</td> <td>Υ</td> <td>Υ</td> <td>Υ</td> <td>Υ</td> <td>Υ</td> <td>Υ</td>	Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Max Search 40 24 60 95 58 40 60 Major/Semi 1 1 1.875 1 1 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 6 Run Pass2 Y	Min	5	5	9	6	8	6	
Major/Semi 1 1 1.875 1	Max	13	14	15	12	14	13	
Major/Minor 4 2 3.75 1 5.273 4 6 Run Pass2 Y </td <td>Max Search Max Search</td> <td>40</td> <td>24</td> <td>60</td> <td>95</td> <td>58</td> <td>40</td> <td></td>	Max Search Max Search	40	24	60	95	58	40	
Run Pass2 Y	Major/Semi	1	1	1.875	1	1	1	
Factor 2 3 3 4 6 7 <td>Major/Minor</td> <td>4</td> <td>2</td> <td>3.75</td> <td>1</td> <td>5.273</td> <td>4</td> <td>6</td>	Major/Minor	4	2	3.75	1	5.273	4	6
Factor 2 3 3 4 6 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Major/Semi 1 1 1.875 1	Run Pass2		Υ	Υ		-	Υ	
Major/Minor 4 2 3.75 1 5.273 4 6 Min 5 5 9 6 8 6 6 Max 13 14 15 12 14 13 12 Run Pass 3 Y <t< td=""><td>Factor</td><td></td><td>2</td><td>2</td><td></td><td></td><td></td><td></td></t<>	Factor		2	2				
Min 5 5 9 6 8 6 6 Max 13 14 15 12 14 13 12 Run Pass 3 Y	Major/Semi						1	
Max 13 14 15 12 14 13 12 Run Pass 3 Y	Major/Minor							
Run Pass 3 Y	Min		5				6	
Factor 10 10 10 10 10 10 10 Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 5.938 Min 2 2 2 2 2 2 2	Max	13	14	15	12	14	13	12
Factor 10 10 10 10 10 10 10 Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 5.938 Min 2 2 2 2 2 2 2				T			•	
Major/Semi 1 1 1.875 1 1 1 1 Major/Minor 4 2 3.75 1 5.273 4 5.938 Min 2 2 2 2 2 2 2	Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Major/Minor 4 2 3.75 1 5.273 4 5.938 Min 2 2 2 2 2 2 2 2	Factor	10	10	10	10	10	10	10
Min 2 2 2 2 2 2 2 2	Major/Semi		1					
	Major/Minor	4	2	3.75	1	5.273	4	
Max 5 5 9 6 8 6 6	Min	2	2	2	2	2	2	
	Max	5	5	9	6	8	6	6

Table 14-253 South Emu mineralisation domain interpolation parameters. Part 1.

Domain Code	1001	1002	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051
Estimate	Y	Υ	Υ	Y	Y	Y	Υ	Υ	Y	Y	Υ	Υ	γ	Y
#Structures	. 2	1	. 2	. 2		2	2	2	. 2		. 2	. 2	2	. 2
CO	0.310	0.050	0.480		0.480	0.480	0.480	0.480	0.480		0.480	0.480	0.480	0.480
C1	0.390	0.950	0.350			0.350	0.350	0.350	0.350		0.350	0.350	0.350	0.350
a1	10.00	18.00	30.00		30.00	30.00	30.00	30.00	30.00		30.00	30.00	30.00	30.00
C2	0.300	10.00	0.170		0.170	0.170	0.170	0.170	0.170		0.170		0.170	0.170
a2	105.00		47.00		47.00	47.00	47.00	47.00	47.00		47.00	47.00	47.00	47.00
C3	103.00		47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00	47.00
a3														
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TOTACSICE	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1. Major : Semi Major	2	1	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
1. Major : Minor	2	2	1.23	1.23	1.23	1,20	1.25	1.23	1.23	1.23	1.23	1.23	1.25	1.23
2. Major : Semi Major	2,6		1.8	1.8	1.8	1.8	1.8	1.8		1.8	1.8	1.8	1.8	1.8
2. Major : Minor	17.5		4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
3. Major: Semi Major	17.3		4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
3. Major : Minor														
3. Plajot . Plillot	l					<u> </u>	ļ		l				ļ	
SURPACSTRIKE	188.3	163.3	349	349	349	349	349	349	349	349	349	349	349	349
SURPAC PLUNGE	-39.3	-49	53		53	53	53	53	53		53		53	53
SURPAC DIP	-77	74.7	79	79	79	79	79	79	79	79	79	79	79	79
O t														
Search														
Method				ELLIPSOID		ELLIPSOID		ELLIPSOID					ELLIPSOID	
Estimation Block Size (x,y,z)	1, 10, 10	0.5, 5, 5	1, 10, 10	1, 10, 10	0.5, 5, 5	1, 10, 10	0.5, 5, 5	0.5, 5, 5	0.5, 5, 5	1, 10, 10	0.5, 5, 5	0.5, 5, 5		0.5, 5, 5
Estimation Block Size X	1	0.5	1		0.5	1	0.5	0.5					0.5	0.5
Estimation Block Size Y	10	5	10		5	10	5	5	5		5	5	5	5
Estimation Block Size Z	10	5	10			10		5				5	5	5
Disc Point X	4	4	4	_	4	4	4	4		4		4	4	4
Disc Point Y	4	4	4		4	4	4		4				4	4
DiscPointZ	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max														
Search Limitation														
Limit Samples by Hole Id	N		N	N	N	N	N	N	N			N	N	N
Hole Id D Field	D2	D2	D2	. D2	D2	D2	D2	D2	D2	D2	D2	D2	D2	D2
Max Samps per Hole														
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	5	5	4	8	8	8	4	8	8	8	8	8	8	8
Max	26	18	30	30	30	30	30	30	30	30	30	30	30	30
Max Search	120	20	60	47	47	47	60	47	47	47	47	47	47	47
Major/Semi	2.6	1	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Major/Minor	4	2	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
•		•		•				•		•	•			
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	1	1	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Major/Minor	1	2	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Min	2	2	2			2	2	2	2		2		2	2
Max	18	18				18	18	18			18	18	18	18
					•				•			•		
Run Pass 3	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Major/Semi	1	1	1	. 1	1	1	1	1	1		1	1	1	1
Major/Minor	1	2	1	_	1	1	1	1	1		1	1	1	1
Min	2	2	2	_	_	2	2	2	2			2	2	2
Max	18	18	18			18		18				_	18	18
. nun	10	10	10	1 10	10	10	10	10	10	10	10	10	10	10

Table 14-254 South Emu mineralisation domain interpolation parameters. Part 2.

Domain Code	1052	1053	1054	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069
Estimate	Υ	Υ	Y	Y	Y	Υ	Y	Υ	Y	Y	Y	Y	Y	Υ
#Structures	2	2	2	2	2	2	2	2	2	2	2	2	2	2
C0	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480	0.480
C1	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350
a1	30.00	30.00	30.00	30.00	30.00	30.00		30.00	30.00	30.00		30.00	30.00	30.00
C2	0.170	0.170	0.170	0.170	0.170	0.170		0.170	0.170	0.170	0.170	0.170	0.170	0.170
a2	47.00	47.00	47.00	47.00	47.00	47.00		47.00	47.00	47.00		47.00	47.00	47.00
C3														
a3														
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1. Major: Semi Major	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
1. Major : Minor	6	6	6	6	6	6	6	6	6	6	6	6	6	6
2. Major : Semi Major	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
2. Major : Minor	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
3. Major : Semi Major														
3. Major : Minor														
SURPAC STRIKE	349	349	349	349	349	349		349	349	349		349	349	349
SURPAC PLUNGE	53	53	53	53	53	53		53	53	53		53	53	53
SURPAC DIP	79	79	79	79	79	79	79	79	79	79	79	79	79	79
Search														
Method						ELLIPSOID								ELLIPSOID
Estimation Block Size (x,y,z)	0.5, 5, 5	0.5, 5, 5		0.5, 5, 5	0.5, 5, 5	0.5, 5, 5	0.5, 5, 5	1, 10, 10	1, 10, 10	1, 10, 10	1, 10, 10	1, 10, 10	1, 10, 10	1, 10, 10
Estimation Block Size X	0.5	0.5	0.5	0.5	0.5	0.5		1	1	1	1	1	1	1
Estimation Block Size Y	5	5	5	5	5	5	5	10	10	10		10	10	10
Estimation Block Size Z	5	5	5	5	5	5	5	10	10	10		10	10	10
Disc Point X	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Disc Point Y Disc Point Z	4		4	4	4	4	4		4	4	4	4	4	4
DISCFOIRTZ	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max	14	,				,	14				1	14		
Search Limitation														
Search Entitation														
Limit Samples by Hole Id	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Hole Id D Field	D2	D2	D2	D2	D2	D2		D2	D2	D2		D2	D2	D2
Max Samps per Hole														
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	8	8	8	4	4	8	8	4	4	4	4	8	4	8
Max	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Max Search	47	47	47	60	60	47	47	60	60	60	60	47	60	47
Major/Semi	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Major/Minor	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Run Pass2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Factor	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Major/Semi	1.8	1.8	1.8	1.8	1.8	1.8		1.8	1.8	1.8	1.8	1.8	1.8	1.8
Major/Minor	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Min	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Run Pass 3	Y	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	Υ	Y
Factor	4	4	4	4	4	4		4	4	4	4	4	4	4
Major/Semi	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Major/Minor	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Min	2	2	2	2	2	2	2		2	2	2	2	2	2
Max	18	18	18	18	18	18	18	18	18	18	18	18	18	18

Table 14-255 South Emu mineralisation domain interpolation parameters. Part 3.

Domain Code	1070	1071	1072	1075	1077	1078	1079	1083	1084	1085	2001	2002	2003	2004
Estimate	Y	Υ	Υ	Y	Υ	Υ	Y	γ	Y	Y	Υ	Y	Y	Y
#Structures	2	2	2	2		2	2	2	2		2	2	2	2
CO	0.470	0.490	0.480	0.480	0.480	0.480	0.480	0.480	0.310		0.480	0.480	0.480	0.480
C1	0.410	0.350	0.350	0.350		0.350	0.350	0.350	0.390		0.350	0.350	0.350	0.350
a1	28.00	11.00	30.00	30.00	30.00	30.00	30.00	30.00	10.00		30.00	30.00	30.00	30.00
C2	0.120	0.160	0.170		0.170	0.170	0.170	0.170	0.300		0.170		0.170	0.170
a2	41.00	65.00	47.00	47.00	47.00	47.00	47.00	47.00	105.00		47.00	47.00	47.00	47.00
C3	41.00	65.00	47.00	47.00	47.00	47.00	47.00	47.00	105.00	103.00	47.00	47.00	47.00	47.00
a3														
TOTAL SILL	4 000	4 000	1 000	1 000	1 000	1 000	4 000	1 000	4 000	1 000	4 000	1 000	1 000	1.000
TOTAL SILL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4.44.5	_	1	4.05	1 405	1		4.05	4.05			4.05	1	4 05	4.05
1. Major : Semi Major	7	11	1.25	1.25	1.25	1.25	1.25	1.25	2	2	1.25	1.25	1.25	1.25
1. Major : Minor	14		6	6	6	6	6	6	2	. 2	6	6	6	6
2. Major : Semi Major	1.8	2.4	1.8			1.8		1.8			1.8	1.8	1.8	1.8
2. Major : Minor	13.7	16.3	4.7	4.7	4.7	4.7	4.7	4.7	17.5	17.5	4.7	4.7	4.7	4.7
3. Major : Semi Major														
3. Major : Minor														
SURPAC STRIKE	260	165	349			349	349	349	188.3	188.3	349	349	349	349
SURPAC PLUNGE	80	-45	53	53	53	53	53	53		-39.3	53	53	53	53
SURPAC DIP	0	83	79	79	79	79	79	79	-77	-77	79	79	79	79
					,									,
Search														
Method	ELLIPSOID	ELLIPSOID	FILIPSOID	FLLIPSOID	FLLIPSOID	ELLIPSOID	FILIPSOID	ELLIPSOID	FLLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	ELLIPSOID	FLLIPSOID
Estimation Block Size (x,y,z)	0.5, 5, 5		0.5, 5, 5	0.5, 5, 5	0.5, 5, 5	1, 10, 10	0.5, 5, 5	1, 10, 10	1, 10, 10	1, 10, 10		0.5, 5, 5		0.5, 5, 5
Estimation Block Size X	0.5, 5, 5	1, 10, 10	0.5, 5, 5		0.5	1, 10, 10	0.5, 5, 5	1, 10, 10	1, 10, 10		1, 10, 10	0.5	0.5, 5, 5	0.5
Estimation Block Size Y	5	10	5			10	5	10	10				0.5	5
Estimation Block Size Z	5	10				10		10					5	5
Disc Point X		10 4		3		10							5	5
	4	_			4	4	4	4					4	4
Disc Point Y	4	4	4	4	4	4	4		4				4	4
Disc Point Z	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Grade Dependent Parameters	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Threshold Max														
Search Limitation														
Limit Samples by Hole Id			N	N	N	N		N	N			N	N	N
Hole Id D Field	D2													
Max Samps per Hole														
*											•			
Pass1	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Min	4	4	4	8	4	4	4	4	5	5	8	8	8	8
Max	30	30	30	30	30	30	30	30	26	26	30	30	30	30
Max Search	41	65	60		60	60	60	60			47		47	47
Major/Semi	1.8	2.4	1.8			1.8	1.8	1.8					1.8	1.8
Major/Minor	13.7	16.3	4.7					4.7					4.7	4.7
i ajoni ilioi	10.7	10.0	4.7	4.7	4.7	4.7	4.7	4.7			4.7	4.7	4.7	4.7
Run Pass2	v	v	V	γ	γ	lv	v	v	lv	γ	Υ	γ	lv l	V
Factor	2	1 2	2	1	1 2	1 2	1 2	2	2		2	1 2	1 2	1
													4.0	
Major/Semi	1.8	2.4	1.8			1.8		1.8			1.8		1.8	1.8
Major/Minor	13.7	16.3	4.7			4.7	4.7	4.7	1			4.7	4.7	4.7
Min	2	2	2			2	2	2	2		2		2	2
Max	18	18	18	18	18	18	18	18	18	18	18	18	18	18
				r					r			1		
Run Pass 3	Υ		Υ	Υ	Υ	Υ	Υ	Υ	Y		Υ	Υ	Υ	Υ
Factor	4	4	4	4	4	4	4	4	4		4	4	4	4
Major/Semi	1.8	2.4	1	1	1	1	1	1	1		1	1	1	1
Major/Minor	13.7	2.4	1	1	1	1	1	1	1		1	1	1	1
Min	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Max	18	18	18	18	18	18	18	18	18	18	18	18	18	18

14.6.6.6 Block Model and Grade Estimation

The model is in Reedy 2014 local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). A single block model was created that encompassed all mineralisation domains at the South Emu – Triton deposit. The block model dimensions, parent and sub-cell block cell size have changed since the previous 2023 reportable resource.

	Υ	X	Z
Min	39,000	19,700	-440
Max	40,840	20,300	600
Extents	1,840	600	1,040
Parent size	5.00	4.00	5.00
Sub-block size	2.50	0.50	0.625

Table 14-256 South Emu - Triton block model parameters.

The ordinary kriging method of interpolation (OK) was used to fill the blocks within all domains. This estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Mineralisation domains with insufficient informing data were allocated the informing composite mean grade and given an Unclassified resource classification code.

Parent block size used for the model is 5y 4x 5z. Model sub-cell size 2.5y 0.5x 0.625z.

Kriging Neighbourhood Analysis (KNA) was completed on interpolation parameters for domain 1 to optimise the estimate. When conducting a kriged estimate, the search volume or 'kriging neighbourhood' is defined by the user. The definition of this search can have a significant impact on the outcome of the estimate. In essence KNA is one of adjusting the neighbourhood to arrive at good regression statistics to reduce or eliminate conditional bias (Vann et. al., 2003).

Neighbourhood parameters reviewed include block size, minimum and maximum number of informing samples, search range and block discretisation.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation) and carried out in multiple passes.

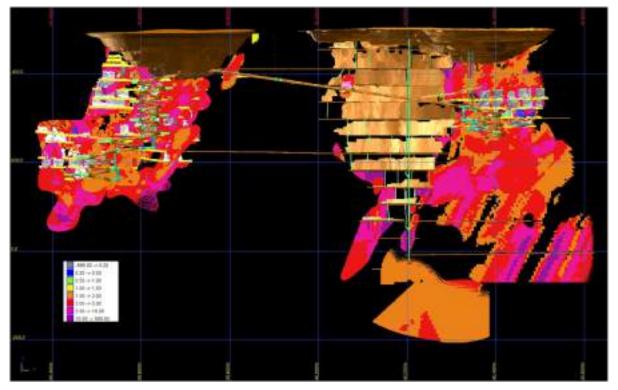


Figure 14-117 South Emu - Triton depleted Mineral Resource Estimate, constrained to 0.7 g/t COG (Open Pit) and 2.0 g/t COG (Undergroud). - Source: Westgold.

14.6.6.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing

effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

14.6.6.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage / grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The South Emu - Triton Mineral Resource was classified in the model on the following basis:

- (1) Measured Resource category has been allocated to material defined with high geological and grade continuity confidence as defined by underground mapping, face sampling, DDH and long hole / jumbo sludge drilling, supported by estimation quality measures such as Conditional Bias Slope (CBS). The material is defined by drilling normal to the mineralisation domain, typically on 10 m hole spacing, or supported by face sampling on development drives.
- (2) Indicated Resource category has been allocated to material with reasonable geological and grade continuity confidence as defined by estimation quality measures such as Conditional Bias Slope (CBS), typically supported by 10-30 m hole spacing. The material is defined by drilling normal to the mineralisation domain.
- (3) Inferred Resource category has been allocated to material with reduced geological and grade continuity confidence as defined by estimation quality measures such as CBS, and where the sample support of the mineralisation domain is reduced due to wider drill spacing of 20 m-40 m or greater.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat_n' as Unreported = 4.

Parts of mineralisation domains considered to be either inaccessible due to proximity to existing mining voids, or considered potentially depleted due to spatial inaccuracies inherent to historic drillhole or mining void surveys methods were flagged in the block model attribute 'res_cat_n' as Sterilised = 5.

The South Emu - Triton Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

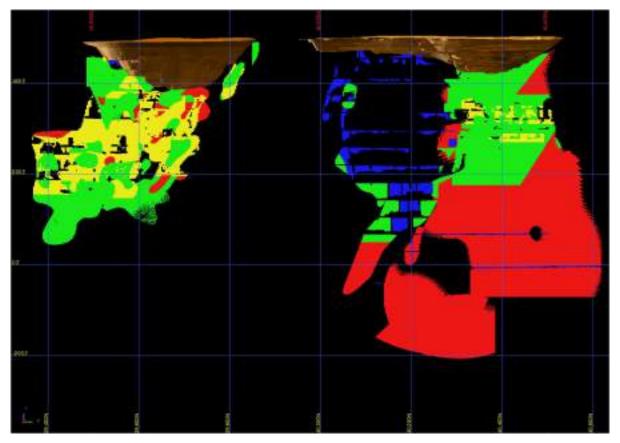


Figure 14-118 South Emu - Triton Mineral Resource classification. Yellow = Measured, green = Indicated, red = Inferred, magenta = Unreported, blue = Sterilised. Depleted blocks hidden - Source: Westgold.

14.6.6.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out stopes as 'skins' of material on stope voids or as pillars between stopes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-257 South Emu - Triton Open Pit Mineral Resources on June 30, 2024.

	South Emu - Triton Open Pit Mineral Resource Statement - Rounded for Reporting 30/06/2024														
		Measur	ed		Indicate	d	Measu	red and Ind	licated		Inferred	ı			
Project	kt						kt	g/t	koz						
South Emu - Triton OP	4	5.68	1	15	3.94	2	19	4.34	3	0.12	4.80	0.02			
Total 4 5.68 1 15 3.94 2 19 4.34 3 0.12 4.80 0.02												0.02			

>= 0.7 g/t Au.

Table 14-258 South Emu - Triton Underground Mineral Resources on June 30, 2024.

	South Emu - Triton Underground Mineral Resource Statement - Rounded for Reporting 30/06/2024														
Measured Indicated Measured and Indicated Inferred															
Project	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz	kt	g/t	koz			
South Emu - Triton UG	313	4.49	45	746	3.99	96	1,059	4.41	141	1,134	4.41	161			
Total 313 4.49 45 746 3.99 96 1,059 4.41 141 1,134 4.41 161												161			

>= 2.0 g/t Au

The South Emu - Triton Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.7 Thompson's Bore

14.6.7.1 Summary

The Thompson's Bore deposit is located within the Reedy mining area 52 km southwest of the town of Meekatharra and 38 km south of the Bluebird mill.

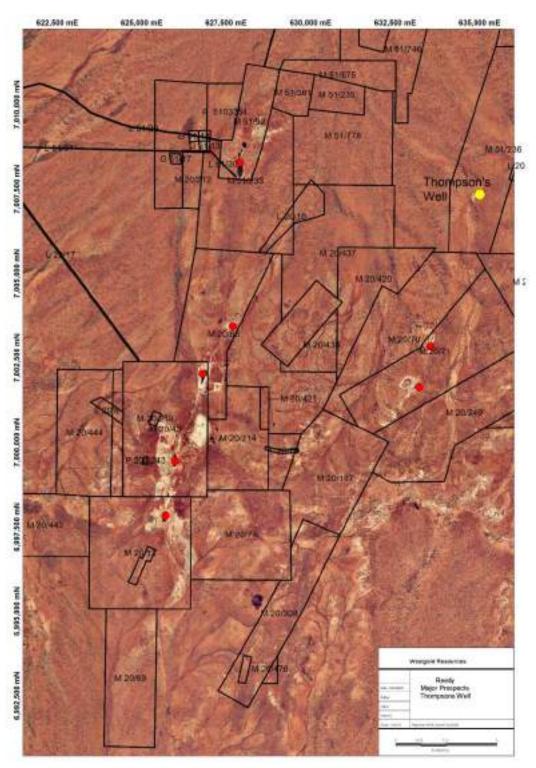


Figure 14-119 Location of the Thompson's Bore deposit - Source: Westgold.

14.6.7.2 Modelling Domains

All modelling was performed using Surpac mining software. The interpretation strategy was based around a lower COG of 0.5 g/t which was deemed appropriate to define the mineralisation boundary based on analysis of Log Probability plots. Wireframes were snapped to all holes. There was virtually no geology data to guide the wireframes and as such grade continuity was primarily used. Old drill logs found in WAMEX reports show mineralisation mostly associated with BIF units and intercalated mafics / ultramafics. The figure below shows the geology of the south wall at Thompsons Bore.

Figure 14-120 South wall of Thompson's Bore open cut with geology annotations superimposed - Source: Westgold.

Mineralisation strings were digitised on section at 10 m spaced intervals to establish a 0.5 g/t Au cut-off envelope around the interpreted mineralisation. A maximum of two metres of downhole internal dilution was included, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity, and to increase the level of along strike control on the location of the mineralised structure. A minimum mineralisation width of 2 m was modelled.

Strings were snapped to drillholes at sample interval boundaries, with no artificial complexities introduced into the mineralisation geometry, although points were created between drillholes to ensure accuracy during wireframing. No automatic string smoothing functions were used.

Wireframing of mineralisation sectional perimeters was performed via the linking of appropriate perimeters on adjacent sections. The wireframes were sealed by triangulation within the end member perimeters, leading to the creation of a volume model.

Oxidation surfaces were created via the digitising of strings on sections corresponding to the geologically logged oxidation and regolith states. The digitised strings were expanded to extend beyond the borders of the block model. A DTM surface was created by triangulating between adjacent strings.

14.6.7.3 Statistical Analysis and Compositing

A top-cut analysis was performed for data included in the Mineral Resource Estimate.

The one metre composite samples of downhole assay data were ranked. Datasets were then graphed and analysed for disintegrations, which are defined as the first significant increase in percentage difference between adjacent values for assay values sufficiently above the mean assay value for the dataset.

The analysis for top cut determination was conducted on all mineralisation domains. Common measures of determining an appropriate top cut were reviewed such as log probability plots, histograms, and review of percentiles. During this review factors such as the number of composites cut, the percentage of data cut, and the percentage of metal content cut were considered to ensure an appropriate value where required was chosen.

Table 14-259 Uncut and cut statistics for domains at Thompson's Bore.

			ALL Holes								TBRC Holes ONLY	'			
							400					400			
Domain Raw Data:	Global	101	102	103	104	105	106	Domain Raw Data:	Global	101	102	103	104	105	106
Drill Holes	D1	101 D1	102 D1	103 D1	104 D1	105 D1	106 D1	Drill Holes	D1	101 D1	102 D1	103 D1	104 D1	105 D1	106 D1
Samples	3836	786	833	2121	23	63	10	Samples	423	77	92	235	10	5	4
Imported	3836	3836	3836		3836	3836	3836	Imported	423	423	423	423	423	423	423
Minimum	0.00	0.00	0.00	0.00	0.00	0.07	0.09	Minimum	0.00	0.00	0.02	0.04	0.14	0.16	0.09
Maximum	93.00	64.00	93.00	48.00	2.02	6.98	15.70	Maximum	24.79	12.38	19.16	24.79	2.02	1.19	1.39
Mean	1.64	2.08	1.81	1.44	0.52	0.82	2.16	Mean	1.76	2.14	1.87	1.68	0.58	0.84	0.75
Standard deviation	3.31	4.41	4.10	2.40	0.48	0.94	4.78	Standard deviation	2.53	2.62	2.93	2.41	0.58	0.40	0.56
cv	2.02	2.12	2.27	1.66	0.92	1.15	2.21	CV	1.44	1.23	1.57	1.44	1.01	0.47	0.75
Variance	10.95	19.45	16.80	5.74	0.23	0.88	22.82	Variance	6.41	6.89	8.61	5.81	0.34	0.16	0.31
Skewness	11.58	7.33	14.28	9.53	1.49	4.87	3.11	Skewness	4.27	2.22	3.50	5.49	1.96	-1.77	-0.07
Log samples	3836	786	833	2121	23	63	10	Log samples	423	77	92	235	10	5	4
Log mean	-0.16	-0.21	-0.12	-0.14	-0.98	-0.56	-0.39	Log mean	-0.05	-0.01	-0.09	0.01	-0.92	-0.36	-0.68
Log variance	1.35	2.19	1.43	1.02	0.83	0.70	2.00	Log variance	1.35	2.32	1.43	1.03	0.79	0.69	1.47
Geometric mean	0.85	0.81	0.89	0.87	0.38	0.57	0.68	Geometric mean	0.95	0.99	0.92	1.01	0.40	0.70	0.51
0.10	0.19	0.08	0.20	0.25	0.09	0.19	0.09	0.10	0.21	0.07	0.19	0.32	0.14	0.16	0.09
0.20	0.37	0.25	0.38	0.41	0.14	0.23	0.16	0.20	0.48	0.55	0.46	0.50	0.18	0.16	0.09
0.30	0.53	0.45	0.53	0.56	0.18	0.38	0.27	0.30	0.61	0.67	0.54	0.68	0.18	0.54	0.18
0.40	0.67	0.63	0.66	0.70	0.20	0.51	0.55	0.40	0.75	0.80	0.67	0.81	0.20	0.91	0.37
0.50	0.85	0.79	0.84	0.87 1.09	0.24	0.61	0.59	0.50	0.97	1.11	0.80	1.05	0.25	0.92	0.55 0.71
0.60	1.08 1.46	1.12 1.74	1.09 1.49	1.09	0.60	0.78	0.64	0.60	1.26 1.61	1.56 2.20	1.00 1.54	1.29	0.55	0.92 0.98	0.71
0.70								0.70				1.63			
0.80	2.07	2.65	2.22 3.90	1.93	0.84	1.07	1.26	0.80	2.18	3.26	2.08	2.05	0.63	1.03	1.05
0.90 0.95	3.46 5.33	4.77 7.50	6.41	2.92 4.12	1.02	1.27 1.60	1.39 8.55	0.90 0.95	3.75 6.11	5.24 8.44	5.13 6.58	3.29 5.21	1.03	1.11	1.22
0.98	7.69	12.31	8.80	5.58	1.57	2.33	12.12	0.98	8.95	8.89	10.98	6.52	1.77	1.17	1.35
0.99	13.16	17.85	16.30	9.64	1.84	4.40	14.27	0.99	12.36	12.30	12.39	12.00	1.92	1.17	1.37
Top Cut equation	98.5%	96.2%	93.9%	98.5%	87.0%	87.8%	30.4%	Top Cut equation	96.9%	93.7%	89.8%	94.1%	72.3%	89.7%	71.4%
# samp	3836	786	833	2121	23		10	# samp	423	77	92	235	10	69.770	71.400
Top Cut		12.00	12.00	12.00		-	12.00	Top Cut		10.00	10.00	10.00			
No Values Cut		21	11	13	0	0	1	No Values Cut		2	3	4	0	0	0
% Data		2.7%	1.3%	0.6%			10.0%	% Data		2.6%	3.3%	1.7%			
% Metal		-13.1%	-9.5%	-5.1%			-17.1%	% Metal		-2.8%	-7.3%	-5.8%			
										2	1	1	0	0	0
Au_cut															
Domain								Au_cut				-			
	Global	101	102	103	104	105	106	Au_cut Domain	Global	101	102	103	104	105	106
Raw Data:	Global								Global			103	104		
каw Data:	D7	101 D7	102 102 D7	103 103 D7	104 104 D7	105 105 D7	106 106 D7	Domain	D7	101 D7	102 102 D7			105 105 D7	106 106 D7
Raw Data: Samples	<i>D7</i> 3836	101 D7 786	102 D7 833	103 D7 2121	104 D7 23	105 D7 63	106 D7 10	Domain	<i>D7</i> 423	101 D7 77	102 D7 92	103 103 D7 235	104 104 D7 10	105 D7 5	106 D7
Samples Imported	D7 3836 3836	101 D7 786 3836	102 D7 833 3836	103 D7 2121 3836	104 D7 23 3836	105 D7 63 3836	106 D7 10 3836	Domain Raw Data: Samples Imported	D7 423 423	101 D7 77 423	102 D7 92 423	103 D7 235 423	104 104 D7 10 423	105 D7 5 423	106 D7 4 423
Samples Imported Minimum	D7 3836 3836 0	101 D7 786 3836 0	102 D7 833 3836 0	103 D7 2121 3836 0	104 D7 23 3836 0	105 D7 63 3836 0.07	106 D7 10 3836 0.09	Domain Raw Data: Samples Imported Minimum	D7 423 423 0	101 D7 77 423 0	102 D7 92 423 0.02	103 D7 235 423 0.04	104 D7 10 423 0.14	105 D7 5 423 0.16	106 D7 4 423 0.09
Samples Imported Minimum Maximum	D7 3836 3836 0	101 D7 786 3836 0	102 D7 833 3836 0	103 D7 2121 3836 0 12	104 D7 23 3836 0 2.02	105 D7 63 3836 0.07 6.98	106 D7 10 3836 0.09	Domain Raw Data: Samples Imported Minimum Maximum	D7 423 423 0 10	101 D7 77 423 0	102 D7 92 423 0.02 10	103 103 D7 235 423 0.04 10	104 D7 10 423 0.14 2.02	105 D7 5 423 0.16 1.19	106 D7 4 423 0.09 1.39
Samples Imported Minimum Maximum Mean	D7 3836 3836 0 12 1.50	101 D7 786 3836 0 12 1.81	102 D7 833 3836 0 12 1.64	103 D7 2121 3836 0 12 1.37	104 D7 23 3836 0 2.02 0.52	105 D7 63 3836 0.07 6.98 0.82	106 D7 10 3836 0.09 12 1.79	Domain Raw Data: Samples Imported Minimum Maximum Mean	D7 423 423 0 10 1.66	101 D7 77 423 0 10 2.08	102 D7 92 423 0.02 10 1.73	103 D7 235 423 0.04 10 1.58	104 104 D7 10 423 0.14 2.02 0.58	105 D7 5 423 0.16 1.19 0.84	106 D7 4 423 0.09 1.39 0.75
Samples Imported Minimum Maximum Mean Standard deviation	D7 3836 3836 0 12 1.50 1.97	101 D7 786 3836 0 12 1.81 2.53	102 D7 833 3836 0 12 1.64 2.20	103 D7 2121 3836 0 12 1.37 1.61	104 D7 23 3836 0 2.02 0.52 0.48	105 D7 63 3836 0.07 6.98 0.82 0.94	106 D7 10 3836 0.09 12 1.79 3.61	Domain Raw Data: Samples Imported Minimum Maximum Mean Standard deviation	D7 423 423 0 10 1.66 2.00	101 D7 77 423 0 10 2.08 2.40	102 D7 92 423 0.02 10 1.73 2.31	103 D7 235 423 0.04 10 1.58 1.76	104 D7 10 423 0.14 2.02 0.58 0.58	105 D7 5 423 0.16 1.19 0.84 0.40	106 D7 4 423 0.09 1.39 0.75 0.56
Samples Imported Minimum Maximum Mean Standard deviation	D7 3836 3836 0 12 1.50 1.97	101 D7 786 3836 0 12 1.81 2.53	102 D7 833 3836 0 12 1.64 2.20	103 D7 2121 3836 0 12 1.37 1.61	104 D7 23 3836 0 2.02 0.52 0.48	105 D7 63 3836 0.07 6.98 0.82 0.94	106 D7 10 3836 0.09 12 1.79 3.61 2.02	Domain Row Data: Samples Imported Minimum Maximum Mean Standard deviation CV	D7 423 423 0 10 1.66 2.00	101 D7 77 423 0 10 2.08 2.40 1.16	102 D7 92 423 0.02 10 1.73 2.31	103 D7 235 423 0.04 10 1.58 1.76	104 D7 10 423 0.14 2.02 0.58 0.58	105 D7 5 423 0.16 1.19 0.84 0.40	106 D7 4 423 0.09 1.39 0.75 0.56
Samples Imported Minimum Maximum Mean Standard deviation CV Variance	D7 3836 3836 0 12 1.50 1.97 1.31 3.88	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06	Domain Row Doto: Samples Imported Minimum Maximum Mean Standard deviation CV Variance	D7 423 423 0 10 1.66 2.00 1.20 4.01	101 D7 77 423 0 10 2.08 2.40 1.16 5.78	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08	Domain Row Doto: Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10	Domain Row Data: Samples Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235	104 D7 10 10 423 0.14 2.02 0.58 1.01 0.34 1.96	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17	101 D7 786 3836 0 12 181 2.53 1.40 6.40 2.46 786	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10	Domain Row Dato: Samples Samples Monimum Maximum Mean Standard deviation V Variance Skewness Log samples Log mean	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235 0.00	104 D7 10 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31	101 D7 786 3836 0 1 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82	Domain Row Doto: Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log varlance	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 2.35 0.00 0.99	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log yariance Geometric mean	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31 0.85	101 D7 786 3836 0 12 181 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 1.00 0.87	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83 0.38	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66	Domain Row Data: Samples Samples mported Minimum Madmum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean	D7 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99	102 D7 92 423 0.02 10 173 2.31 1.33 5.35 5.37 92 -0.10 1.37 0.91	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235 0.00 0.99 1.00	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51
Samples Imported Minimum Maximum Mean Standard deviation Ov Variance Skewness Log samples Log mean Log variance Geometri mean 10%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31 0.85	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87 0.25	104 D7 23 3836 0 2.02 0.52 0.48 0.92 1.49 23 -0.98 0.38 0.09	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.57 0.19	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09	Domain Row Doto: Samples Samples Monted Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32 0.95 0.21	101 D7 77 423 0 10 2.08 2.40 116 5.78 1.85 77 -0.01 2.30 0.99	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235 0.00 0.99 1.00 0.32	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.14	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.51 -0.07 4 -0.68 1.47 0.51
Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log yariance Geometric mean	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31 0.85 0.19	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87 0.25 0.41	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83 0.38 0.09 0.14	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70 0.57	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.666 0.09 0.16	Domain Row Data: Samples Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20%	D7 423 423 0 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32 0.95	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19	103 D7 235 423 100 100 100 1158 1.76 1.112 3.11 2.91 2.35 0.00 0.99 1.00 0.32 0.50	104 D7 10 423 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.18	105 D7 \$ 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51 0.09
Samples Imported Minimum Maximum Mean Standard devlation GV Variance Skewness Log samples Log wanne Log variance Geometric mean 10% 20% 30%	D7 3836 3836 0 12 1.50 1.97 1.31 3.83 3.83 6-0.17 1.31 0.85 0.19 0.37	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08 0.25 0.45	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 1.00 0.87 0.25	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 2.3 0.98 0.83 0.38 0.09 0.14 0.18	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70 0.57 0.19 0.23 0.38	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16	Domain Row Dato: Samples Samples Monimum Maximum Mean Standard deviation V Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30%	D7 423 423 0 10 1.66 2.00 4.01 2.57 423 -0.06 1.32 0.95 0.21	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55 0.67	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19 0.46 0.54	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 2.35 0.00 0.99 1.00 0.32 0.50 0.68	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.14 0.18	105 D7 \$ 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.15	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51 0.09 0.18
Samples Imported Minimum Maanimum Mean Standard deviation CV Variance Stewness Log samples Log wariance Geometric mean 10% 20% 30% 40%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31 0.85 0.85 0.93 0.57	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.80 0.25 0.45	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87 0.25 0.41 0.56 0.70	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83 0.09 0.14 0.18 0.20	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.75 0.19 0.23 0.38	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27	Domain Row Doto: Samples Imported Milimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 30% 40%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32 0.95 0.21 0.48 0.61	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 7-0.01 2.30 0.99 0.07 0.55 0.67	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19 0.46 0.54	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 2.00 0.09 0.09 0.09 0.32 0.50 0.68 0.81	104 D7 10 423 0.14 2.02 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.14 0.18 0.20	105 D7 \$ 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.19	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51 0.09 0.09 0.18
Samples Imported Minimum Maximum Mean Standard deviation GV Variance Skewness Log samples Log yaraince Geometric mean 10% 20% 30% 40% 50%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3836 -0.17 1.31 0.85 0.67 0.63 0.67	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08 0.25 0.45 0.63	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83 0.38 0.09 0.14 0.18 0.20 0.24	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 63 4.87 63 0.70 0.57 0.19 0.23 0.38 0.38	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55	Domain Row Data: Samples Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40% 50%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32 0.95 0.21 0.48 0.61 0.75 0.97	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55 0.67 0.80 1.11	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19 0.46 0.54 0.67 0.80	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235 0.00 0.99 1.00 0.99 1.00 0.68 0.81 1.05	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.14 0.18 0.18 0.20 0.25	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.16 0.19	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.56 0.75 1.47 0.51 0.09 0.18 0.37 0.55
Samples Imported Minimum Maximum Mean Standard deviation OV Variance Skewness Log samples Log wan Log	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 3.83 6-0.17 1.31 0.85 0.19 0.37 0.67	101 D7 786 3836 0 12 181 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.25 0.45 0.63 0.79 1.12	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84 1.09	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87 0.25 0.70 0.87	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.38 0.38 0.09 0.14 0.18 0.20 0.24 0.60	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 63 -0.56 0.57 0.19 0.23 0.38 0.51 0.61	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55 0.59 0.64	Domain Row Dato: Samples Samples Monimum Maximum Mean Standard deviation V Variance Skewness Log samples Log wariance Geometric mean 10% 20% 40% 50% 60%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 -0.06 1.32 0.95 0.21 0.48 0.61 0.75	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.97 0.55 0.67 0.80 1.111 1.56	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 5.35 9.2 -0.10 1.37 0.91 0.46 0.54 0.67 0.80 1.00	103 D7 235 2423 0.04 10 1.58 1.76 1.12 2.91 2.35 0.00 0.99 1.00 0.32 0.50 0.68 0.81 1.05	104 D7 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 -0.92 0.79 0.40 0.14 0.18 0.18 0.20 0.25	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.54 0.91	106 D7 4 423 0.09 1.39 0.75 0.56 0.73 0.07 4 0.68 1.47 0.51 0.09 0.18 0.37 0.37
Samples Imported Minimum Maximum Mean Standard deviation CY Variance Skewness Log samples Log mean 10% 20% 30% 40% 50% 60% 70%	D7 3836 3836 0 0 12 1.50 1.97 1.31 3.88 3.13 3.83 6-0.17 1.31 0.85 0.19 0.37 0.53 0.67 0.85 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	101 D7 786 3835 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.25 0.45 0.63 0.79 1.12	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84 1.09 1.49	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2.121 -0.14 1.00 0.25 0.41 0.56 0.70 0.87 1.09	104 D7 23 3836 0 2.02 0.52 0.48 0.92 23 -0.98 0.83 0.38 0.09 0.14 0.18 0.20 0.24 0.60 0.64	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70 0.57 0.19 0.23 0.38 0.51 0.61 0.78	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55 0.59 0.64	Domain Row Data: Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40% 50% 60% 70%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 4.01 2.57 4.23 -0.06 1.32 0.21 0.48 0.61 0.75 0.97 1.26	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55 0.67 0.80 1.11 1.56 2.20	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19 0.46 0.54 0.67 0.80 1.00	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 235 0.00 0.99 1.00 0.99 1.00 0.81 1.05 1.29 1.63	104 D7 10 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 0.79 0.40 0.18 0.18 0.20 0.25 0.55 0.61	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.16 0.19 0.70 0.19 0.92	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.59 0.09 0.18 0.37 0.55 0.71 0.88
Samples Imported Minimum Maximum Mean Standard deviation OV Variance Skewness Log mean Log variance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 6-0.17 1.31 0.85 0.19 0.37 0.53 0.67 0.85 1.08	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08 0.25 0.45 0.63 0.79 1.12 1.74 2.65	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84 1.09 1.49 2.22	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 1.00 0.87 0.25 0.41 0.56 0.70 0.87 1.09	104 D7 23 3836 0 2.02 0.52 0.48 0.92 1.49 23 1.49 23 0.98 0.83 0.38 0.09 0.14 0.18 0.20 0.24 0.60 0.64	105 D7 63 3836 0.07 0.82 0.94 1.15 0.88 4.87 0.70 0.57 0.19 0.23 0.38 0.51 0.70 0.78	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55 0.64 0.96 1.26	Domain Row Dato: Samples Samples Imported Minimum Maximum Mean Standard deviation V Variance Skewness Log samples Log wariance Geometric mean 10% 20% 40% 50% 60% 70% 80%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 0.95 0.06 1.32 0.95 0.21 0.48 0.61 0.75 0.97 1.26 1.61	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55 0.67 0.80 1.11 1.56 2.20 3.26	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 5.35 92 -0.10 1.37 0.91 0.19 0.46 0.54 0.67 0.80 1.00 1.54 2.08	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 1.00 0.99 1.00 0.99 1.00 0.81 1.05 0.68 0.81 1.05 2.05 1.29 1.63 2.05	104 D7 10 10 10 10 10 10 10 10 10 10 10 10 10	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 0.69 0.70 0.16 0.16 0.16 0.91 0.92 0.92 0.98	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51 0.09 0.18 0.37 0.55 0.71 0.88
Samples Imported Minimum Maximum Mean Standard deviation CY Variance Skewness Log samples Log mean 10% 20% 30% 40% 50% 60% 70%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 366 -0.17 1.31 0.85 0.19 0.37 0.55 0.19 0.37 0.55 1.08 1.08 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.25 0.45 0.63 0.79 1.12 1.74 2.65	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84 1.09 1.49 2.22 3.90	103 D7 2121 3836 0 1 1.37 1.61 1.17 2.58 3.46 2121 -0.14 1.00 0.87 0.25 0.41 1.00 0.87 1.09 1.09 1.44 1.93	104 D7 23 3836 0 2.02 0.52 0.48 0.92 0.23 1.49 23 -0.98 0.83 0.09 0.14 0.18 0.20 0.24 0.60 0.64 0.84	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70 0.57 0.19 0.23 0.38 0.51 0.61 0.78	106 D7 10 3836 009 12 1.79 3.61 7.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55 0.59 0.64 0.96 1.26	Domain Row Data: Samples Imported Minimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log wariance Geometric mean 10% 20% 30% 40% 50% 60% 70%	D7 423 423 0 10 1.66 2.00 4.01 2.57 423 -0.06 1.32 0.95 0.21 0.40 0.75 0.95 0.75 0.95	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 -0.01 2.30 0.99 0.07 0.55 0.67 0.80 1.11 1.56 2.20	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 2.37 92 -0.10 1.37 0.91 0.19 0.46 0.57 0.80 1.00 1.54 2.08 5.13	103 D7 235 423 0.04 10 10 158 1.76 1.12 3.11 2.91 2.95 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.05 0.68 0.81 1.05 1.29 1.63 2.05	104 D7 10 10 423 0.14 2.02 0.58 0.58 1.01 0.34 1.96 10 0.79 0.40 0.18 0.18 0.20 0.25 0.55 0.61	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.70 0.16 0.16 0.19 0.70 0.19 0.92	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.59 0.09 0.18 0.37 0.55 0.71 0.88
Samples Imported Minimum Maarimum Mean Standard deviation CV Variance Stewness Log samples Log wariance Geometric mean 10% 20% 30% 40% 50% 60% 70% 80%	D7 3836 3836 0 12 1.50 1.97 1.31 3.88 3.13 6-0.17 1.31 0.85 0.19 0.37 0.53 0.67 0.85 1.08	101 D7 786 3836 0 12 1.81 2.53 1.40 6.40 2.46 786 -0.22 2.10 0.80 0.08 0.25 0.45 0.63 0.79 1.12 1.74 2.65	102 D7 833 3836 0 12 1.64 2.20 1.35 4.85 2.82 833 -0.12 1.38 0.89 0.20 0.38 0.53 0.66 0.84 1.09 1.49 2.22	103 D7 2121 3836 0 12 1.37 1.61 1.17 2.58 3.46 2121 1.00 0.87 0.25 0.41 0.56 0.70 0.87 1.09	104 D7 23 3836 0 2.02 0.52 0.48 0.92 1.49 23 1.49 23 0.98 0.83 0.38 0.09 0.14 0.18 0.20 0.24 0.60 0.64	105 D7 63 3836 0.07 6.98 0.82 0.94 1.15 0.88 4.87 63 -0.56 0.70 0.19 0.23 0.38 0.51 0.67 0.78	106 D7 10 3836 0.09 12 1.79 3.61 2.02 13.06 3.08 10 -0.41 1.82 0.66 0.09 0.16 0.27 0.55 0.64 0.96 1.26	Domain Row Doto: Samples Samples Morted Milimum Maximum Mean Standard deviation CV Variance Skewness Log samples Log mean Log variance Geometric mean 10% 20% 40% 50% 60% 70% 80%	D7 423 423 0 10 1.66 2.00 1.20 4.01 2.57 423 0.95 0.06 1.32 0.95 0.21 0.48 0.61 0.75 0.97 1.26 1.61	101 D7 77 423 0 10 2.08 2.40 1.16 5.78 1.85 77 7-0.01 2.30 0.99 0.07 0.55 0.67 0.80 1.11 1.56 2.20 3.26 5.24	102 D7 92 423 0.02 10 1.73 2.31 1.33 5.35 5.35 92 -0.10 1.37 0.91 0.19 0.46 0.54 0.67 0.80 1.00 1.54 2.08	103 D7 235 423 0.04 10 1.58 1.76 1.12 3.11 2.91 1.00 0.99 1.00 0.99 1.00 0.81 1.05 0.68 0.81 1.05 2.05 1.29 1.63 2.05	104 D7 10 10 10 10 10 10 10 10 10 10 10 10 10 1	105 D7 5 423 0.16 1.19 0.84 0.40 0.47 0.16 -1.77 5 -0.36 0.69 0.79 0.16 0.16 0.19 0.79 0.79 0.16 0.91 0.92 0.98 1.03 1.0	106 D7 4 423 0.09 1.39 0.75 0.56 0.75 0.31 -0.07 4 -0.68 1.47 0.51 0.09 0.09 0.18 0.37 0.57 0.88 1.05

14.6.7.4 Density

With no drill core or other direct measurements available, density factors have been taken from nearby deposit with equivalent lithology.

Density values were assigned to the Thompson's Bore resource model based on geologically modelled oxidation surfaces. Values assigned to the model are tabled below. A factor of 70% of the fresh rock density was used to assume a density value for the waste rock landform (WFR) fill material.

Rock type	Oxide	Transitional	Fresh
Mineralisation domains	1.90	2.40	2.85
Unmineralised background	1.80	2.20	2.80
Fill material (WRF)	1.30	70% (fill factor)	

Table 14-260 Thompson's Bore assigned densities.

14.6.7.5 Variography

The spatial continuity of the estimation domains was conducted within Supervisor. Estimation domains displayed a skewed distribution and a normal scores transformation was used to obtain interpretable experimental estimation domains. There was only sufficient data within the main Thompson's Bore domains 101, 102 and 103 to generate robust experimental variograms. Variogram parameters from domain 102 were applied to domains 105 and 106 (hangingwall lodes). Variogram parameters from domain 103 were also applied to domain 104 (hangingwall lode).

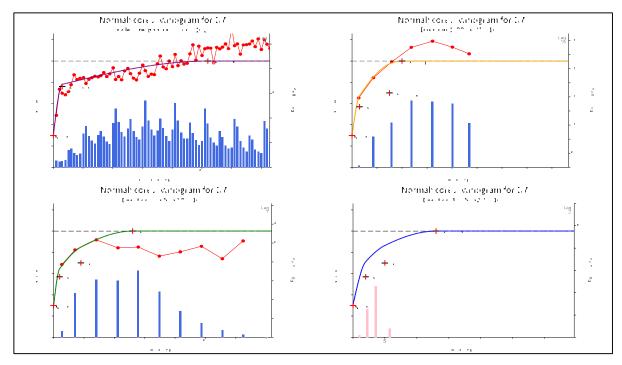


Figure 14-121 Variogram model for Thompson's Bore domain 101 - Source: Westgold.

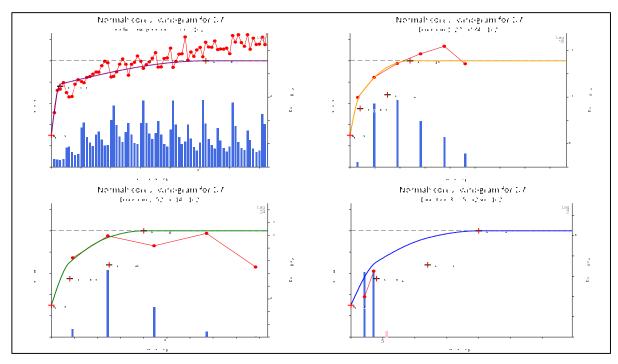


Figure 14-122 Variogram model for Thompson's Bore domain 102 - Source: Westgold.

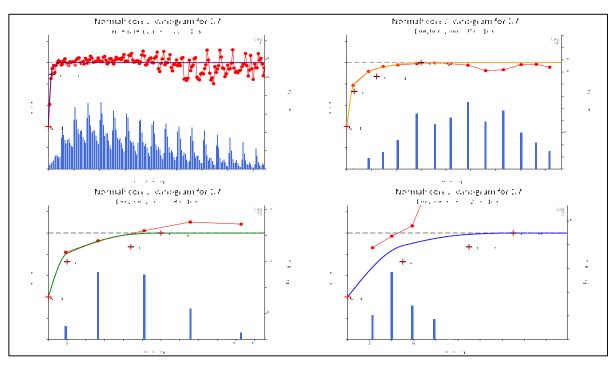


Figure 14-123 Variogram model for Thompson's Bore domain 103 - Source: Westgold.

Table 14-261 Thompson's Bore back-transformed variogram parameters.

	DOMAIN	101	102	103
	C0	0.42	0.43	0.53
	C1	0.29	0.27	0.30
	a1	6.00	8.00	6.00
	C2	0.12	0.12	0.09
	a2	30.00	30.00	24.00
	C3	0.17	0.18	0.07
	a3	40.00	48.00	60.00
	TOTAL SILL	1.00	1.00	0.99
Structure 1	Major : Semi Major	2	1	1.2
Structure 1	Major: Minor	2	2	1.2
Structure 2	Major : Semi Major	3.333	1.2	1.091
Structure 2	Major: Minor	6	2.5	2.182
Structure 3	Major : Semi Major	1.538	1.2	2
Structure 3	Major: Minor	3.077	2.4	4
	SURPAC STRIKE	345	183.7	350
	SURPAC PLUNGE	0	26.95	0
	SURPAC DIP	-65	61.7	-60
	Wireframe Parameters			
	strike	350	350	350
	dip	65E	65E	65 - 70E
	Domain groupings	101	102, 105, 106	103, 104

14.6.7.6 Block Model and Grade Estimation

The model is in Turn of the Tide (2015) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). A single block model was created that encompassed all mineralisation at the Thompson's Bore deposit.

Table 14-262 Thompson's Bore block model parameters.

	Υ	Χ	Z
Min	15,600	9,600	250
Max	16,100	10,100	550
Extents	500	500	300
Parent size	10.00	10.00	10.00
Sub-Block size	1.25	1.25	1.25

The Thompsons Bore block model utilised variable parent block sizes during the estimation process. Above the 410 mRL where grade control drilling was dominant the parent block size was 5 mX 5 mY 5 mZ. Below the 410 mRL a parent block size of 10 mY 10 mX 10 mZ was utilised due to the lower drill density. In addition, only RC holes were allowed to inform the blocks below the 410 mRL.

The ordinary kriging method of interpolation (OK) was used to fill the blocks within all domains. This estimation technique carries out block interpolation based on the average of the values of nearby sample points. It weights the sample points by the semi-variance of the distance between each of the sampled points and the unsampled location, and the semi-variances of the distances among all paired combinations of sample points (i.e. it considers grade continuity). Ordinary kriging is an appropriate technique to apply to the estimation within these domains.

Kriging Neighbourhood Analysis (KNA) was completed on interpolation parameters for domain 1 to optimise the estimate. When conducting a kriged estimate, the search volume or 'kriging neighbourhood' is defined by the user. The definition of this search can have a significant impact on the outcome of the estimate. In essence KNA is one of adjusting the neighbourhood to arrive at good regression statistics to reduce or eliminate conditional bias (Vann, 2003).

Neighbourhood parameters reviewed include block size, minimum and maximum number of informing samples, search range and block discretisation.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation) and carried out in three passes. Interpolation parameters for the Thompson's Bore MRE are tabled below.

element 101 au_cut_ok 102 au_cut_ok 103 au_cut_ok 26.95 0 104 au_cut_ok 350 -60 0.53 1.2 0.09 1.09 2.18 0.07 0.43 0.18 106 au_cut_ok -65 0 3.33 101 au_cut_ok 0.42 26.95 0.43 350 350 0.53 0.53 1.09 -60 -60 1.2 1.2 2.18 2.18 104 au_cut_ok 0.09 105 au cut ok 0.43 106 au_cut_ok 183.7 48 1.2 -65 61.7 3.33 101 au_cut_ok 102 au_cut_ok 350 350 103 au_cut_ok -60 0.53 1.2 104 au_cut_ok 105 au_cut_ok

Table 14-263 Interpolation parameters used within the Thompson's Bore resource.

14.6.7.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub-cell size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model.

Overall, the grade estimation for all domains appears robust with block mean grades within 10% of the declustered input data.

Table 14-264 Thompson's Bore domains estimate block mean v. informing composite mean.

RC & GC			5 x 5 x 5			
Domain	Samples	Mean	Declustered	Block	Mean	Declustered
			Mean	Mean	%Diff	Mean %Diff
101	786	1.81	1.63	1.71	-5%	5%
102	833	1.64	1.54	1.46	-11%	-5%
103	2,121	1.37	1.39	1.42	4%	2%
104	23	0.52	0.53	0.56	6%	4%
105	63	0.82	0.82	0.81	-1%	-1%
106	10	1.79	1.73	1.59	-11%	-8%
RC Only			10 x 10 x1 0			
RC Only Domain	Samples	Mean	10 x 10 x1 0 Declustered	Block	Mean	Declustered
	Samples	Mean		Block Mean	Mean %Diff	Declustered Mean %Diff
	Samples 77	Mean 2.08	Declustered			
Domain			Declustered Mean	Mean	%Diff	Mean %Diff
Domain 101	77	2.08	Declustered Mean 1.81	Mean 1.96	%Diff -6%	Mean %Diff 8%
Domain 101 102	77	2.08 1.79	Declustered Mean 1.81 1.57	Mean 1.96 1.49	%Diff -6% -17%	Mean %Diff 8% -5%
Domain 101 102 103	77 92 235	2.08 1.79 1.63	Declustered Mean 1.81 1.57 1.57	Mean 1.96 1.49 1.49	%Diff -6% -17% -9%	Mean %Diff 8% -5%

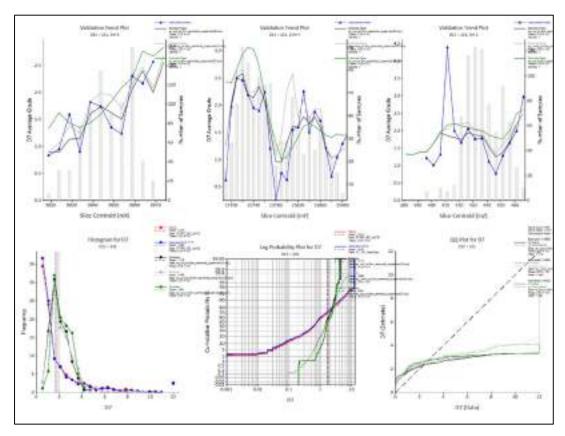


Figure 14-124 Thompson's Bore block model validation plots for domain 101 - Source: Westgold.

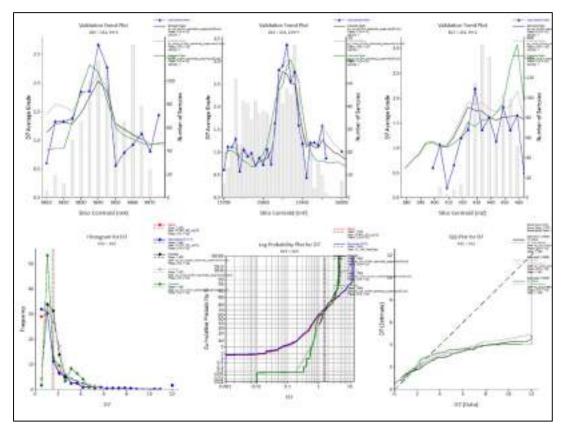


Figure 14-125 Thompson's Bore block model validation plots for domain 102 - Source: Westgold.

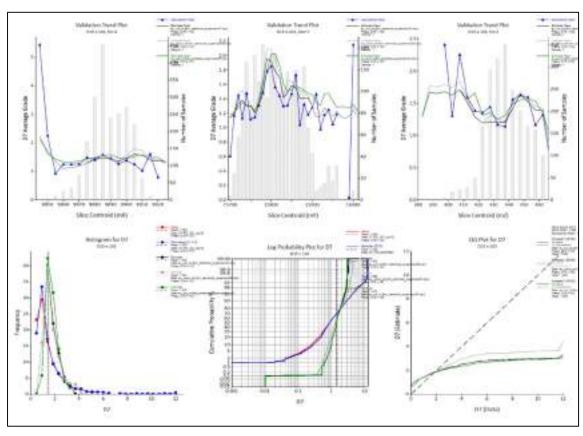


Figure 14-126 Thompson's Bore block model validation plots for domain 103 - Source: Westgold.

14.6.7.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage / grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data, using the guidelines listed in Table 1 of the JORC Code.

At Thompson's Bore, model estimation quality indicators and data density above the 410 mRL is good and would normally warrant an Indicated classification; however, uncertainty with assumed density values and extensive use of open hole grade control data warrants a downgrade to Inferred. All material below the 410 mRL has also been classified as Inferred.

The Thompson's Bore Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.6.7.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. The remaining blocks represent the current in situ Mineral Resource.

Thompson's Bore Mineral Resource Statement - Rounded for Reporting 30/06/2024 Measured Indicated Measured and Indicated Inferred kt g/t koz kt g/t kt kt g/t **Project** koz g/t koz koz Thompson's Bore 0 0.00 0 0 0.00 0 0 0.00 0 241 1.47 11 Total 0.00 0 0.00 0 0 0 0 0 241 1.47 11

Table 14-265 Thompson's Bore Mineral Resources on June 30, 2024.

>= 0.7 g/t Au.

The Thompson's Bore Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.

- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 5 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 7 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 8 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- 9 Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.6.8 Turn of the Tide

14.6.8.1 Summary

The Turn of the Tide deposit is located approximately 65 km by road south of the Bluebird mill, accessible from the Great Northern Highway and a private mining haul road.

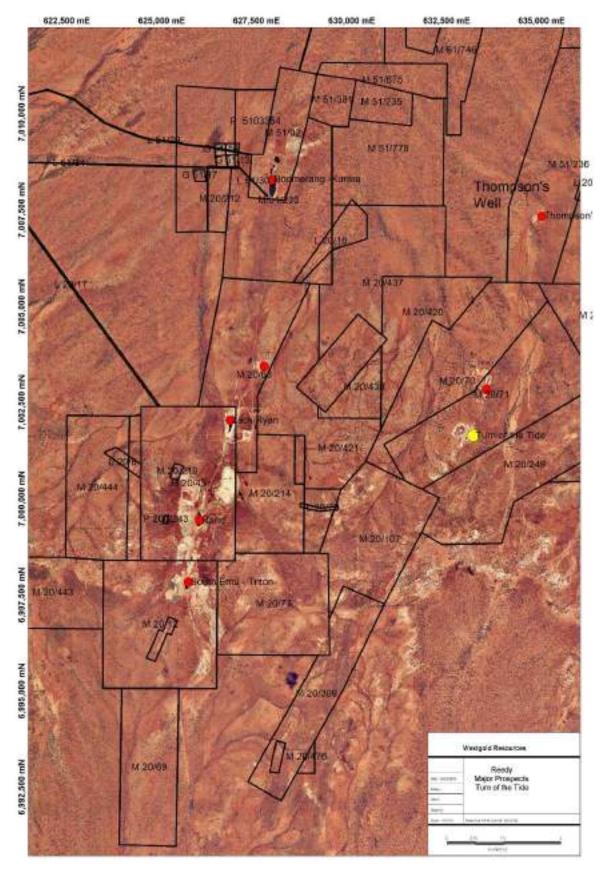


Figure 14-127 Location of the Turn of the Tide deposit - Source: Westgold.

There are minor historical workings along the mineralisation trend. Directly north of the open pit is the historic Turn of the Tide underground workings. Historical production from the Turn of the Tide underground reported as 4227 t at 42.5 g/t for 5,774 oz (Plunkett, 1993).

Mining of the Turn of the Tide open pit in late 1990 by Metana Minerals with a resource of 497 kt at 1.70 g/t, and a Mineral Reserve of 234 kt at 1.90 g/t for 14,300 oz, processed at the Reedy mill. Reconciled production data is not available. Little production information is preserved due to legal issues between Metana and JV partner Homestake in 1991-1992, however, there is a reported figure of 152,273 t at 1.30 g/t for 6,363 oz for 'Main Pit' in a development report for Culculli North (Plunkett, 1993).

The Westgold reportable Mineral Resource Estimate was completed in November 2016 to enable open pit feasibility studies (Witten, 2016b). No production was undertaken by Westgold.

14.6.8.2 Modelling Domains

Geological interpretation of the Turn of the Tide deposit was carried out using a systematic approach to ensure that the resultant mineral resource was both sufficiently constrained and representative of the expected subsurface conditions. In all aspects of modelling the factual and interpreted geology was used to guide the development of the model.

As observed in the Turn of the Tide open pit, earlier tourmaline rich grey quartz veins were cut across by the later white bucky quartz veins (apparently barren) and then deformed by dextral shearing and boudinaged. Relic oxidised sulphides are rare within quartz tourmaline material. Later dilatational quartz veins cut across earlier tourmaline rich quartz veins and the foliation in high angle, later folded and sheared. Veining is hosted within the sericitic – silicification alteration zone defining the extents of the mineralised shears. Gold is usually present in quartz veining, but not all veining is mineralised.

Figure 14-128 Turn of the Tide pit south ramp. Later dilatational quartz veins cut across earlier tourmaline rich quartz veins and the foliation in high angle, later folded and sheared (Witten, 2016b) - Source: Westgold.

Initially a three-dimensional viewing of the data was undertaken to establish trend and continuity of the individual lodes. This was followed by sectional viewing. The broad geologically modelled mineralisation domains represent the altered and sheared felsic material that contains quartz veining that hosts the variable gold mineralisation. These broad domains coincide with a wireframing cut-off of 0.3 g/t that generally coincides with logged quartz veining. Strings were digitised on section to establish the 0.3 g/t cut-off envelope around the individual mineralised zones.

A maximum of two continuous metres of down-hole internal dilution was allowed, and in cases where geological knowledge of the deposit allowed, the interpretation strings were continued through zones of lower grade to assist in modelling mineralisation continuity and to increase the level of along-strike and down-dip control on the location of the mineralised structure. To satisfy mining constraints a minimum downhole intercept of two metres was modelled.

All strings were digitised in a clockwise direction, with a common extent of interpretation defined as 0.5 x drill spacing beyond the last intersecting drillhole. Strings were snapped to drillholes at sample interval boundaries, with no artificial complexities introduced into the mineralisation geometry (although points were created between drillholes to ensure accuracy during wireframing and aid triangulation of solids).

Wireframing of mineralisation sectional perimeters was performed via the linking of appropriate perimeters on adjacent sections. The wireframes were sealed by triangulation within the end member perimeters, leading to the creation of a volume model. Modelling was undertaken in Turn of the Tide (2015) local grid, with a nominal sectional spacing of 5-10 m, dependant on the drill spacing.

14.6.8.3 Statistical Analysis and Compositing

The interpreted mineralisation wireframes were used to create intersection tables within the database by marking for extraction all intervals of drill holes enclosed by the volume model. Each intersection was flagged according to the object in which it intersected, with numerical codes assigned as appropriate.

One metre (1 m) composites of the downhole assay results from the holes in the project area were used in the statistical analysis, and Mineral Resource estimation. Composites were taken from within the volume model, with the composite length chosen based on the dominant sample length within the database.

Statistical comparisons were completed on all the domains for top-cut analysis. The values are based on inspection of the cumulative frequency curve, and the mean and variance plot for the upper point at which the trend line breaks down and reflects the different mineralisation types.

Due to the variability of gold mineralisation within the geological alteration domain, a grade indicator ordinary kriged estimation was undertaken for the primary mineralisation domain 201 to determine the probability of the blocks within the domain to be above or below 0.5 g/t. Domain 201 was then constrained block-by-block to create 'mineralised zone' (MZ) and 'mineralised waste' (MW) estimation subdomains. Top-cuts for the sub-domains are tabled below.

Table 14-266 Statistics and top-cuts for Turn of the Tide domains – part 1.

<u>Au raw</u>										
Domain	201	202	203	204	205	206	207	208	209	210
VOLUME	496,999	8,701	20,045	3,801	130,003	17,620	2,911	18,167	31,738	61,186
% total Volume	51.9%	0.9%	2.1%	0.4%	13.6%	1.8%	0.3%	1.9%	3.3%	6.4%
Drillholes	877	54	95	15	65	25	11	48	2	10
Samples	8818	251	576	63	817	108	51	263	13	94
Imported	11633	11633	11633	11633	11633	11633	11633	11633	11633	11633
Minimum	0.01	0.01	0.01	0.06	0.00	0.08	0.05	0.01	0.02	0.02
Maximum	400.00	45.80	20.40	7.94	93.67	1.42	26.40	14.30	2.68	7.58
Mean	1.50	1.04	0.95	1.02	1.22	0.52	1.41	0.80	0.89	0.70
Standard deviation	7.70	3.26	1.77	1.39	4.50	0.25	3.72	1.24	0.91	0.89
cv	5.12	3.14	1.87	1.37	3.69	0.48	2.63	1.54	1.02	1.27
Variance	59.35	10.63	3.12	1.94	20.26	0.06	13.84	1.53	0.83	0.79
Skewness	33.84	11.27	6.29	3.16	14.18	0.88	6.31	6.32	1.06	5.49
50% (Median)	0.51	0.45	0.46	0.57	0.47	0.47	0.47	0.47	0.63	0.44
90%	2.80	1.64	1.82	2.20	1.91	0.89	2.77	1.47	2.28	1.14
95%	4.88	2.90	3.36	3.73	3.13	0.97	3.22	2.41	2.50	1.71
97.5%	7.89	4.20	5.69	5.08	5.88	1.00	4.41	3.77	2.59	2.59
99.0%	14.08	9.47	6.95	6.62	13.79	1.06	15.35	5.70	2.64	3.25
Top Cut	15.00	6.00	6.00	6.00	8.00	-	6.00	6.00	-	6.00
No Values Cut	78	3	13	1	15		1	3		1
% Data	3.0%	1.2%	2.3%	1.6%	1.8%		2.0%	1.1%		1.1%
% Metal	22.1%	22.7%	9.0%	3.0%	24.9%		28.3%	4.5%		2.4%

<u>Au_cut</u>										
Domain	201	202	203	204	205	206	207	208	209	210
Samples	8818	251	576	63	817	108	51	263	13	94
Imported	11633	11633	11633	11633	11633	11633	11633	11633	11633	11633
Minimum	0.005	0.005	0.005	0.06	0.003	0.08	0.05	0.005	0.021	0.02
Maximum	15	6	6	6	8	1.42	6	6	2.675	6
Mean	1.23	0.80	0.86	0.99	0.88	0.52	1.01	0.77	0.89	0.69
Standard deviation	2.167	1.05	1.177	1.25	1.321	0.246	1.268	0.94	0.91	0.764
CV	1.76	1.31	1.37	1.27	1.51	0.48	1.25	1.23	1.02	1.11
Variance	4.695	1.103	1.385	1.562	1.744	0.06	1.609	0.884	0.828	0.584
Skewness	4.104	3.133	2.904	2.657	4.629	0.881	2.103	3.258	1.058	4.371
50% (Median)	0.514	0.45	0.46	0.57	0.45	0.47	0.47	0.465	0.63	0.443
90%	2.8	1.636	1.824	2.198	1.802	0.892	2.765	1.468	2.283	1.137
95%	4.882	2.904	3.364	3.732	2.685	0.972	3.215	2.407	2.503	1.709
97.5%	7.891	4.198	5.69	5.081	5.895	1	4.406	3.768	2.589	2.585
99.0%	14.082	5.995	6	5.899	8	1.064	5.352	5.477	2.641	3.152

Table 14-267 Statistics and top-cuts for Turn of the Tide domains – part 2.

<u>Au raw</u>										
Domain	211	212	213	214	215	216	217	218	219	220
VOLUME	113,239	619	2,616	5,015	1,723	1,942	2,266	16,877	21,455	1,284
% total Volume	11.8%	0.1%	0.3%	0.5%	0.2%	0.2%	0.2%	1.8%	2.2%	0.1%
Drillholes	4	4	6	57	5	5	1	16	17	8
Samples	35	8	19	270	22	18	6	69	115	17
Imported	11633	11633	11633	11633	11633	11633	11633	11633	11633	11633
Minimum	0.02	0.08	0.16	0.01	0.02	0.07	0.14	0.01	0.01	0.02
Maximum	2.04	3.19	7.90	29.40	4.25	70.00	9.24	4.28	7.07	4.05
Mean	0.49	1.21	1.38	1.06	0.79	5.19	2.22	0.78	0.62	0.70
Standard deviation	0.51	1.22	1.79	2.27	0.94	16.28	3.49	0.88	0.87	0.93
CV	1.05	1.00	1.30	2.14	1.19	3.14	1.58	1.14	1.40	1.32
Variance	0.26	1.48	3.21	5.15	0.88	264.96	12.17	0.78	0.75	0.86
Skewness	1.75	0.84	2.94	8.65	2.61	4.16	2.31	2.22	4.68	3.25
50% (Median)	0.33	0.42	0.68	0.51	0.35	0.65	0.71	0.46	0.37	0.42
90%	1.07	2.84	2.58	2.19	1.47	4.93	4.75	1.61	1.20	1.02
95%	1.64	3.01	2.87	3.70	1.75	13.12	6.99	2.83	1.86	1.70
97.5%	1.96	3.10	5.38	5.17	2.89	41.56	8.12	3.46	2.55	2.88
99.0%	2.01	3.16	6.89	6.59	3.71	58.62	8.79	3.73	3.80	3.58

Top Cut	-	-	6.00	6.00	-	6.00	6.00	-	6.00	-
No Values Cut			1	5		2	1		1	
% Data			5.3%	1.9%		11.1%	16.7%		0.9%	
% Metal			7.3%	12.2%		69.4%	24.4%		1.5%	

Au_cut										
Domain	211	212	213	214	215	216	217	218	219	220
Samples	35	8	19	270	22	18	6	69	115	17
Imported	11633	11633	11633	11633	11633	11633	11633	11633	11633	11633
Minimum	0.016	0.08	0.16	0.005	0.02	0.07	0.14	0.01	0.012	0.02
Maximum	2.035	3.19	6	6	4.25	6	6	4.28	6	4.05
Mean	0.49	1.21	1.28	0.93	0.79	1.59	1.68	0.78	0.61	0.70
Standard deviation	0.513	1.215	1.421	1.201	0.938	2.012	2.193	0.883	0.799	0.928
CV	1.05	1.00	1.11	1.29	1.19	1.27	1.31	1.14	1.32	1.32
Variance	0.263	1.475	2.019	1.442	0.88	4.048	4.811	0.78	0.638	0.861
Skewness	1.746	0.837	2.258	2.627	2.611	1.461	2.102	2.222	4.018	3.247
50% (Median)	0.33	0.42	0.675	0.51	0.35	0.65	0.71	0.46	0.37	0.415
90%	1.07	2.838	2.582	2.19	1.47	4.768	3.45	1.611	1.2	1.024
95%	1.635	3.014	2.77	3.695	1.75	6	4.725	2.834	1.863	1.704
97.5%	1.959	3.102	4.385	5.168	2.892	6	5.363	3.458	2.548	2.877
99.0%	2.005	3.155	5.354	6	3.707	6	5.745	3.728	3.795	3.581

Table 14-268 Statistics and top-cuts for Turn of the Tide domain 201 MW and MZ sub-domains.

<u>Au raw</u>	au_ind_ok				
Domain	201 domain	201 MW	201 MZ		
Samples	8818	3979	4268		
Imported	11633	3979	4268		
Minimum	0.01	0.01	0.01		
Maximum	400.00	36.83	400.00		
Mean	1.50	0.56	2.44		
Standard deviation	7.70	1.41	10.90		
cv	5.12	2.51	4.46		
Variance	59.35	1.98	118.72		
Skewness	33.84	12.85	24.44		
50% (Median)	0.51	0.28	0.94		
90%	2.80	1.08	4.43		
95%	4.88	1.85	7.29		
97.5%	7.89	2.78	11.55		
99.0%	14.08	5.01	20.82		

Top Cut	32.00	8.00	32.00
No Values Cut	26	19	25
% Data	0.3%	0.5%	0.6%
% Metal			

<u>Au_cut</u>			
Domain	201 domain	201 MW	201 MZ
Samples	8818	3979	4268
Imported	8818	3979	4268
Minimum	0.005	0.005	0.005
Maximum	32	8	32
Mean	1.32	0.52	2.05
Standard deviation	2.849	0.902	3.686
CV	2.17	1.72	1.80
Variance	8.119	0.814	13.586
Skewness	6.606	5.167	5.154
50% (Median)	0.514	0.28	0.94
90%	2.8	1.08	4.43
95%	4.882	1.85	7.29
97.5%	7.891	2.78	11.546
99.0%	14.082	5.013	20.816

14.6.8.4 Density

Density studies of oxide and transitional were undertaken by BPM Slimline Services for Metana using a slimline 3.5 m probe that recorded calliper logs and measured deep and shallow penetration density. This was compared to diamond core density of rock from geotechnical drillholes, measured using the immersion method (Metana, 1990).

Values used in the resource model are tabled below. Values are based on the test work above, with a conservative value chosen for fresh rock as no density test work has been conducted to date for fresh rock samples.

Table 14-269 Turn of the Tide density values.

Rock Type	Oxide	Transitional	Fresh
Felsic / Intermediate	2.00	2.20	2.60
Cover	1.90		
Air / Void	0.00		

14.6.8.5 Variography

A geostatistical analysis of down-hole composited Turn of the Tide data for all domains with a significant population was undertaken as part of the resource estimation process. This included normal scores variographic analysis of the composite data using Snowden Supervisor software. Grade distribution is analysed via Connelly diagrams and continuity rosettes, with directions of maximum grade continuity selected in three directions to produce a variogram model. A variogram model is also produced in the downhole direction with a lag spacing of 1 to determine the nugget of the population. Variogram nugget and sills for estimation are backtransformed from the Gaussian distribution using Hermite polynomials.

For the grade indicator ordinary kriged estimation undertaken for the primary mineralisation domain 201, to determine the probability of the blocks within the domain to be above or below 0.5 g/t, assay composites were allocated a 0 of below 0.5 g/t, and 1 if above 0.5 g/t. The indicator estimated blocks resulted in a decimal value (a probability) between 0 and 1. This allowed for the geologically domained wireframes to be sub-domained into mineralised waste (indicator block probability below 0.5) and mineralised zone (indicator block probability above 0.5) sub-domains.

Domain 201 was then constrained block-by-block to create 'mineralised zone' (MZ) and 'mineralised waste' (MW) estimation sub-domains. An ordinary kriged estimation was undertaken within the sub-domains, with estimation parameters based on geostatistical analysis of gold values using only the samples within the sub-domains to determine variogram models for the sub-domains. The final gold grade interpolation was carried out within the sub-domains using $5 \, \text{m} \times 5 \, \text{m} \times 5 \, \text{m}$ parent blocks, using only samples within the sub-domains.

The remaining major domains at Turn of the Tide used a whole domain ordinary kriged estimate, with parameters based on the variogram models of domains with sufficient populations for geostatistical analysis. Minor domains estimated by ordinary kriging used parameters of spatially and statistically similar domains.

The inverse distance to a power of two (ID²) interpolation method was also used to fill poorly populated domains, or domains with poor geological interpretation confidence. The ID² method is adopted as it allows for block interpolation based on the values of the sample points closest to the block centroid. The weighting of the surrounding samples is calculated based on the inverse of their distance to the block centroid raised to the second power. Given the data density, Inverse Distance Squared is an appropriate technique to estimate these domains.

A single drill intercept domain was flagged with the mean grade of the drillhole intercept.

A summary of the parameters is tabled below.

Table 14-270 Turn of the Tide ordinary kriging domain estimation parameters.

	DOMAIN	202	203	205	206	208	214
Numbe	er of comps	251	576	817	108	263	270
NUGGET	C0	0.66	0.51	0.47		0.58	0.53
SILL 1	c1	0.34	0.24	0.41		0.42	0.47
SILL 2	c2	0.00	0.25	0.12		0.00	0.00
SILL 3	с3	0.00	0.00	0.00		0.00	0.00
TOTAL SILL		1.00	1.00	1.00	0.00	1.00	1.00
Major							
RANGE 1	a1	20.00	6.00	15.00	20.00	15.00	30.00
RANGE 2	a2	0.00	30.00	80.00	0.00	0.00	0.00
RANGE 3	a3	0.00	0.00	0.00	0.00	0.00	0.00
Semi-Major							
RANGE 1		10.00	4.00	3.00	20.00	5.00	10.00
RANGE 2		0.00	10.00	10.00	0.00	0.00	0.00
RANGE 3		0.00	0.00	0.00	0.00	0.00	0.00
Minor				,	,		, ,
RANGE 1		10.00	4.00	3.00	5.00	5.00	10.00
RANGE 2		0.00	10.00	10.00	0.00	0.00	0.00
RANGE 3		0.00	0.00	0.00	0.00	0.00	0.00
Structure 1 ratio	os						
Major : Semi Major		2	1.5	5	1	3	3
Major : Minor		2	1.5	5	4	3	3
Structure 2 ratio							
Major : Semi Ma	ajor	0	3	8	0	0	0
Major : Minor		0	3	8	0	0	0
Structure 3 ratio							
Major : Semi Ma	ajor	0	0	0	0	0	0
Major : Minor		0	0	0	0	0	0
D.D.S.OT. O.M. 4			2 22=				
DIRECTION 1		0>020	0> 005	9>001		0>000	0> 010
DIRECTION 2		-70> 110	-80> 095	-63> 072		-60> 090	-70> 100
DIRECTION 3		20> 110	10> 095	25> 095		30> 090	20> 100
SURPAC STRIKE	(7 DOT)	20	5	0.7	0	0	10
SURPAC PLUNGE	(Z-ROT)	0	0		0	0	10
SURPAC PLONGE	(Y-ROT)	-70	-80	9.1	0	-60	-70
SURPAC DIP	(1-KO1)	-70	-80	-04.7	U	-60	-70
Discretisation (XY7)	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z	5x 5y 5z
Search distance		20	30 3x 3y 32	3x 3y 32 80	20	15	30 30 32
Search distance		40	60	120	40	30	60
Search distance	•	80	120	160	80	60	120
Min/max sampl			min 10 max 24	min 10 max 24	min 12 max 26	min 10 max 24	min 10 max 24
Min/max sampl		min 12 max 22	min 10 max 24	min 10 max 24		min 10 max 24	
Min/max sampl		min 6 max 22	min 8 max 22	min 8 max 22	min 6 max 22	min 8 max 22	min 8 max 22
Max samples pe		X	X	X X	X X	X	X X
ivian sailipies pe	a urminore	۸	۸	^	^	۸	۸

Table 14-271 List of estimation parameters applied to poorly-informed Turn of the Tide domains.

Domain 204 will use domain 203 parameters, spatially similar.

Domain 207 will use domain 203 parameters, spatially similar.

Domain 210 will use domain 205 parameters, spatially similar.

Domain 213 will use domain 201 south parameters, spatially similar.

Domain 215 will use domain 203 parameters, spatially similar.

Domain 216 will use domain 201 south parameters, spatially similar.

Domain 218 will use domain 201 north parameters, spatially similar.

Domain 219 will use domain 205 parameters, spatially similar.

Domain 220 will use domain 201 south parameters, spatially similar.

Table 14-272 Turn of the Tide domain 201 indicator domain, and MW / MZ sub-domain ordinary kriging estimation parameters.

	DOMAIN	201 ind 0p5	201 MW	201 MZ
Numbe	er of comps	8818	3979	4268
NUGGET	СО	0.46	0.61	0.70
SILL 1	c1	0.41	0.31	0.13
SILL 2	c2	0.13	0.08	0.17
SILL 3	c3	0.00	0.00	0.00
TOTAL SILL		1.00	1.00	1.00
Major				
RANGE 1	a1	6.00	9.00	6.00
RANGE 2	a2	35.00	36.00	16.00
RANGE 3	a3	0.00	0.00	0.00
Semi-Major				
RANGE 1		4.00	6.00	3.00
RANGE 2		23.30	12.00	
RANGE 3		0.00	0.00	0.00
Minor		,,,,,		
RANGE 1		4.00	6.00	3.00
RANGE 2		17.50	16.00	
RANGE 3		0.00	0.00	0.00
Structure 1 ratio				
Major : Semi Ma	ijor	1.5	1.5	2
Major : Minor		1.5	1.5	2
Structure 2 ratio			3	
Major : Semi Ma	ijor	1.5	2	
Major : Minor		2	2.25	2.67
Structure 3 ratio				
Major : Semi Ma	ijor	0	0	C
Major : Minor		0	0	C
DIRECTION 1		0> 020	0>030	68> 354
DIRECTION 2		-70> 110	-70> 120	
DIRECTION 3		20> 110	20> 120	
SURPAC STRIKE	(Z-ROT)	20	30	354.5
SURPAC PLUNGE	(X-ROT)	0	0	67.7
SURPAC DIP	(Y-ROT)	-70	-70	-62.7
5	.07)			
Discretisation ()		5x 5y 5z	5x 5y 5z	5x 5y 5z
Search distance		35	35	16
Search distance pass 2		52.5 (x1.5)	52.5 (x1.5)	32 (x2)
Search distance		70 (x2)	70 (x2)	64 (x4)
Min/max sampl		min 8 max 28	min 8 max 28	min 12 max 28
Min/max sampl		min 8 max 28	min 8 max 28	min 6 max 28
Min/max sampl		min 4 max 20	min 4 max 20	min 4 max 20
Max samples pe	r drillhole	X	X	X

Table 14-273 Turn of the Tide ID² domain estimation parameters.

Domain 206 will use ID2 estimation for the poorly informed laterite lode. 20m search, strike 0 plunge 0 dip 0 major:semi 1 major:minor 4

(major N-S, semi E-W, minor vertical)

Domain 209 will use ID2 estimation, spherical search with 200m radius.

Domain 211 will use ID2 estimation, spherical search with 200m radius.

Domain 212 will use ID2 estimation, spherical search with 20m radius.

Domain 217 will be allocated the mean domain grade of 1.68g/t (single drillhole intercept domain)

14.6.8.6 Block Model and Grade Estimation

The model is in Turn of the Tide (2015) local mine grid, for which Westgold has a two-point transformation to Mine Grid of Australia 1994 (Zone 50). The Surpac block model parameters are tabled below.

Z Min 9,400 9,700 300 10,200 520 Max 10,300 Extents 900 500 220 Parent size 5.00 5.00 5.00 2.50 1.25 2.50 Sub-Block size

Table 14-274 Turn of the Tide block model parameters.

The interpolation was constrained within the wireframe generated from the geological sectional interpretation of the domains (i.e. within the plane of mineralisation).

For the grade indicator ordinary kriged estimation, the geologically domained wireframes to be sub-domained into mineralised waste (indicator block probability below 0.5) and mineralised zone (indicator block probability above 0.5) sub-domains. Domain 201 was then constrained block-by-block to create 'mineralised zone' (MZ) and 'mineralised waste' (MW) estimation sub-domains. An ordinary kriged estimation was undertaken within the sub-domains carried out within the sub-domains using 5 m x 5 m x 5 m parent blocks, using only samples within the sub-domains.

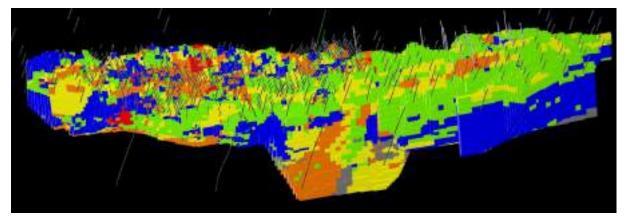

All interpolation was conducted in three passes, increased search distance $1.5 \times 1.5

Figure 14-129 Turn of the Tide block Mineral Resource Estimate, depleted blocks hidden - Source: Westgold.

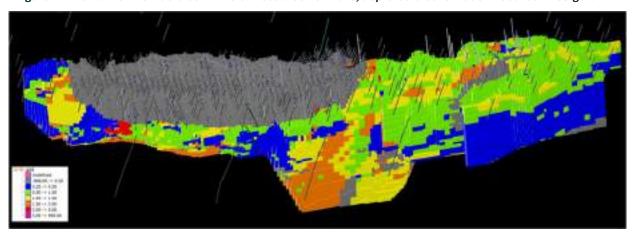


Figure 14-130 Turn of the Tide block Mineral Resource Estimate. Depleted block shown, grade and density zeroed for depleted blocks - Source: Westgold.

14.6.8.7 Model Validation

Global comparisons of grade estimates versus input composites were completed by statistical analysis and visual comparisons. The block volume of each domain was also compared to the corresponding wireframe volume to ensure the sub size chosen allowed for accurate representation of the mineralisation volumes.

Sectional and elevation trend swath plots were generated for each lode. The profiles compared the volume-weighted average of the block grades to the length-weighted mean of the input composite grades for northing, easting and elevation slices through the block model. The plots assist in the assessment of the reproduction of local mean grades and are used to validate grade trends in the model. Trend analysis graphs indicate gross over / under-estimations within the model in relation to the input data and resultant resource tonnage. This method of analysis is useful for reviewing local estimation errors.

A Q-Q plot is a graphical representation of the percentiles of two datasets plotted against each other. If this plot results in a straight 1:1 line then the datasets have the same sample distribution. Deviations from a straight 1:1 relationship indicate differences in distribution. Ideally, the datasets being compared should sample a common volume to ensure that the comparison is un-biased by areas sampled within only one of the datasets. In the case of comparison of domains, the assumption is

made that the datasets from which the data are sourced are statistically similar, with the Q-Q plot then used to test the assumption.

Histograms provide a visualisation of the distribution of input data as compared to output data. Due to the application of an interpretation cut-off and the smoothing effect of the estimation, it is normal for the range of output grades to be reduced as compared to the input grades. However, the shape of the estimation distribution should reflect the naïve distribution.

Boxplots provide a visualisation of the distribution of input data as compared to output data. A boxplot is a method for graphically depicting groups of numerical data through their quartiles. The spacing between the different parts of the box indicate the degree of dispersion (spread) and skewness in the data. Boxplots provide a data analysis similar to a histogram, where the quartiles of the estimation distribution should reflect the naïve distribution.

Validation analysis has indicated that the block model estimate is robust at a global scale compared to the domain naïve and declustered means. Estimation parameter domains show local high-grade spikes are under-reported and conversely low-grade spikes are over-reported in the model in many cases. This can be seen in the trend analysis graphs. This is due to the smoothing effect of the estimation techniques employed.

The model has not been reconciled against previous historic production data, as the production data was reconstructed from reserve estimates and not mill reconciled production records.

14.6.8.8 Mineral Resource Classification

The Mineral Resource classifications for each domain, or part thereof, were assigned with consideration for the confidence in the tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity, and distribution of the data, using the guidelines listed in Table 1 of the JORC Code. The Turn of the Tide Mineral Resource was classified in the model on the following basis:

- (1) The Measured Mineral Resource category was not applied to any material.
- (2) The Indicated Mineral Resource category was applied where tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence, generally coincident with a Conditional Bias Slope >0.7, and reasonable sample support from a drillhole spacing of 5-10 m.
- (3) The Inferred Mineral Resource category was applied where tonnage, grade, and mineral content can be estimated with a reduced level of confidence, generally coincident with a Conditional Bias Slope <0.7, and where mineralisation domains are only broadly defined by wider-spaced drill section spacing of 10-20 m, or for minor domains with poor sample support.

Parts of mineralisation domains with insufficient confidence for classification in any of the above categories were flagged in the block model attribute 'res_cat' as Unreported = 4.

Parts of mineralisation domains considered to be potentially depleted were flagged in the block model attribute 'res_cat' as Sterilised = 5. This was either related to the spatial inaccuracies inherent to historic drillholes or mining void surveys methods, or a suspected incomplete final depleted open pit survey due to the slip of the western pit wall.

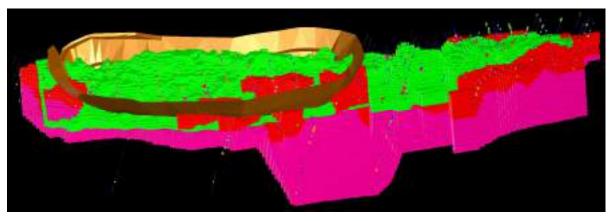


Figure 14-131 Turn of the Tide Mineral Resource classification, pre-mining depletion. looking west. Indicated = green, Inferred = red, Unreported = magenta - Source: Westgold.

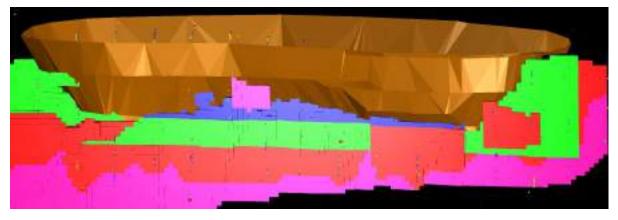


Figure 14-132 Mineral Resource classification for Turn of the Tide, looking east. Indicated = green, Inferred = red, Unreported = magenta, Sterilised = blue - Source: Westgold.

The Turn of the Tide Mineral Resource was classified in accordance with the JORC Code 2012 guidelines. A reconciliation of this reporting and the CIM Definition Standards (2014) by the Qualified Person shows no material differences.

14.6.8.9 Mineral Resource Statement

The Mineral Resource Statement presented herein sets out the Gold Mineral Resource estimate prepared in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F.

The 'reasonable prospects for eventual economic extraction' requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate cut-off grade that considers extraction scenarios and processing recoveries. In the case of open pit Mineral Resources this is generally further refined by the reporting above an optimisation shell at an appropriate gold price. In the case of underground Mineral Resources this is generally further refined by geotechnical and depth considerations. Areas considered sterilised by historical mining activities were removed from the Mineral Resource estimation. These areas were adjacent to mined out open pit volumes. Westgold digitised sterilisation shapes around these locations as appropriate. The remaining blocks represent the current in situ Mineral Resource.

Table 14-275 Turn of the Tide Mineral Resources on June 30, 2024.

Turn of the Tide Mineral Resource Statement - Rounded for Reporting 30/06/2024												
Measured Indicated Measured and Indicated Inferred												
Project	kt	g/t	koz	kt	g/t	koz	kt	kt g/t koz			g/t	koz
Turn of the Tide	0	0.00	0	256	1.40	12	256	1.40	12	200	1.20	8
Total	0	0.00	0	256	1.40	12	256	1.40	12	200	1.20	8

>=0.7g/t Au

The Turn of the Tide Mineral Resource estimate is effective as of June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$2,750/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5g/t Au or 0.7g/t Au cutoff for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

14.7 STOCKPILES

Stockpiles generated from the mining of historical and active MGO open pits and undergrounds, are estimated as Measured and Indicated Mineral Resources using the cost assumptions for MGO at the time the stockpile material was dumped. The estimates use data from grade control protocols during mining with the cut-off based on revenue and costs at the time of production. The grade control evaluation uses a combination of drilling, ore block / stope grade estimation and dump sampling to provide gold grade values.

MGO -Stockpiles Mineral Resource Statement - Rounded for Reporting 30/06/2024 Indicated Measured Measured and Indicated Inferred **Project** kt g/t koz kt g/t koz kt g/t kt g/t koz MGO Stockpiles 350 1.34 15 0 0.00 0 350 1.34 15 0 0.00 0 Total 350 1.34 15 0 0.00 0 350 1.34 15 0 0.00 0

Table 14-276 Stockpiles Mineral Resources on June 30, 2024.

- Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources estimated will be converted into Mineral Reserves.
- The Measured and Indicated Mineral Resources are inclusive of those Mineral Resources modified to produce Mineral Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorised as Mineral Reserves. It is reasonably expected that the majority of Inferred Mineral resources could be upgraded to Indicated Mineral Resources with continued exploration.
- 4 The Gold Mineral Resource is estimated using a long-term gold price of A\$3,000/oz.
- The Gold Mineral Resource for MGO is reported using either a 0.5 g/t Au or 0.7 g/t Au cut-off for open pits and above an RL or optimised pit shell. A 1.5 g/t Au or 2.0 g/t cut-off grade as best fits the deposit is used for underground projects and above an RL if appropriate. Stockpile Gold Mineral Resources are reported insitu.
- 6 Mineral Resources are depleted for mining as of June 30, 2024.
- 7 To best represent 'reasonable prospects of eventual economic extraction' the majority of the mineral resources for open pits have been reported within optimised pit shells at various prices between A\$1,950/oz and A\$2,600/oz. For underground resources, areas considered sterilised by historical mining are removed from the Mineral Resource estimation.
- 8 Mineral Resource tonnage and contained metal have been rounded to reflect the accuracy of the estimate, and numbers may not add up due to rounding.
- 9 CIM Definition Standards (2014) were followed in the estimation of Mineral Resources.
- Gold Mineral Resource estimates were prepared under the supervision of Qualified Person J. Russell, MAIG (General Manager Technical Services, Westgold Resources).

15 MINERAL RESERVE ESTIMATE

15.1 INTRODUCTION

The Gold Mineral Reserve estimates have been prepared using accepted industry practice and in accordance with NI 43-101 reporting standards, under the supervision of Mr. Leigh Devlin, FAusIMM who is an employee of Westgold Resources. Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the Mineral Reserve estimates.

Meekatharra is an operating gold mine, allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As an operating mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation. All major infrastructure and permitting is also in place. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Gold Mineral Reserves at Meekatharra are split into four separate geological regions, Paddy's Flat, Yaloginda, Nannine and Reedy's. The Mineral Reserve estimate effective June 30, 2024 is summarised below.

Region		Proven			Probable			TOTAL		
	(kt)	(kt) (g/t) (koz)		(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	
Nannine				262	1.93	16	262	1.93	16	
Paddy's Flat	48	4.10	6	435	3.86	54	483	3.88	60	
Reedy's	57	3.35	6	398	3.42	44	455	3.41	50	
Yaloginda	0	0.00	0	0	0.00	0	0	0.00	0	
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15	
TOTAL	456	1.89	28	1.095	3.24	114	1.550	2.84	142	

Table 15-1 Meekatharra Gold Mineral Reserves on June 30, 2024.

- 1 The Mineral Reserve is reported at varying cut-off grades per based upon economic analysis of each individual deposit.
- 2 Key assumptions used in the economic evaluation include:
 - a) A metal price of A\$3,000/oz for Underground and \$2,750/oz for Open Pits.
 - b) Metallurgical recovery varies by deposit.
 - c) The cut-off grade takes into account operating, mining, processing/haulage and G&A costs, excluding mining capital where relevant.
- 3 The Mineral Reserve is depleted for all mining to June 30, 2024.
- The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 6 CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 7 Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L Devlin, FAusIMM.

15.2 PADDY'S FLAT

The Paddy's Flat Mineral Reserves comprise the deposits of Prohibition, Vivian - Consols and Mudlode - Hendrix.

15.2.1 Prohibition

15.2.1.1 Summary

The underground Prohibition deposit is mined via longhole open stoping methods. The Prohibition Mineral Reserves were optimised, designed, and scheduled by mining method and mineralised zones. Cost modelling was completed to show the cashflow and NPV provides sufficient return to include within the WGX Mineral Reserves. Having reviewed the data and updated it with up to date modifying factors (costs and gold price), Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the Prohibition Mineral Reserve estimates.

15.2.1.2 Mineral Reserve Estimation Process

Prohibition is planned to operate as an underground gold mine allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As an historic operating underground mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation process. Although some additional surface infrastructure will be required, the key major infrastructure and permitting is in place with access to a well-established decline portal. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Designs previously completed by WGX were loaded into Deswik software and verified against current as-builts and the resource model.

Key assumptions include:

- Development dilution of 0% additional tonnes at 0 g/t;
- Stope dilution is included in the designed stope shapes of the longhole open stoping (LHOS) with a 0 g/t applied.
- Stope recovery factor of 90% for LHOS stopes.

The resulting Mineral Reserve estimate as of June 30, 2024 is shown in **Table 15-2**.

Table 15-2 Prohibition Gold Mineral Reserves on June 30, 2024.

	Proven				Probable		TOTAL			
	(kt) (g/t) (koz)		(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)		
Prohibition	18	4.25	2	134	2.84	12	151	3.00	15	

- 1. The Mineral Reserve is reported at a 0.6 g/t cut-off grade for development and a 2.1 g/t cut-off grade for stopes.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$3,000/oz.
 - b. The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding Mining capital where relevant.
 - c. The Mineral Reserve is depleted for all mining to June 30, 2024.
- The tonnes and grades are stated to a number of significant digits reflecting the confidence
 of the estimate. Since each number is rounded individually, the table may show apparent
 inconsistencies between the sum of rounded components and the corresponding rounded
 total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.2.1.3 Stope Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;
- Natural low-grade rock pillars have been included in the mine design per the
 economic stope shapes developed. Proximity to old mined out areas was also
 considered. An additional mining recovery factor of 90% has been applied to
 account for ore extraction and ore losses and bogging recovery losses.

15.2.1.4 Cut-Off Grade Derivation

Cut-off grades (COG's) are derived from the Stope Optimiser (SO) stope shapes utilising gold COG's inclusive of costs, revenue and metallurgical factors. These were determined to be 2.1 g/t for stopes and 0.6 g/t for low grade development. The cut-off grade inputs and calculations are shown in **Table 15-3** and **Table 15-4**. The Prohibition mine design and schedule is extremely sensitive to revenue factors, therefore, changes to recovery or gold price may impact economic areas as designed for this Mineral Reserve.

Table 15-3 Prohibition Underground Mineral Reserves – net gold price calculation.

Parameter	Unit	Value
Gold Price	AUD\$/oz	3,000
State Royalty	%	2.5
Third Party Royalty	%	2.25
Third Party Royalty	A\$/oz	10
Metallurgical Recovery	%	92%
Net Price (after recovery)	A\$/oz	2,760
Net Price (after recovery)	A\$/g	88.73

Table 15-4 Prohibition cut-off grade calculation inputs.

Item	Fully Costed	Mine Operating	Stope Cut-Off	Low Grade
Mining Capital	34.14			
Mining Operating	67.58	67.58	49.12	
Haulage	4.60	4.60	4.60	4.60
Grade Control	14.91	14.91	14.91	
Exploration				
Ancillary Services	55.79	55.79	55.79	
Mine Management and Technical	17.20	17.20	17.20	
Site G&A				
Corporate Capital	4.49	4.49	4.49	4.49
Processing	29.71	29.71	29.71	29.71
Royalty	14.75	14.75	14.75	14.75
Total	243.17	209.03	190.58	53.55
Cut Off Grade	2.7	2.4	2.1	0.6

15.2.2 Vivian - Consols

15.2.2.1 Summary

The underground Vivian - Consols deposit is mined via longhole open stoping methods. The Vivian - Consols mineral reserves were optimised, designed, and scheduled by mining method and mineralised zones. Cost modelling was completed to show the cashflow and NPV provides sufficient return to include within the WGX reserve. Having reviewed the data and updated it with up to date modifying factors (costs and gold price), Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the Vivian - Consols Mineral Reserve estimates.

15.2.2.2 Mineral Reserve Estimation Process

Vivian-Consols is planned to operate as an underground gold mine allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As an operating underground mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation process. Although some additional surface infrastructure will be required, the key major infrastructure and permitting is in place with access to a well-established decline portal. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Designs previously completed by WGX were loaded into Deswik software and verified against current as-builts and the resource model.

Key assumptions include:

- Development dilution of 0% additional tonnes at 0 g/t;
- Stope dilution is included in the designed stope shapes of the longhole open stoping (LHOS) with a 0 g/t applied.
- Stope recovery factor of 90% for LHOS stopes.

The resulting Mineral Reserve estimate as of June 30, 2024 is shown in **Table 15-5**.

Table 15-5 Vivian-Consols Gold Mineral Reserves on June 30, 2024.

	Proven				Probable			TOTAL		
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	
Vivian-Consols	1	4.18	0.1	78	6.24	16	79	6.21	16	

- 1. The Mineral Reserve is reported at a 0.6 g/t cut-off grade for development and a 2.1 g/t cut-off grade for stopes.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$3,000/oz.
 - b. The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding Mining capital where relevant.
 - c. The Mineral Reserve is depleted for all mining to June 30, 2024.
- The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.2.2.3 Stope Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;
- Natural low-grade rock pillars have been included in the mine design per the
 economic stope shapes developed. Proximity to old mined out areas were also
 considered. An additional mining recovery factor of 90% has been applied to
 account for ore extraction and ore losses and bogging recovery losses.

15.2.2.4 Cut-Off Grade Derivation

Cut-off grades (COG's) are derived from the Stope Optimiser (SO) stope shapes utilising gold COG's inclusive of costs, revenue and metallurgical factors. These were determined to be 2.1 g/t for stopes and 0.6 g/t for low grade development. The cut-off grade inputs and calculations are shown in **Table 15-6** and **Table 15-7**.

The Vivian - Consols mine design and schedule is extremely sensitive to revenue factors, therefore, changes to recovery or gold price may impact economic areas as designed for this Mineral Reserve.

Table 15-6 Vivian - Consols Underground Mineral Reserves – net gold price calculation.

Parameter	Unit	Value
Gold Price	AUD\$/oz	3,000
State Royalty	%	2.5
Third Party Royalty	%	2.25
Third Party Royalty	A\$/oz	10
Metallurgical Recovery	%	92%
Net Price (after recovery)	A\$/oz	2,760
Net Price (after recovery)	A\$/g	88.73

Table 15-7 Vivian - Consols cut-off grade calculation inputs.

Item	Fully Costed	Mine Operating	Stope Cut- Off	Low Grade
Mining Capital	34.14			
Mining Operating	67.58	67.58	49.12	
Haulage	4.60	4.60	4.60	4.60
Grade Control	14.91	14.91	14.91	
Exploration				
Ancillary Services	55.79	55.79	55.79	
Mine Management and Technical	17.20	17.20	17.20	
Site G&A				
Corporate Capital	4.49	4.49	4.49	4.49
Processing	29.71	29.71	29.71	29.71
Royalty	14.75	14.75	14.75	14.75
Total	243.17	209.03	190.58	53.55
Cut Off Grade	2.7	2.4	2.1	0.6

15.2.3 Mudlode - Hendrix

15.2.3.1 Summary

The underground Mudlode - Hendrix deposit is mined via longhole open stoping methods. The Mudlode - Hendrix Mineral Reserves were optimised, designed, and scheduled by mining method and mineralised zones. Cost modelling was completed to show the cashflow and NPV provides sufficient return to include within the WGX Mineral Reserves. Having reviewed the data and updated it with up to date modifying factors (costs and gold price), Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the Mudlode - Hendrix Mineral Reserve estimates.

15.2.3.2 Mineral Reserve Estimation Process

Mudlode-Hendrix is planned to operate as an underground gold mine allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As an historic operating underground mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation process. Although some additional surface infrastructure will be required, the key major infrastructure and permitting is in place with access to a well-established decline portal. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Designs previously completed by WGX were loaded into Deswik software and verified against current as-builts and the resource model.

Key assumptions include:

- Development dilution of 0% additional tonnes at 0 g/t;
- Stope dilution is included in the designed stope shapes of the longhole open stoping (LHOS) with a 0 g/t applied.
- Stope recovery factor of 90% for LHOS stopes.

The resulting Mineral Reserve estimate as of June 30, 2024 is shown in Table 15-8.

Table 15-8 Mudlode - Hendrix Gold Mineral Reserves on June 30, 2024.

	Proven			Probable			TOTAL		
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)
Mudlode-Hendrix	29	4.01	3.7	154	3.88	19	183	3.9	23

- 1. The Mineral Reserve is reported at a 0.6 g/t cut-off grade for development and a 2.1 g/t cut-off grade for stopes.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$3,000/oz.
 - b. The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding Mining capital where relevant.
 - c. The Mineral Reserve is depleted for all mining to June 30, 2024.
- 3. The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.2.3.3 Stope Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;
- Natural low-grade rock pillars have been included in the mine design per the
 economic stope shapes developed. Proximity to old mined out areas were also
 considered. An additional mining recovery factor of 90% has been applied to
 account for ore extraction and ore losses and bogging recovery losses.

15.2.3.4 Cut-Off Grade Derivation

Cut-off grades (COG's) are derived from the Stope Optimiser (SO) stope shapes utilising gold COG's inclusive of costs, revenue and metallurgical factors. These were determined to be 2.1 g/t for stopes and 0. 6 g/t for low grade development. The cut-off grade inputs and calculations are shown in **Table 15-9** and **Table 15-10**.

The Mudlode - Hendrix mine design and schedule are extremely sensitive to revenue factors, therefore, changes to recovery or gold price may impact economic areas as designed for this Mineral Reserve.

Table 15-9 Mudlode - Hendrix Underground Mineral Reserves – net gold price calculation.

Parameter	Unit	Value
Gold Price	AUD\$/oz	3,000
State Royalty	%	2.5
Third Party Royalty	%	2.25
Third Party Royalty	A\$/oz	10
Metallurgical Recovery	%	92%
Net Price (after recovery)	A\$/oz	2,760
Net Price (after recovery)	A\$/g	88.73

Table 15-10 Mudlode-Hendrix cut-off grade calculation inputs.

ltem	Fully Costed	Mine Operating	Stope Cut-Off	Low Grade
Mining Capital	34.14			
Mining Operating	67.58	67.58	49.12	
Haulage	4.60	4.60	4.60	4.60
Grade Control	14.91	14.91	14.91	
Exploration				
Ancillary Services	55.79	55.79	55.79	
Mine Management and Technical	17.20	17.20	17.20	
Site G&A				
Corporate Capital	4.49	4.49	4.49	4.49
Processing	29.71	29.71	29.71	29.71
Royalty	14.75	14.75	14.75	14.75
Total	243.17	209.03	190.58	53.55
Cut Off Grade	2.7	2.4	2.1	0.6

15.3 YALOGINDA

The Yaloginda Mineral Reserves comprises of the Bluebird deposit.

15.3.1 Bluebird Group

15.3.1.1 Summary

The underground Bluebird deposit is mined via longhole open stoping methods. The Bluebird Mineral Reserves were optimised, designed, and scheduled by mining method and mineralised zones. Cost modelling was completed to show the cashflow and NPV provides sufficient return to include within the WGX Mineral Reserves. Having reviewed the data and updated it with up to date modifying factors (costs and gold price), Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the Bluebird Mineral Reserve estimates.

15.3.1.2 Mineral Reserve Estimation Process

Bluebird is planned to operate as an underground gold mine allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As an operating underground mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation process. Although some additional surface infrastructure will be required, the key major infrastructure and permitting is in place with access to a well-established decline portal. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Designs previously completed by WGX were loaded into Deswik software and verified against current as-builts and the resource model.

Key assumptions include:

- Development dilution of 0% additional tonnes at 0 g/t;
- Stope dilution is included in the designed stope shapes of the longhole open stoping (LHOS) with a 0 g/t applied.
- Stope recovery factor of 90% for LHOS stopes.

The resulting Mineral Reserve estimate as of June 30, 2024 is shown in Table 15-11.

Table 15-11 Bluebird Gold Mineral Reserves on June 30, 2024.

	Proven		Probable			TOTAL			
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)
Bluebird	75	3.91	9	2,966	2.81	268	3,041	2.83	277

- 1. The Mineral Reserve is reported at a 0.8 g/t cut-off grade for development and a 1.8 g/t cut-off grade for stopes.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$3,000/oz.
 - b. The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding Mining capital where relevant.
 - c. The Mineral Reserve is depleted for all mining to June 30, 2024.
- The tonnes and grades are stated to a number of significant digits reflecting the confidence of
 the estimate. Since each number is rounded individually, the table may show apparent
 inconsistencies between the sum of rounded components and the corresponding rounded
 total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.3.1.3 Stope Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;
- Natural low-grade rock pillars have been included in the mine design per the economic stope shapes developed. Proximity to old mined out areas were also considered. An additional mining recovery factor of 90% has been applied to account for ore extraction and ore losses and bogging recovery losses.

15.3.1.4 Cut-Off Grade Derivation

Cut-off grades (COG's) are derived from the Stope Optimiser (SO) stope shapes utilising gold COG's inclusive of costs, revenue and metallurgical factors. These were determined to be 1.8 g/t for stopes and 0.8 g/t for low grade development. The cut-off grade inputs and calculations are shown in **Table 15-12** and **Table 15-13**.

The Bluebird mine design and schedule is extremely sensitive to revenue factors, therefore, changes to recovery or gold price may impact economic areas as designed for this Mineral Reserve.

Table 15-12 Bluebird Underground Mineral Reserves – net gold price calculation.

Parameter	Unit	Value
Gold Price	AUD\$/oz	3,000
State Royalty	%	2.5
Third Party Royalty	%	2.25
Third Party Royalty	A\$/oz	
Metallurgical Recovery	%	93%
Net Price (after recovery)	A\$/oz	2,790
Net Price (after recovery)	A\$/g	89,70

Table 15-13 Bluebird cut-off grade calculation inputs.

Item	Fully Costed	Mine Operating	Stope Cut-Off	Low Grade
Mining Capital	21.65			
Mining Operating	44.97	44.47	25.62	
Haulage	0.30	0.30	0.30	0.30
Grade Control	35.81	35.81	35.81	
Exploration	11.78	11.78	6.37	6.37
Ancillary Services	10.38	10.38	10.38	
Mine Management and Technical	12.68	12.68	12.68	
Site G&A	13.93	13.93	13.93	13.93
Corporate Capital	9.58	9.58	9.58	9.58
Processing	31.20	31.20	31.20	31.20
Royalty	15.22	15.22	15.22	15.22
Total	207.52	185.36	161.10	76.61
Cut Off Grade	2.3	2.1	1.8	0.9

15.4 NANNINE

The Nannine Mineral Reserves comprises the Aladdin deposit.

15.4.1 Aladdin

15.4.1.1 Mineral Reserves Estimation Process

A process has been followed to convert the Mineral Resources to Mineral Reserves which is underpinned by design, schedule and economic evaluation. This process is described below and in the following sections.

- Mining ore loss and dilution were estimated by developing mineable shapes around the ore body which would represent the minimum selective mining unit (SMU) size of the planned open pit fleet.
- Open pit optimisations were run by Westgold using Whittle software
 Pseudoflow optimisation algorithm. Modifying factors including mining costs,
 processing costs, selling costs, metallurgical recoveries and gold price were
 applied within the software and optimal shells were then selected as the basis
 for subsequent designs.
- Various mine designs were then completed.
- These designs were then scheduled as stand-alone completely costed projects to ensure the designs and schedule were economically viable.

The Mineral Reserve estimate was then based on the most economically relevant design.

Table 15-14 Aladdin Gold Mineral Reserves as of June 30, 2024.

		Proven		Probable			TOTAL		
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)
Aladdin				262	1.93	16	262	1.93	16

- 1. The Mineral Reserve is reported at a 1.0 g/t cut-off grade.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$2,600/oz gold.
 - b. Metallurgical recovery based on historical data.
 - c. The cut-off grade considers operating, mining, processing/haulage and G&A costs.

- d. The Mineral Reserve is depleted for all mining to June 30, 2024.
- The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.4.1.2 Cut-off Grade Derivation

The ore cost is a combination of the processing cost, any mining specific Mineral Reserve costs (e.g. rehandle, grade control etc.) and the road haulage to the Bluebird mill. Summarised processing costs include an allowance for sustaining capital and tails dam construction on a dollar per tonne basis.

The net price calculation and the resulting cut-offs used to define the Mineral Reserve are detailed in Table 15-15 .

Table 15-15 Aladdin cut-off grade calculation inputs.

Ore Type	Oxide	Trans	Fresh
Gold Price (A\$/oz)	\$2,600 /oz	\$2,600 /oz	\$2,600 /oz
Royalties: State 2.5% Native Title 0.75% and IRC 0.45%	\$96.20	\$96.20	\$96.20
\$/oz	\$0.00	\$0.00	\$0.00
\$/t Royalties	\$0.00	\$0.00	\$0.00
Net Revenue	\$2,503.80	\$2,503.80	\$2,503.80
Net Revenue \$/g	\$80.50	\$80.50	\$80.50
Haulage from Pit to Mill ROM (moisture modified)	\$3.65 /t	\$3.65 /t	\$3.65 /t
Haul Road Maintenance	\$0.98 /t	\$0.98 /t	\$0.98 /t
Milling	\$35.04 /t	\$35.04 /t	\$35.04 /t
Rock Breakage	\$0.00 /t	\$0.18 /t	\$0.25 /t
Total Marginal Costs	\$39.67 /t	\$39.85 /t	\$39.92 /t
Grade Control	\$6.85 /t	\$6.85 /t	\$6.85 /t
Mine Administration	\$18.00 /t	\$18.00 /t	\$18.00 /t
Total Direct Costs	\$64.52 /t	\$64.70 /t	\$64.77 /t
Total Costs	\$64.52 /t	\$64.70 /t	\$64.77 /t
Metallurgical Recovery	90.0%	90.0%	85.7%
Marginal Cut Off Grade	0.55 g/t	0.55 g/t	0.58 g/t
Break Even Cut Off Grade	0.89 g/t	0.89 g/t	0.94 g/t
HG Ore Cut Over Grade to meet Corporate Goals	1.07 g/t	1.07 g/t	1.13 g/t
Mining Dilution	10.0%	20.0%	26.0%

Ore Type	Oxide	Trans	Fresh
Min Waste - Lower (Set by WGX CEO)	0.60 g/t	0.60 g/t	0.60 g/t
Grade Ranges for Classification of Insitu Ore Block	<u>(S</u>		
Min Waste	0.6 to 1 g/t	0.6 to 1.1 g/t	0.6 to 1.2 g/t
High Grade Ore	Above 1 g/t	Above 1.1 g/t	Above 1.2 g/t

15.5 **REEDY'S**

The Reedy's Mineral Reserves comprises the South Emu-Triton deposit.

15.5.1 South Emu - Triton

15.5.1.1 Summary

The underground South Emu-Triton deposit is mined via longhole open stoping methods. The South Emu-Triton Mineral Reserves were optimised, designed, and scheduled by mining method and mineralised zones. Cost modelling was completed to show the cashflow and NPV provides sufficient return to include within the WGX Mineral Reserves. Having reviewed the data and updated it with up to date modifying factors (costs and gold price), Mr. Devlin FAusIMM accepts responsibility as Qualified Person for the South Emu-Triton Mineral Reserve estimates.

15.5.1.2 Mineral Reserve Estimation Process

South Emu-Triton is planned to operate as an underground gold mine allowing current design criteria, mining methods and actual costs to form the basis for mine design, scheduling and economic evaluation used in this estimation process. As a historic underground mine, costs, mining methods and metallurgical factors are well understood, providing confidence in their application as part of the Mineral Reserve estimation process. Although some additional surface infrastructure will be required, the key major infrastructure and permitting is in place with access to a well-established decline portal. The economics of the Mineral Reserve estimate could be materially affected by a significant change to commodity price.

Designs previously completed by WGX were loaded into Deswik software and verified against current as-builts and the resource model.

Key assumptions include:

- Development dilution of 0% additional tonnes at 0 g/t;
- Stope dilution is included in the designed stope shapes of the longhole open stoping (LHOS) with a 0 g/t applied.

- Stope recovery factor of 90% for LHOS stopes.
- The resulting Mineral Reserve estimate as of June 30, 2024 is shown in **Table 15-16**.

Table 15-16 South Emu-Triton Gold Mineral Reserves on June 30, 2024.

	Proven			Probable			TOTAL		
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)
Sth Emu-Triton	57	3.35	6	398	3.42	44	455	3.41	50

- 1. The Mineral Reserve is reported at a 0.9 g/t cut-off grade for development and a 1.9 g/t cut-off grade for stopes.
- 2. Key assumptions used in the economic evaluation include:
 - A metal price of AUD\$2,750/oz.
 - b. The cut-off grade considers operating, mining, processing/haulage and G&A costs, excluding Mining capital where relevant.
 - c. The Mineral Reserve is depleted for all mining to June 30, 2024.
- 3. The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- 4. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 5. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- 6. Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

15.5.1.3 Stope Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;
- Natural low-grade rock pillars have been included in the mine design per the
 economic stope shapes developed. Proximity to old mined out areas were also
 considered. An additional mining recovery factor of 90% has been applied to
 account for ore extraction and ore losses and bogging recovery losses.

15.5.1.4 Cut-Off Grade Derivation

Cut-off grades (COG's) are derived from the Stope Optimiser (SO) stope shapes utilising gold COG's inclusive of costs, revenue and metallurgical factors. These were determined to be 1.9 g/t for stopes and 0.9 g/t for low grade development. The cut-off grade inputs and calculations are shown in **Table 15-17** and **Table 15-18**.

The South Emu-Triton mine design and schedule is extremely sensitive to revenue factors, therefore, changes to recovery or gold price may impact economic areas as designed for this Mineral Reserve.

Table 15-17 South Emu-Triton Underground Mineral Reserves – net gold price calculation.

Parameter	Unit	Value
Gold Price	AUD\$/oz	2,750
State Royalty	%	2.5
Third Party Royalty	%	2.25
Third Party Royalty	A\$/oz	
Metallurgical Recovery	%	93%
Net Price (after recovery)	A\$/oz	2,612
Net Price (after recovery)	A\$/g	83.99

Table 15-18 South Emu-Triton cut-off grade calculation inputs.

Item	Fully Costed	Mine Operating	Stope Cut-Off	Low Grade
Mining Capital	54.35			
Mining Operating	55.47	55.47	20.10	
Haulage	9.80	9.80	9.80	9.80
Grade Control	10.68	10.68	10.68	
Exploration				
Ancillary Services	19.62	19.62	17.32	
Mine Management and Technical	28.82	28.82	28.82	
Site G&A	14.48	14.48	14.48	14.48
Corporate Capital	13.28	13.28	13.28	13.28
Processing	30.49	30.49	30.49	30.49
Royalty	12.62	12.62	12.62	12.62
Total	249.62	195.27	157.60	80.68
Cut Off Grade	3.0	2.3	1.9	0.9

15.6 STOCKPILES

Stockpiles generated from the mining of historical and active MGO open pits and undergrounds, are estimated as Proven and Probable Mineral Reserves using the cost assumptions for MGO at the time the stockpile material was dumped. The estimates use data from grade control protocols during mining with the cut-off based on revenue and costs at the time of production. The grade control evaluation uses a combination of drilling, ore block / stope grade estimation and dump sampling to provide gold grade values.

Table 15-19 Stockpiles Gold Mineral Reserves on June 30, 2024.

	Proven			Probable			TOTAL		
	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)	(kt)	(g/t)	(koz)
Stockpiles	350	1.34	15	0	0.00	0	350	1.34	15

- 1. The Mineral Reserve is reported at a 0.0 g/t cut-off grade.
- 2. Key assumptions used in the economic evaluation include:
 - a. A metal price of AUD\$3,000/oz gold.
 - b. The cut-off grade considers operating, mining, processing/haulage and G and A costs, excluding Mining capital where relevant.
- 3. The Mineral Reserve is depleted for all mining to June 30, 2024.
- 4. The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.
- 5. The Mineral Reserve tonnages and grades are estimated and reported as delivered to plant (the point where material is delivered to the mill) and is therefore inclusive of ore loss and dilution.
- 6. CIM Definition Standards (2014) were followed in the estimation of Mineral Reserves.
- Gold Mineral Reserve estimates were prepared under the supervision of Qualified Person L. Devlin, FAusIMM.

16 MINING METHODS

16.1 PADDY'S FLAT

The Paddy's Flat Region is comprised of the Prohibition, Vivian - Consols and Mudlode - Hendrix mining areas. This section describes the mining methods used for these areas.

16.1.1 Prohibition, Vivian-Consols and Mudlode-Hendrix

16.1.1.1 Underground Infrastructure

The Paddy's Flat underground mine will be accessed the existing Consols portal and declines to the base of the mine. The declines are developed at a 1:7 (down) gradient to the various orebody development horizons. The decline is typically 5.3 mW x 5.8 mH, with a standard ore drive size of 5 mW x 5 mH. Lateral development profiles are well matched to the mobile fleet.

Ore is hauled from the underground to surface via the decline where it is then transported via a separate surface haulage fleet to the Bluebird mill.

Paddy's Flat is an operating mine with established communications, electrical reticulation, pumping and ventilation systems.

Equipment is maintained and serviced at a surface workshop.

16.1.1.2 Mining Methods

The current planned mining method for Paddy's Flat is Long-Hole Open Stoping (LHOS) in either "longitudinal Retreat" or "Primary / Secondary" layout. Mining blocks are delineated based on cut-off grade. Generally, levels are spaced at 20 m vertical intervals. Stopes are retreated to the cross-cut access. Stopes are backfilled with Cemented Rock Fill (CRF), loose fill or left as voids if filling is not practicable. Backfill is occasionally used to reduce open spans and maximise clean ore extraction. However, sill and rib pillars are predominantly used to reduce stoping spans.

Handheld air leg mining is used frequently in shallow dipping and narrow ore lodes, utilising scrappers and small boggers. The development drives are supported with bolts and mesh where required and airleg stopes typically consist of slot rise and "bays" which is the area stripped out between rises. Stopes are supported with rock bolts and spans controlled by using a combination of rock pillars, timber props and sties.

Paddy's Flat primarily utilises LHOS as its production mining method. Due to the differences in width as well as dip angle between the various orebodies, two variations of LHOS are utilised at Paddy's Flat:

- Bench stoping and;
- Sub-level open stoping (should it be practicable in wider ore zones).

Both of the above variations follow a similar method. A slot is created in the first firing. After this, the stopes are long hole blasted into the lower extraction drive using 64, 76, or 89 mm production holes.

Bench stopes are usually mined between 2 ore drives but can be designed as complete blind up-hole stopes. Sub level open stopes will span across multiple levels and involve different drilling horizons. Both methods will generally utilise one bogging level for ore extraction. Large stoping blocks are generally sub-divided into multiple panels (or individual stopes). Pillars are designed where required between alternate extraction drives to reduce the overall hydraulic radius and increase the stability of the stope. Where CRF filling is possible, pillars can be left out and stopes extracted in sequence. This method was previously used in some of the uppermost levels in Prohibition below the base of the Prohibition pit, which should be considered when mining in close proximity. Currently, CRF is not being utilised in daily extraction methods. A stope can be extracted once the CRF fill in the adjacent void has reached sufficient strength.

Production stoping typically follows the cycle outline below:

- Up or down holes are drilled in a pattern to form rise and slot for initial stope opening.
- Up or down hole production rings follow to define stope excavation boundary.
- Rise and slot are fired to open stope.
- Ring blasting commences towards opened void.
- Manual bogging until the back of the loader bucket is level with the stope brow.
- Tele-remote bogging beyond the stope brow.

16.1.1.3 Hydrology

Coffey Partners undertook a hydrogeological study of the Paddy's Flat area in May 1993 and Rockwater Proprietary Limited (Rockwater) carried out an assessment of Paddy's Flat dewatering requirements in October 2003. The key conclusions of the more recent Rockwater assessment report were that:

- Paddy's Flat is an area of historically low groundwater flows.
- Groundwater flows into proposed underground development at Paddy's Flat are expected to be low (< 10 L/s); however, there may be some higher short-term flows when localised zones of high permeability are intersected.
- Salinity of groundwater in the area varies greatly and generally increases with depth. Salinity levels are expected to range from ≈ 2000 to $\approx 4,000$ mg/L TDS.

This study determined that east of the Vivian pit; the standing groundwater level is located ≈ 136 m below surface. The Consols pit then was filled with water to ≈ 450 mRL (≈ 65 m below natural surface) but has since been de-watered.

Abandoned underground workings at Ingliston South and in the vicinity of Consols and Prohibition pits were flooded at the commencement of underground development but have now since been dewatered.

16.1.1.4 Geotechnical

Geotechnical data will be collected on an ongoing basis in the Paddy's Flat mine. This will include logging of borehole cores, mapping of underground conditions, monitoring of instrumentation and visual inspections.

Ground conditions within the Prohibition orebody and in adjacent country rocks have been assessed according to four (4) defined domains as shown below. Joints were the most common discontinuity type observed across all domains and undulating was found to be the predominant surface shape across all domains. The majority of discontinuity surfaces were recorded to be fresh and contained no infill (none). Quartz and / or carbonate infill was found to be the second most common in all domains. A small number of discontinuity surfaces were recorded to contain pyrite, haematite, or chlorite infill.

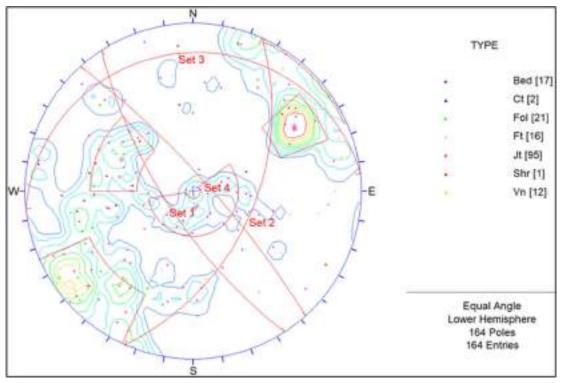


Figure 16-1 Prohibition underground mapping data to May 2019 - Source: Westgold.

The discontinuity sets are summarised below.

Table 16-1 Paddy's Flat discontinuity sets.

DISCONTINUITY SET	DESCRIPTION		DIP DIRECTION (°)
1 (Minor)	Joint - Moderately dipping to southwest	71	237
2 (Minor)	Joint and foliation - Moderately dipping to southeast	50	114
3 (Major)	Joints - Flatly dipping to north	11	354
4 (Major)	Joints, foliation and veins - Steeply dipping to northeast	80	048

In summary, the data show that joints and defects associated with the foliation fabric and dipping moderately/steeply to the east are the most common discontinuities across all domains.

Since the re-commencement of underground mining at Paddy's Flat geotechnical window mapping has been carried out within a number of Vivian - Consols development drives. To date, 330 structural discontinuity readings have been collected by mapping undertaken within decline, access and ore drive development at Vivian - Consols.

From the structural data analysis of Vivian - Consols underground mapping data, four (4) dominant discontinuity sets were identified. The previous work by Campbell identified nine discontinuity sets which are represented within the sets detailed below. The mean orientations and characteristics of which are listed in

Table 16-2.

Undulating smooth was the predominant discontinuity surface roughness recorded for all domains. The majority of discontinuity surfaces for this domain were recorded to contain no infill (none).

Figure 16-2 Vivian Consols underground mapping data to May 2019 - Source: Westgold.

Table 16-2 Dominant Vivian - Consols underground mapping data discontinuity sets.

DISCONTINUITY SET	DESCRIPTION		DIP DIRECTION (°)
1 (Minor)	Joints and contacts - Moderately southeast dipping	67	143
2 (Minor)	Joints and faults - Flat lying to shallow west dipping	07	266
3 (Major)	Joints and veins - Moderately east dipping	68	070
4 (Major)	Joints - Sub-vertical to steep southwest dipping	81	226

The Hendrix Mining area has been in development and extraction phase since July 2020, with multiple joint orientations collected from original diamond drill hole data and geotechnical window mapping during ore drive development.

The drill hole data was used within the preliminary geotechnical assessment of the Hendrix mining area.

The orientations associated within the diamond drill hole data collection is listed in **Table 16-3**.

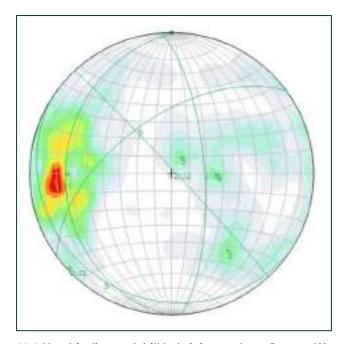


Figure 16-3 Hendrix diamond drill hole joint set data - Source: Westgold.

Table 16-3 Hendrix data discontinuity sets (based upon diamond drill holes).

DISCONTINUITY SET	DIP (°)	DIP DIRECTION (°)
1	71	86
2	88	47
3	57	324
4	26	272
5	11	212

Current proposed Paddy's Flat stoping will be carried out at depths of < 500 m below natural surface. Given proposed relatively shallow stoping depths, in situ rock stress magnitudes have not caused significant stress related issues in the majority of locations. However, the Consols orebody is experiencing stress related deterioration associated with a weak rock mass (MSC and USS) resulting in squeezing deformation.

Initial In-situ rock stress measurements have been undertaken at Paddy's Flat during Q4 2021 within the Consols orebody. Additional stress testing will be required to provide a calibrated stress gradient.

Due to the presence of a cross-cutting dolerite dyke unit between the orebodies, it is expected that a stress redistribution occurs either side of this unit, therefore it is required that additional stress testing be conducted within the Paddy's Flat area.

Table 16-4 Consols stress magnitude (initial).

Sigma 1	= 0.0921 x depth (m)4E-15
Sigma 2	= 0.0601 x depth (m)
Sigma 3	= 0.0426 x depth (m)

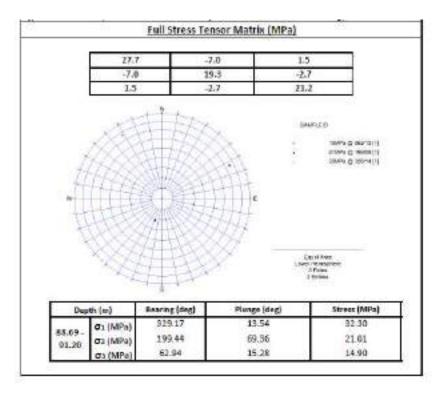


Figure 16-4 Stress regime (Consols) - Source: Westgold.

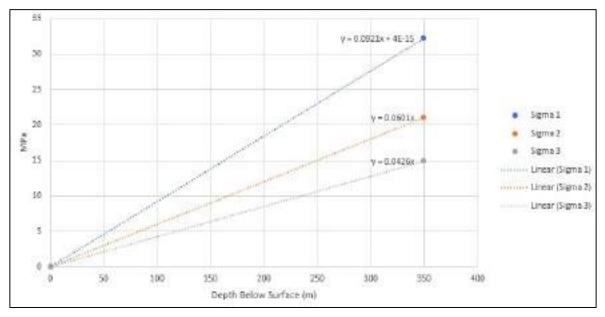


Figure 16-5 Consols stress gradient (initial) - Source: Westgold.

Intact rock strengths of the major Prohibition rock units have been measured by laboratory uniaxial compressive strength (UCS) testing of drill core samples. Results are summarised in **Table 16-5**.

Table 16-5 Prohibition uniaxial compressive strength (UCS) test results.

BOREHOLE	SAMPLE	WEATHERING	INTERVAL (m)	LITHOLOGY	UCS ¹ (MPa)	DENSITY (tonne/m³)
	MX2	Fresh	153.40 – 153.75	MX - Undiff mafic volcanic	51.3*	2.78
	MX1	Fresh	156.10 – 156.40	MX – Undiff mafic volcanic	137*	2.87
	MX3	Fresh	159.10 – 159.40	MX – Undiff mafic volcanic	122*	2.78
	MX4	Fresh	160.50 – 161.00	MX – Undiff mafic volcanic	146*	2.87
	MX5	Fresh	167.00 – 167.25	MX – Undiff mafic volcanic	164*	2.81
	MX6	Fresh	168.95 – 169.35	MX – Undiff mafic volcanic	122*	2.86
	BIF1	Fresh	224.00 - 224.40	BIF – Banded iron formation	142*	3.44
	BIF3	Fresh	227.80 - 228.10	BIF – Banded iron formation	177	3.07
)25	BIF2	Fresh	228.75 – 229.10	BIF – Banded iron formation	20.8*	3.25
06PRRD025	BIF4	Fresh	250.30 - 250.60	BIF – Banded iron formation	132*	3.11
J 8	BIF5	Fresh	241.10 - 241.40	BIF – Banded iron formation	170	2.94
06F	BIF6	Fresh	244.55 – 244.75	BIF – Banded iron formation	160*	3.23
	MV1	Fresh	213.25 - 213.60	MV – Basaltic volcaniclastics	125	2.84
	MV2	Fresh	215.05 - 215.03	MV – Basaltic volcaniclastics	79.4	2.79
002	MV3	Fresh	216.15 - 216.45	MV – Basaltic volcaniclastics	106	2.76
06PRRD005	MV4	Fresh	219.00 - 219.30	MV – Basaltic volcaniclastics	82.0*	2.80
J A.	MV5	Fresh	220.90 – 221.30	MV – Basaltic volcaniclastics	81.9	2.76
06	MV6	Fresh	224.60 - 224.90	MV – Basaltic volcaniclastics	93.3	2.73

^{*}Defect controlled failure.

The majority of the undifferentiated mafic volcanic and banded iron formation rock type samples tested failed on pre-existing defect surfaces rather than through intact rock.

Modulus and Poisson's Ratio rock deformability determination measurements were also performed on a selection of Paddy's Flat drill core samples. Results are summarised in **Table 16-6**.

¹Normalised to 50 mm diameter core.

Table 16-6 Prohibition deformability determination test results.

BOREHOLE	SAMPLE	WEATHERING	INTERVAL (m)	LITHOLOGY	MODULUS ¹ (GPa)	POISSON'S RATIO ¹
	MX1	Fresh	156.10 - 156.40	MX - Undiff mafic volcanic	91.9	0.321
	MX6	Fresh	168.95 - 169.35	MX - Undiff mafic volcanic	94.8	0.378
06PRRD025	BIF1	Fresh	224.00 - 224.40	BIF - Banded iron formation	110	0.295
	BIF3	Fresh	227.80 - 228.10	BIF - Banded iron formation	110	0.265
06PRRD005	MV5	Fresh	220.90 - 221.30	MV - Basaltic volcaniclastics	81.9	2.76
UOPKKD005	MV6	Fresh	224.60 - 224.90	MV - Basaltic volcaniclastics	93.3	2.73

¹E and v calculations – Tangent at 50% UCS.

All lithologies tested returned high modulus to UCS strength ratios.

Based on acceptance of all test results, intact rock material strengths are assessed as follows:

- Undifferentiated mafic volcanics are strong (UCS 50 100 MPa) to very strong (100 250 MPa) rocks.
- Banded Iron Formation is weak (UCS 5.0 25 MPa) to very strong.
- Basaltic volcaniclastics are strong to very strong rocks.

Intact rock strengths of the major Vivian / Consols / Mudlode / Fatt's rock units have been measured by laboratory uniaxial compressive strength (UCS) testing of drill core samples. Results are summarised in **Table 16-7**.

Table 16-7 Vivian / Consols / Mudlode / Fatt's uniaxial compressive strength (UCS) test results.

BOREHOLE	SAMPLE	AREA	INTERVAL (m)	LITHOLOGY	UCS ¹ (MPa)	DENSITY (tonnes/m³)
	А	Decline	96.25 - 96.45	Mafic volcanic	25.8	2.68
	D	Decline	131.15 – 131.35	Mafic volcanic	106.0	2.75
VIRCD001	E	Decline	147.6 – 147.85	Mafic volcanic	119.0	2.74
	G	Decline	165.20 – 165.40	Mafic volcanic	57.5	2.70
	J	Decline	198.60 – 198.85	Mafic volcanic	58.4	2.78
	В	Vivian	101.05 – 101.25	Ultramafic volcanic	28.0	2.86
VIRCD002	D	Vivian	109.05 – 109.30	Ore zone	51.9	2.81
VIRCD002	F	Vivian	171.45 – 171.60	Ultramafic volcanic	6.52*	2.78
	Н	Vivian	196.4 – 196.65	Ultramafic volcanic	4.75*	2.75
	А	Vivian	130.75 – 131.00	Ultramafic	61.5	2.83
	С	Vivian	153.35 – 153.55	Ultramafic	7.44*	2.78
	D	Vivian	159.75 – 160.0	Ultramafic	0.28*	2.76
VIRCD003	E	Vivian	172.70 – 172.95	Ultramafic	16.8	2.81
	G	Vivian	218.45 – 218.70	Mafic volcanic	9.42*	2.76
	Н	Vivian	233.40 – 233.65	Ultramafic volcanic	0.26*	2.74
	1	Vivian	240.00 – 240.25	Mafic volcanic	10.2*	2.77

^{*}Defect controlled failure.

¹Normalised to 50 mm diameter core.

Reliable laboratory intact rock strength results were deemed to be those for which failure did not occur on pre-existing defects. Based on reliable test results, the assessed strengths of intact material are as follows:

- The mafic volcanics are medium strong (UCS 25 50 MPa) to very strong (100 250 MPa) rocks.
- The ultramafics are weak (UCS 5 25 MPa) to medium strong (50 100 MPa)
 rocks.
- The single mineralised zone sample tested was strong (UCS 50 100 MPa) rock.
- The single ultramafic volcanic sample tested was medium strong (UCS 25 50 MPa) rock.

During the Hendrix exploration program, the Contract Geotechnical Engineer requested rock mass samples be taken from drill core – however the samples were unfortunately only taken from mineralised zone and did not extend into the surrounding rock mass (e.g. ultramafic hanging wall / foot wall).

Results are summarised in Table 16-8.

Table 16-8 Hendrix uniaxial compressive strength (UCS) test results.

BOREHOLE	SAMPLE	AREA	LITHOLOGY	UCS (MPa)	DENSITY (tonnes/m³)
	Α	Ore Zone	Diorite (IDO)	196.19	2.77
	В	Ore Zone	Diorite (IDO)	224.95	2.77
	С	Ore Zone	Diorite (IDO)	255.04	2.74
	D	Ore Zone	Diorite (IDO)	207.32	2.77
19HXDD126	E	Ore Zone	Diorite (IDO)	212.69	2.76
190000126	F	Ore Zone	Diorite (IDO)	203.38	2.76
	G	Ore Zone	Diorite (IDO)	192.14	2.77
	Н	Ore Zone	Diorite (IDO)	193.45	2.78
	I	Ore Zone	Diorite (IDO)	201.3	2.83
	J	Ore Zone	Diorite (IDO)	254.92	2.82

Based on test results, the assessed strengths of the Hendrix ore zone samples are as follows:

• Diorite Ore Zone (IDO) are very strong (192 - 252 MPa

Intact rock strengths for the major Consols rock units have been measured by laboratory uniaxial compressions strength (UCS) testing of drill core samples (2022).

Additional testing for cohesion and raisebore index (RBI) have been conducted. All data sets are stored in following directory:

P:\\Shared\Mining\Geotechnical\03_Data & Analysis\05_Rock Properties\Consols.

Table 16-9 Consols uniaxial compressive strength (UCS) test results.

BOREHOLE	SAMPLE	AREA	LITHOLOGY	UCS (MPa)	DENSITY (tonnes/m³)
	Α	FW/HW	Mafic Schist (MSC)	13.09	2.83
21CNDD205A	В	FW/HW	Mafic Schist (MSC)	23.79	2.81
	С	Ore Zone	UHF	184 82	2.89

Intact rock strengths for the major Mudlode rock units have been measured by laboratory uniaxial compressions strength (UCS) testing of drill core samples (Q4 2020). Results are summarised in **Table 16-10**. Additional testing for cohesion and raisebore index (RBI) have been conducted. All data sets are stored in following directory:

P:\Mining\Geotechnical\03_Data & Analysis\05_Rock Properties\Mudlode.

Table 16-10 Mudlode Uniaxial Compressive Strength (USE) Test Results.

BOREHOLE	SAMPLE	AREA	LITHOLOGY	UCS (MPa)	DENSITY (tonnes/m³)
	Α	FW	Massive Ultramafic (UMO)	101.41	2.84
	В	FW	Massive Ultramafic (UMO)	72.05	2.83
20MUDD171	С	Ore Zone	QCS	49.0	2.88
2011000171	D	Ore Zone	QCS	36.35	2.86
	E	Ore Zone	Sheared Ultramafic (USS)	32.35	2.88
	F	Ore Zone	Sheared Ultramafic (USS)	37.44	2.83

16.1.1.5 Geology

The Meekatharra – Wydgee Greenstone Belt is located in the Murchison domain of the Youanmi Terrane, in the north-western part of the Yilgarn Craton (**Figure 16-6**) of Western Australia (Cassidy *et. al.* 2006).

The Murchison Domain is made up almost entirely of narrow Archaean greenstone belts surrounded by large granitoids and gneissic complexes (Van Kranendonk and Ivanic, 2009; Watkins and Hickman, 1990). Abundant mafic dykes of predominantly Mesoproterozoic age crosscut major structures. Many of the granitoids in the area are covered by moderate to thick alluvium and lacustrine sediments. The remainder of the area has a thin transported cover.

The mines of the Paddy's Flat mining camp are located within the newly defined Yaloginda Formation of the Norie Group (Van Kranendonk and Ivanic, 2009). Although the Yaloginda Formation is described as a sequence of volcaniclastic sediments and interbedded BIF units that have subsequently been intruded by voluminous mafic to ultramafic sills, the sequence evident at Paddy's Flat is a simple sediment – mafic succession, ultramafic succession and an intermediate volcanic succession.

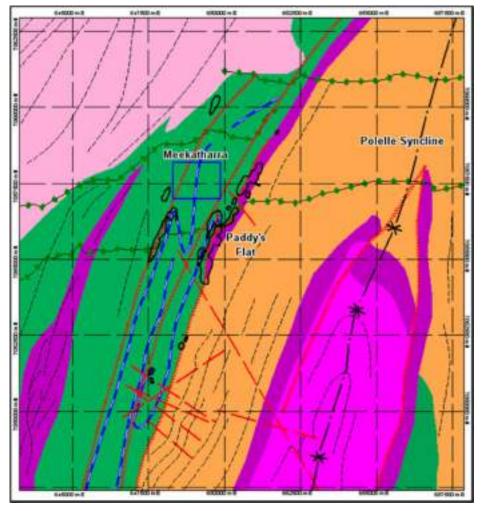


Figure 16-6 Paddy's Flat local geology. Light and dark purple = high-Mg basalts and ultramafics respectively.

Green = mafic volcanic succession. Orange = intermediate volcanic succession. Blue dashed lines = trend of the BIF units. Pink = granite. Red dashed lines = brittle faults. Red zig zag lines = brittle-ductile shear zones - Source: Westgold.

The structure of the Paddy's Flat mining area is primarily controlled by a significant structural corridor referred to as the Paddy's Flat Shear Zone. At the local scale, the Paddy's Flat Shear Zone is resolved into a number of sub-parallel ductile shear zones with associated brittle-ductile faulting.

The central part of the shear system has developed on, or close to the boundary between the mafic volcanic succession and the ultramafic succession and has been intruded by a line of semi-continuous felsic porphyry dykes. At least two subsidiary shear zones are developed immediately to the east of the central shear zone. Folding of the sequence has occurred prior to, or early in the development of, the Paddy's Flat Shear Zone, and numerous brittle faults are developed late in the formation of the shear zone.

The major structure is a dolerite dyke which cross-cuts the mining area from northeast to south-west in the vicinity of the proposed underground mining area. The dyke is sub-vertical and ranges between ≈ 25 and 55 m in width.

To the north of the Consols pit the dyke is located on the eastern side of the porphyry intrusion and strikes parallel to it. In the centre of the prospect there is a flexure in the dyke where it strikes east-west, separating the north porphyry (Vivian's) from the south porphyry (Consols).

In the south-west the dyke generally strikes north-east to south-west.

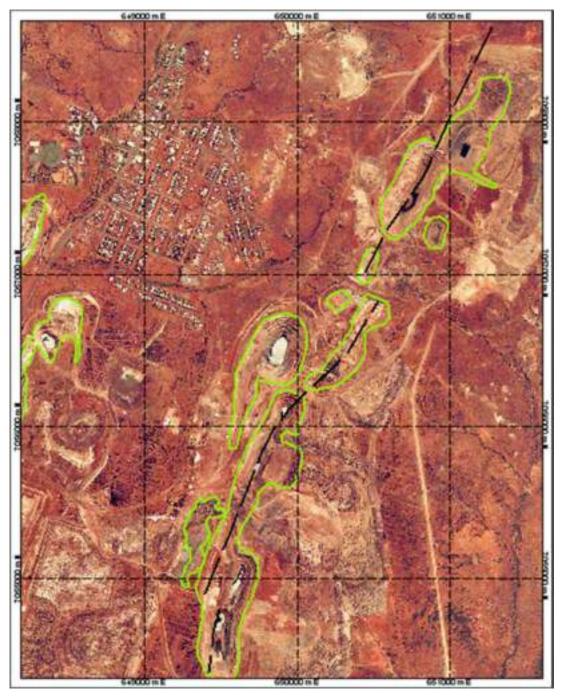


Figure 16-7 Paddy's Flat area with the approximate trace of the central Paddy's Flat shear - Source: Westgold.

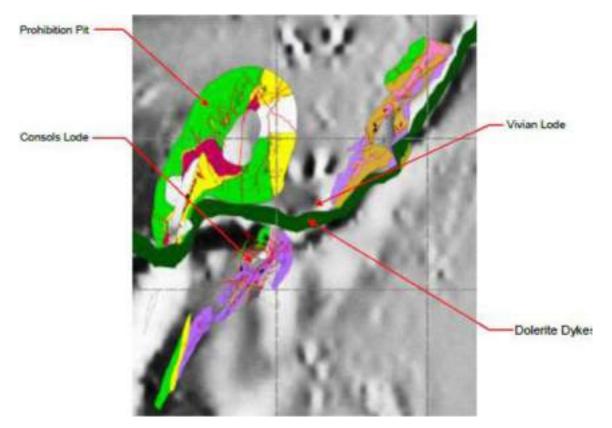


Figure 16-8 Paddy's Flat plan view of major geological features - Source: Westgold.

Outside the central Paddy's Flat shear zone there is a dominant set of north-trending west dipping reverse faults that are present to the west of the shear zone and are important for mineralisation within the BIF units to the west. The Paddy's Flat Fault set show a strong down-dip lineation suggesting an almost pure reverse sense of movement. These faults are laterally continuous and show offsets of from 1 - 2 m up to over 30 m (Paddy's Flat Fault).

The two faults with the largest amount of displacement are the Paddy's Flat and Red Spider faults. The spacing of these faults in the vicinity of the Paddy's Flat pit is in the order of a few tens of metres and linking faults are common adjacent to the major faults. Within the BIF these structures are exclusively brittle in nature and are evident as breccia zones up to several metres in width. Where these structures propagate into the surrounding sediments and mafic volcanics, the structures are evident as brittle-ductile shears.

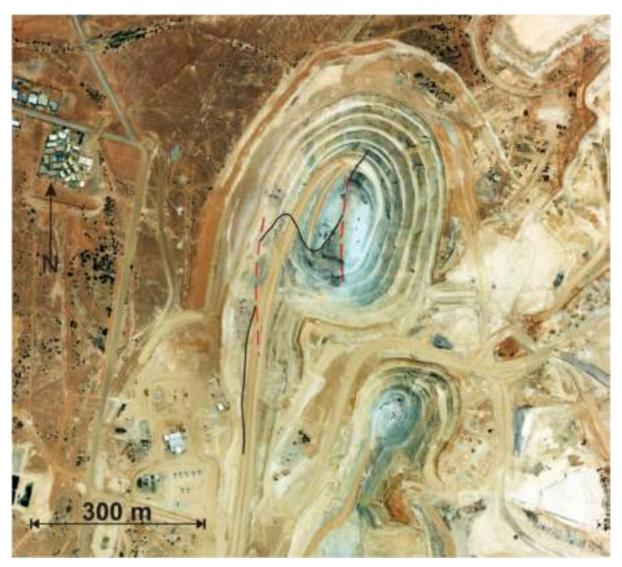


Figure 16-9 Paddy's Flat pit, fold in BIF (black line) and Red Spider (west) - Source: Westgold.

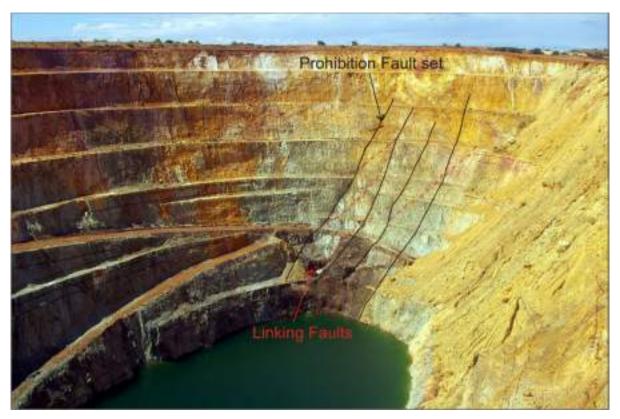


Figure 16-10 Northern wall of the Paddy's Flat pit showing the Paddy's Flat fault set - Source: Westgold.

16.1.1.6 Historical Mining

Historic open pit and underground workings are located in the vicinity of mining operations at Paddy's Flat.

There have been several planned break throughs into old workings such as the Albert's shaft, Mudlode workings and Consols workings. Prior to break through, survey records of the old workings are utilised to assess hazards via the Design Approval Form (DAF) checklist with safety precautions highlighted accordingly, along with appropriate probing and / or dewatering of old workings via diamond drill probe holes and long-hole probing. Jumbo probe holes are also drilled with each cut to ensure safe approach on breakthrough. Risks associated with drilling into or breaking into old workings must be assessed and controls implemented (use of formal Risk Assessments). Upon breakthrough, the Mine Manager and or the Geotechnical Engineer must review workings for ground conditions prior to any other personnel entering.

A competent crown pillar was formed between surface or the open pits and the upper underground workings, with any pillar extraction planning requiring a detailed DAF analysis as well as geotechnical consultation.

16.1.1.7 Mine Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;

Previous Peter O'Bryan & Associates geotechnical assessments determined that Prohibition stope crown and stope hangingwall domains have the lowest assessed Q' values and as such will theoretically be the critical stope faces in terms of stability. The initial analysis indicated the hydraulic radii is 6 – 10 m as a starting point for design purposes.

Table 16-11 Paddy's Flat stability graph assessment.

DOMAIN	1 st QUARTILE Q' VALUE	А	В	С	N'	UNSUPPORTED HR LIMIT
Stope Hangingwall	14.4	0.41	0.70	6.0	24.8	10.0 m
Stope Crown	14.3	0.18*	0.65	2.0	3.3	6.0 m

^{*} Lower intact strength basaltic volcaniclastic rock type considered for analysis

- HR = 6.0 m for example, 23 m long × 25 m high stope
- HR = 10.0 m for example, 40 m long × 40 m high stope

Preliminary Vivian, Consols, Mudlode and Fatt's theoretical stope sizes have been determined via stability graph assessment of the two lithologies shown to have the lowest calculated 1st quartile Q' value in each domain.

Stability graph assessments were carried out for stope hangingwalls at an assumed initial mining depth of 150 m below surface.

The factors used in the Stability Graph assessment are summarised in tables below. From the Potvin (1988) and Nickson (1992) database of unsupported stopes the following hydraulic radii are theoretically achievable.

VIVIAN'S DOMAIN

Q'-value rock mass classification indicates that undifferentiated ultramafic has the lowest 1^{st} quartile Q' value.

Table 16-12 Vivian domain stability graph assessment.

STOPE HW LITHOLOGY	1 st QUARTILE Q' VALUE	A	В	С	N'	UNSUPPORTED HR LIMIT
Undifferentiated ultramafic	4.2	0.1	0.3	5.0	0.63	4.8 m
(UX)						
Basaltic volcaniclastic (MV)	20.5	0.1	0.3	5.0	3.1	6.0 m

- HR = 4.8 m for example, 18 m long × 20 m high stope
- HR = 6.0 m for example, 30 m long × 20 m high stope

CONSOLS DOMAIN

Q'-value rock mass classification indicates that undifferentiated ultramafic has the lowest 1st quartile Q'-value.

Table 16-13 Consols domain stability graph assessment.

STOPE HW LITHOLOGY	1 st QUARTILE Q' VALUE	Α	В	С	N'	UNSUPPORTED HR LIMIT
Undifferentiated ultramafic (UX)	3.7	0.1	0.3	5.0	0.55	4.8 m
Ultramafic schist (ZU)	12.7	0.1	0.3	5.0	1.9	5.1 m

- HR = 4.8 m for example, 18 m long × 20 m high stope
- HR = 5.1 m for example, 20 m long × 20 m high stope

MUDLODE DOMAIN

A single lithology, high-Mg basalt, was represented at Mudlode.

Table 16-14 Mudlode domain stability graph assessment.

STOPE HW LITHOLOGY	1 st QUARTILE Q' VALUE	A	В	С	N'	UNSUPPORTED HR LIMIT
High Mg basalt (UB)	20.2	0.1	0.3	5.0	3.0	6.0 m

• HR = 6.0 m for example, 30 m long × 20 m high stope

FATT'S DOMAIN

Q'-value rock mass classification indicates that High Mg basalt has the lowest 1st quartile Q'-value.

Table 16-15 Fatt's Domain Stability Graph Assessment.

STOPE HW LITHOLOGY	1 st QUARTILE Q' VALUE	Α	В	С	N'	UNSUPPORTED HR LIMIT
Ultramafic schist (ZU)	3.8	0.3	0.2	3.5	0.8	4.7 m
High Mg basalt (UB)	20.2	0.1	0.3	5.0	3.0	6.0 m

- HR = 4.7 m for example, 14 m long × 30 m high stope
- HR = 6.2 m for example, 35 m long × 20 m high stope

HENDRIX DOMAIN

HR assessments were based on diamond drill hole data collected in 2020 through the Hendrix Mining area which have required the use of assumed strength parameters for the ultramafic units. These ultramafic units sit in the foot wall and hangingwall of the ore zone. The Hendrix orebody is not an extensive orebody and future HR designs are assessed alongside ore drive development Q inspection data.

The following data set below is based on this 2020 drill data and expressed the following HR ranges (**Table 16-6**).

Table 16-16 Hendrix domain stability assessment (preliminary).

STOPE HW LITHOLOGY	1 st QUARTILE Q' VALUE	A	В	С	N'	UNSUPPORTED HR LIMIT
Sheared Ultramafic (USS)	1.9	0.47	0.23	2.04	0.4	4.0 m
Massive Ultramafic (UMO)	5	1	0.23	2.04	2.38	5.0 m

- HR = 4.0 m for example, 13.3 m long \times 20 m high stope.
- HR = 5.0 m for example, 20 m long × 20 m high stope.

AIRLEG STOPING

Most of the airleg stoping is confined to the flat dipping Vivian's orebody. The airleg stope design is based on a maximum back span between adjacent pillars and / or stope abutments of 9.2 m and good ground conditions (no ultramafics). This span limit should be applied radially between adjacent pillar and / or stope abutments. For spans exceeding 9.2 m, timber props and sties will be required or exposed on retreat where personnel are no longer exposed.

Preliminary assessment for pre-stressed timber prop design has been based on the following assumptions:

- It is assumed that installed pre-stressed props will require the theoretical capacity to support a load equivalent to 2 m wide × 2 m long × 2 m deep of hangingwall rock. Estimated hangingwall load per prop is thus, 8.0 m³ x 2.7 t/m³ = 21.6 t = 211.9 kN.
- Prop timber should comprise untreated pine (pinus radiata) logs of ≥ 150 mm diameter and ≤ 2.5 m length.
- A cap pre-stressing system (such as jackpots) would be used to ensure the prop provides immediate hangingwall support. The cap would ideally be installed at the hangingwall end of the prop and a pre-load of ≈200 kN applied.

Published results 6 of laboratory testing of pine logs of \approx 150 mm diameter and 370 mm length determined a mean ultimate load of \approx 700 kN (mean compressive strength of \approx 38 MPa). Young's modulus was assessed to be \approx 10 GPA.

The theoretical maximum load each prop could sustain before buckling (sustaining lateral deflection) was estimated using Euler's critical load formula.

The applicable standard (along with other geotechnical or support requirements) must be stated upon the corresponding Mine Instruction (MI), approved by the Underground Manager and supplied to the operator.

In particular circumstances where the existing standards cannot be applied, specific ground support instructions must be issued. A copy of the instructions should be attached to the relevant mining instruction.

Airleg design and standard support is based on the following:

 For shallow to moderate dipping veins, airleg stope hanging wall stability is maintained by leaving pillars. The span between the stability pillars is a maximum of 9.2 m and the width-to-height ratio of the pillars is minimum 1.

- No development is to proceed within ultramafic lithologies (poor rock masses).
- Airleg miners use 1.5 m long split sets, which do not give the same amount of support as a 2.4 m split set. As airleg mining is one of the highest risk activities underground it is imperative that the ground be adequately supported by both installed rock bolts and adequately sized and spaced pillars.

Based on the Q system the maximum "unsupported" spans are detailed and listed **Table** 16-17 and are derived from the following equation:

2(ESR)Q^{0.4}.

These values are based on an excavation support ratio (ESR) of 1.6 (permanent mine opening - **Figure 16-11**). "Unsupported" means without pillars but with rock bolts to control localised structures.

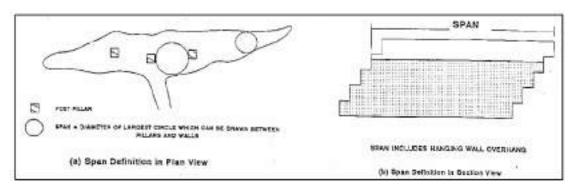


Figure 16-11 Definition of Spans (Palkanis and Vonpaisal, 1993) - Source: Westgold.

Exc	avation category	ESR		
A	Temporary mine openings.			
В	Permanent mine openings, water tunnels for hydro power (excluding high pressure penstocks), pilot tunnels, drifts and headings for large excavations.	1.6		
С	Storage rooms, water treatment plants, minor road and railway tunnels, surge chambers, access tunnels.			
D	Power stations, major road and railway tunnels, civil defence chambers, portal intersections.	1.0		
E	Underground nuclear power stations, railway stations, sports and public facilities, factories.	0.8		

Figure 16-12 Excavation Support Ratio - Source: Westgold.

Table 16-17 Airleg unsupported spans.

Rock Quality	NGI Q value	Max Unsupported Span
Poor	1-4	3 – 5.5
Fair	4-10	5.5 – 8
Good	10-40	8 – 14

Every heading requires an assessment to be completed prior to support being installed; this should be the same for airleg mining.

The following considerations are to be captured as part of the airleg development DAF plans:

- Large span sizes.
- Pillar spalling because the pillars are too small for the span.
- Deteriorating ground conditions.
- Inadequate scaling.
- Large wedges.
- Incorrect ground support.

By limiting the span sizes and leaving the appropriate size pillars these risks can be mitigated.

Future airleg development and stope extractions should be planned accordingly and approved by the Underground Manager (or Alternate). This will require rock mass and geological information to be reviewed prior to conducting airleg activities.

Prior to any removal of pillars within an airleg stoping area, the works should have an extraction plan based on "retreat" and restricted access to personnel (use of sacrificial blocks if necessary). Additional rock mass quality information and failure assessments should also be conducted on a case-by-case basis. The Underground Managers are responsible to request any geotechnical consultation.

Additional observations have also demonstrated that the original standard pillar distances of 9.2 m have been achieved successfully due to improved rock mass qualities. Utilising updated support design curves, a Q value > 7 (Fair rock mass) is plotted on the stable boundary (**Figure 16-13**). However, the rock mass within the air leg areas is predominantly of good quality (Q>10).

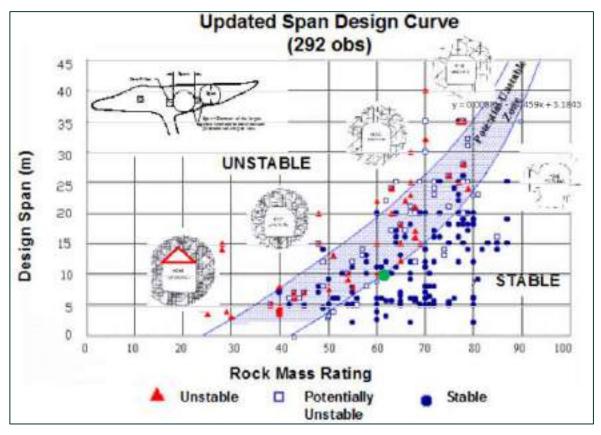


Figure 16-13 Critical Span Curve, Q of 7 converted to Rock Mass Rating (Lang 1994).

Effective Radius Factor (ERF) analysis is used to conduct a more detailed HR calculation for more complex mining geometries. This assessment takes into consideration the extraction of pillars within in a stoping block and determines the maximum span which will occur upon complete recovery / final firing.

Back analysis of ERF values within the largest Vivian airleg stope (1225) expressed that a value of 10.3 was achievable when utilising timber props to supplement pillars and provide additional passive support.

However, more recent ERF assessments have been completed in airleg areas without additional timber props and have demonstrated increased levels of instability occurring in ERF values >7. (e.g. VC1220 AL and Clyde 1240) These instabilities have been associated with low angle structures (e.g. faults) intersecting the backs and appear time dependant in nature.

Example of the ERF analysis (using Gem4D) is illustrated in Figure 16-14.

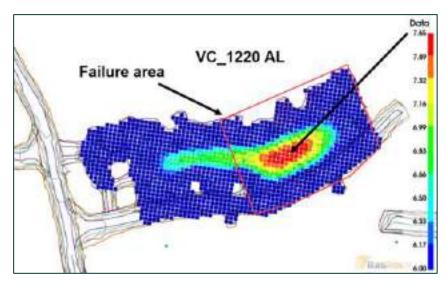


Figure 16-14 VC1220 AL Failure in ERF >7 area - Source: Westgold.

More ERF back analysis is in progress for the remaining smaller air leg stopes – this information will be used to provide additional guidance for any future air legging stopes. Any proposed air leg stoping in the future is to be accompanied by an ERF assessment.

The mine designs were developed in Deswik software. **Figure 16-15** and **Figure 16-16** depict the design concluded for Paddy's Flat.

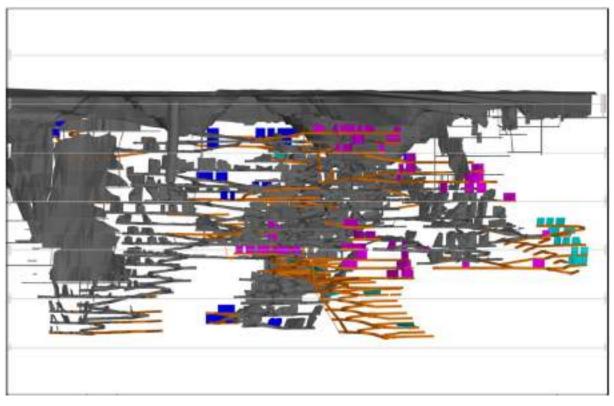


Figure 16-15 Paddy's Flat underground Mineral Reserve design with existing pit looking West - Source: Westgold.

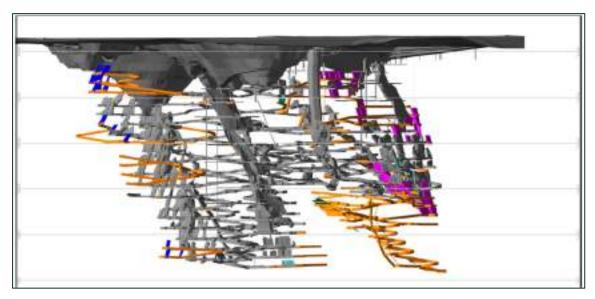


Figure 16-16 Paddy's Flat underground Mineral Reserve design with existing pit (grey) looking north - Source: Westgold.

16.1.1.8 Mine Scheduling

The mining schedule for the LOM plan was generated using Deswik mine planning software. Once the development and stope designs are produced, they are evaluated in Deswik against the geological block model. Development and stope shapes are then reviewed and included in the schedule if they are economic to mine. All activities that make up the stoping cycle, such as production drilling, charging and bogging are added into the mine schedule. The development and stoping activities are then linked in a logical extraction sequence which considers mining practicality, geotechnical and productivity constraints. Each task has an equipment resource applied to it, with schedule productivities based on current site performance and parameters appropriate to the equipment being used.

The current mine life is scheduled over 38 months (subject to further schedule refinements).

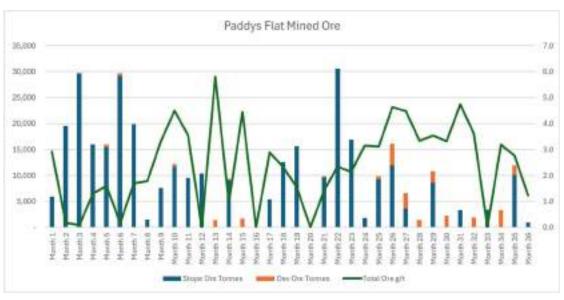


Figure 16-17 Paddy's Flat Underground schedule - Source: Westgold.

16.1.1.9 Mobile Equipment

The mine equipment proposed for Paddy's Flat is industry standard trackless underground diesel equipment constructed by reputable manufacturers and well suited to current site operations. The primary underground fleet is shown below.

Table 16-18 Primary underground fleet.

Unit Description	Unit Quantity
Twin Boom Jumbo	1
Production Drill	1
15 t LHD	2–3
60 t Truck	2–4
Integrated Tool Carrier	2

16.1.1.10 Labour Estimate

The cost model simulated the following labour requirements for the scheduled production at Paddy's Flat as shown in **Table 16-19.**

Table 16-19 Labour requirements.

Labour	Max.	Year 1	Year 2	Year 3
Jumbo Operators	4	4	4	4
Charge-Up Operators	6	6	6	6
Long Hole Drill Operator	4	4	4	4
LHD Operators	7	7	7	7
Truck Operators	9	9	9	9
Grader Operators	1	1	1	1
Water Cart Operators	1	1	1	1
Serviceman	9	9	9	9
Storeman	2	2	2	2
Nipper	3	3	3	3
Lead Hand Fitter	4	4	4	4
Fitters	28	28	28	28
Drill Fitter	4	4	4	4
Electricians	2	2	2	2
UG Manager	2	2	2	2
Mine Superintendent	2	2	2	2
Shift Supervisor	4	4	4	4
Safety Trainer	3	3	3	3
Maintenance Foreman	2	2	2	2
Maintenance Senior Leading Hand	2	2	2	2
Electrical Supervisor	2	2	2	2
Site Administrator	2	2	2	2
Mining Engineer	6	6	6	6
Surveyor	2	2	2	2
Geologist	9	9	9	9
Total Labour		120	120	120

16.1.1.11 Site Layout

Paddy's Flat has a well-established site layout with infrastructure including workshop, change rooms and technical and administrative facilities.

Ore will be hauled by mine trucks to the current ROM pad from where it will be rehandled to road trucks for transport to the Bluebird Mill

16.2 YALOGINDA

16.2.1 Bluebird Group

16.2.1.1 Underground Infrastructure

The Bluebird underground mine will be accessed the existing Bluebird decline to the base of the mine. The declines are developed at a 1:7 (down) gradient to the various orebody development horizons. The decline is typically $5.3 \, \text{mW} \times 5.8 \, \text{mH}$, with a standard ore drive size of $5 \, \text{mW} \times 5 \, \text{mH}$. Lateral development profiles are well matched to the mobile fleet.

Ore is hauled from the underground to surface via the decline where it is then transported via a separate surface haulage fleet to the Bluebird mill.

Bluebird is an operating mine with established communications, electrical reticulation, pumping and ventilation systems.

Equipment is maintained and serviced at a surface workshop.

16.2.1.2 Mining Methods

Bluebird is separated into two orebodies, Bluebird and South Junction. In Bluebird, the proposed mining method is conventional uphole bench retreat. Conventional jumbo drill and blast methods will be used to establish the decline and lateral development. Escape ways will be created using air leg mining or raise-bore techniques as appropriate. Exhaust airways will be established by first mining an air leg rise or by completing a box-hole raise. These will be stripped out to the final airway dimensions using longhole drilling and blasting techniques. In some circumstances longhole rises will be excavated without the use of a pilot raise as has become common in many mines.

Twenty metre sub levels will be developed along the ore contact. Ore development in the orebody will be $4.5\,\mathrm{mW}\,x\,4.5\,\mathrm{mH}$. Development drives will be established along the strike of the orebody at 20 m vertical sub-level intervals. It is expected that the stope lengths will be between 20 and 32 metres guidance as dictated by operational and production requirements however the final lengths will be determined on a case-by-case basis after geotechnical and geological analysis. Once the bottom level has been established, a boxhole or longhole rise will be drilled and fired providing the initial void into which the rest of the stope will be fired into.

When the entire stope has been mined out a rib pillar will be left before establishing the next stope along the ore drive. Following extraction of the stope, subsequent stopes are mined in a similar way with stoping horizon retreating laterally to the level access and vertically down-dip. Stope ore will be trammed to a stockpile on the level access where it is later loaded on to dump trucks for haulage to the mine ROM pad.

In the South Junction orebody, stopes are mined using a traverse sub-level open stoping methodology. This involves mining selectively using a primary/secondary sequence where primary stopes are extracted and filled, whilst secondary stopes are extracted post the filling and curing of the primary stopes.

Hydraulic backfill will be used in the primary stopes where a mixture of hydraulic and waste to be used in secondary stopes where the requirement for tigh tfilling of the stope voids will be less critical.

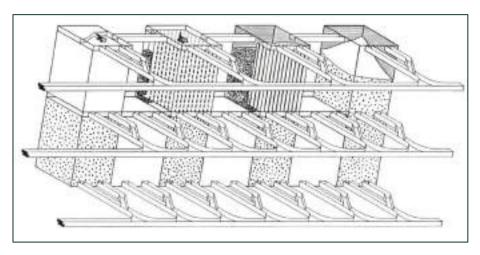


Figure 16-18 Schematic transverse primary / secondary open stope lifecycle showing progression from right to left - Source: Westgold.

Production stoping typically follows the cycle outlined below.

Up or down holes are drilled in patterns to form a rise and slot for initial stope opening.

Up or down hole production rings follow to define stope excavation boundary.

- The rise and slot are fired to create an initial void.
- Ring blasting commences towards opened void.
- Manual bogging of the broken ore continues until the loader bucket is level with the stope brow.
- Tele-remote bogging is conducted beyond the stope brow.

16.2.1.3 Hydrology

Groundwater transmissivity is inferred to be greatest along the Edin Hope and other deposit scale north-south trending shear structures.

Current water inflows of 7.7 L/s are controlled with established pumping infrastructure and no significant increases are expected.

Additional staging pump stations will be installed as the mine progresses.

16.2.1.4 Geotechnical

Geotechnical data will be collected on an ongoing basis in the Bluebird mine. This will include logging of borehole cores, mapping of underground conditions, monitoring of instrumentation and visual inspections.

Four (4) dominant discontinuity sets have been identified, although sets 2, 3 and 4 are likely to be same set and not found ubiquitously. The mean orientations and characteristics of each set are listed in **Table 16-20**.

Table 16-20 Dominant defect 'sets' for Bluebird borehole interval data.

DEFECT SET	DEFECT DESCRIPTION	DIP (°)	DIP DIRECTION (°)
1	Cleavage, foliation, fractures, joints, schistosity, shears and veins – Sub-vertical to steep east dipping	84	079
2	Contacts, joints and veins – Flat lying to moderately steep north dipping	30	015
3	Joints – Moderately steep west dipping	34	290
4	Veins and fractures – Flat lying to shallow south-east dipping	11	136

Available structural data for Bluebird borehole intervals indicates the following (inferred) dominant defect orientations:

- Sub-vertical to steep east dipping cleavage, foliation, fractures, joints, schistosity, shears and veins Defect set parallel to ore lodes.
- Flat lying to moderately steep north dipping contacts, joints and veins Defect set approximately perpendicular to ore lode, origin currently unknown.
- Moderately steep west dipping joints Defect set origin currently unknown.
- Flat-lying to shallow south-east dipping veins and fractures— Defect set origin currently unknown.
- Sub-vertical to steep east, south-east, north and south dipping joints, veins, contacts, faults and foliation Defect set origin currently unknown.
- A steep south-easterly dipping fault, moderately steep south dipping shear and steep east dipping shear are also apparent in the structural data set.

With the current mining around the ultramafic lithologies the necessity for a future seismic system is unlikely, however dynamic conditions such as squeezing is becoming notable.

Q rock mass classification was undertaken for each of the assessed geotechnical domains. The calculated 1st quartile, median and data range Q-values for assessed geotechnical domains are presented in **Table 16-21**.

Table 16-21 South Emu-Triton Underground Mineral Reserves – net gold price calculation.

DOMAIN	1 ST QRT Q- VALUE	1 ST QRT Q- CLASS	MEDIAN Q- VALUE	MEDIAN Q- CLASS	Q-VALUE RANGE
Far HW	7.75	Fair	25.00	Good	1.92 – 66.67
HW10	7.75	Fair	25.00	Good	2.04 – 67.33
HW5	7.71	Fair	25.00	Good	3.21 – 67.33
Stope	46.00	Very good	50.00	Very good	5.50 – 66.67
FW5	25.00	Good	45.75	Very good	2.29 – 67.33
FW10	16.79	Good	45.50	Very good	2.29 – 67.33
Far FW	8.00	Fair	30.67	Good	1.44 – 67.33
Inter Lode Pillar	30.33	Good	48.75	Very good	3.75 – 66.67
South Junction Decline	4.61	Fair	6.79	Fair	3.83 - 8.33

Summary observations on Bluebird Q classification values are provided below:

- Stope domain rock quality was also reviewed on the basis of individual East,
 West and Central Lode borehole intercepts. Negligible difference in rock quality
 was indicated between the individual lodes. Tabled stope domain Q-values
 include data for all lode intercepts and findings presented are applicable to
 Bluebird East, West and Central Lodes.
- All Stope, FW5 and FW10 first quartile Q-values lie in the good to very good rock quality classes.
- All HW5 and HW10 first quartile Q-values lie in the fair rock quality class, indicating slightly poorer immediate to intermediate hanging wall rock quality when compared to footwalls.
- Inter Lode Pillar domain rock quality is generally good.
- Far FW domain rock quality is generally fair or better, indicating conditions should be amendable for proposed Bluebird decline and access development.
- South Junction Decline domain rock quality is fair at best, indicating some areas of proposed development may intersect adverse rock mass conditions.

16.2.1.5 Geology

Mineralisation is structurally controlled and occurs within a north trending shear zone (Metana grid). Gold mineralisation at Bluebird occurs as quartz-vein stockwork within a high-magnesium basalt / komatiite host rock with minor felsic / intermediate intrusions. The stockwork veins are variably dominated by quartz, carbonate and chlorite. High grade mineralisation at Bluebird occurs within a 50 metre-wide predominantly carbonate-altered inner shear zone, trending north-northeast and dipping steeply to the east.

Mineralisation around the Edin Hope deposit consists of a sub-vertical, 35 m wide potassic alteration zone which thickens to the south and is bounded by talc chlorite schist. The dominant lithology is high Mg basalt with some quartz and feldspar intrusives within the alteration sequence. The combined Bluebird and Edin Hope mineralisation sequence extends over a strike length of approximately 1,600 m and is locally up to 50 m thick.

A complex distribution of a broad range of lithotypes occur at South Junction, including ultramafic and mafic schists, undeformed metabasalt, metasediments, a variety of felsic and intermediate intrusive rocks, and unmetamorphosed sediments. Gold mineralisation is not limited to a particular rock type at South Junction. Instead, the location of mineralisation is structurally / rheologically controlled. Mineralisation styles fit into two main categories – 'shear zone' style and 'vein-related lode' style.

South Junction hosts numerous mineralised zones broadly located on sub-parallel north-northeast-trending structures. These are, from west to east, Edin Hope, Polar Star (includes Polar Star North, West, Central and South lodes) and Archenar (aka Camp) zones (includes Southeast and East lodes).

The Iron Bar deposit is dominated by foliated parallel quartz feldspar porphyry bounded by talc chlorite schist, after high Mg basalt and basalt. Mineralisation is characterised by flat lying, brittle veins within the porphyry (Fe carbonate +quartz +-fuchsite +-sericite +-pyrite). The deposit is structurally complex and is believed to be the dextral offset of the Edin Hope lode in the South Junction pit.

There are no recognised major structural features that will impact the mining of the Bluebird deposit. The deposit is cut by numerous steep and predominantly east-west striking faults at a high angle to the prevailing foliation that have had no effect upon the stability of the existing pit walls.

Discontinuity data is available from geotechnical and geological logging of oriented drill core and from open cut mapping.

The discontinuity pattern is dominated by:

- North-south striking, very steeply dipping east-west dipping foliation and cleavage, exhibiting low and near low shear strength properties.
- Sub-horizontal tensile structure including joints and veins, generally exhibiting high shear strength properties.
- Structure with low to moderate dips (with dip directions toward the west and northeast to east) with predominantly tensile characteristics. It is expected that these structures may provide the basal plane in potential basal plane toppling mechanisms controlling east and west wall stability.

16.2.1.6 Historical Mining

The Bluebird pit was mined in multiple stages, small underground operations extracted approximately 5,000 oz between 1910 and 1936 whilst a small open pit produced approximately 61,000 oz in 1980 and 1981. Endeavour Resources mined a further 74,000 oz after this with mining ceasing in 1988. Saint Barbara Mines, Mercator Gold and Reed Resources mined a further 485,000 oz between 2000 and 2013. Finally, Westgold Resources (WGX) mined an additional 18,000 oz between 2015 and 2017.

The South Junction open pit was mined between June 1990 and 2003, but total gold production figures are lacking in detail but are thought to be in excess of 400,000 oz.

Westgold commenced underground mining in 2019 and Bluebird is currently an active operation.

16.2.1.7 Mine Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;

The Modified Stability Graph Method developed by Potvin has been used to make a preliminary assessment of stable stope spans. The N' (Stability Number) and HR (Hydraulic Radius) for a stope are compared to the case history database of stope performance.

Where:

- Q' = (RQD/Jn) x (Jr/Ja) (Note that Jw and SRF factors are omitted for this calculation).
- A = Rock stress factor derived from design chart.
- B = Joint orientation factor derived from stereoplot.
- C = Gravity adjustment factor determined from the most likely mode of structural failure.

First quartile and median Q' values have been considered in Modified Stability Graph Method assessments. Considered Q' values imply that:

- For 1st quartile cases, the remaining 75% of the population (stopes) have higher
 Q' values.
- For median cases, the remaining 50% of the population (stopes) have higher Q' values.

Since the respective remaining 75% and 50% of the population (stopes) have higher Q' values (hence better ground conditions) it is "theoretically" possible that stable conditions could be established in greater stope spans. In this respect, it is pertinent to note that broad extrapolations have been made in assessing overall ground conditions, and it is considered prudent to adhere (at least in the first instance) to the median "rule". In some instances / areas, stope stability at Bluebird will be controlled by geological structure (for example, lithological contacts, joints, faulted or sheared rock) which cannot be considered using this technique. Final stope designs must, however, place strong emphasis on considering the possible adverse influence of such factors. Site experiential learnings will be used to evolve the stope design parameters particularly for strike length of individual panels.

Table 16-22 Bluebird stability graph assessment.

DOMAIN	Q'-VALUE		Q'-VALUE STABILITY NUMBER UN N'		STOPE DIMENSIONS GTH x HEIGHT (m)
HW10	1 st Quartile	7.75	2.79	5.0	25 x 17
HWIO	Median	25.00	9.00	7.0	25 x 32
HW5	1 st Quartile	7.71	2.78	5.0	25 x 17
UANO	Median	25.00	9.00	7.0	25 x 32
Stope	1 st Quartile	46.00	8.83	7.0	4.2 (W) x >100 (L)
Stope	Median	50.00	9.60	7.0	4.2 (W) x >100 (L)
FW5	1 st Quartile	25.00	5.40	6.0	25 x 24
FVVO	Median	45.75	9.88	7.0	25 x 32
F\\/10	1 st Quartile	16.79	3.63	5.0	25 x 17
FW10	Median	45.50	9.83	7.0	25 x 32

Effective Radius Factor (ERF) analysis is used to conduct a more detailed HR calculation for more complex mining geometries. This assessment takes into consideration the extraction of pillars within in a stoping block and determines the maximum span which will occur upon complete recovery / final firing.

An ERF analysis has been completed for West Lode at the end of 2022, with HR's and estimated HR's compared. Example of the ERF analysis (using Gem4D) is illustrated in **Figure 16-19**.

Additional ERF back analysis could be completed with future stoping levels – this information would be used to provide additional guidance for any future production fronts.

Figure~16-19~Current~and~Planned~West~Lode~Extraction~ERF~Analysis~as~of~28/11/2022~-~Source:~West gold.

Pillars between development drives are designed based on their skin-to-skin separation distance, according to the following convention:

- The skin-to-skin horizontal separation distance between two development drives, divided by the height of the drive, is the width: height ratio.
- The skin-to-skin vertical separation distance between two development drives, divided by the width of the drive, is the height: width ratio.

- The minimum required width: height ratio is estimated to be 1:1.
- The minimum height: width ratio is estimated to be 1.5:1.

Where access to an area located between adjacent lode stope voids is required (i.e. a pillar between voids), it is recommended that Westgold maintains a horizontal pillar \geq 4 × the larger stope width.

Results of preliminary Modified Stability Graph Method assessments indicate that instope rib pillars will be required where strike span exceeds ≈ 32 m. Half stope height island pillars will be considered with a strike length equal to (or greater) than the local stope width, at ≈ 30 m centres along strike and staggered vertically between stope levels. Some flexibility in pillar design and layout is possible, and where practical, pillar placement will be located within low grade portions of lodes.

To assist with dilution control and regional hanging wall and footwall stability, horizontal sill/ barrier pillars will be considered where planned stoping extends to continuous vertical heights of > 60 m.

Additional pillar assessments have been completed for stoping/development near the Bluebird open pit has been initiated – initial results show that the recommended 25 m offset standoff recommended in the feasibility study from the pit profile is considered sufficient. The scenario has been modelled used RS2 software and shows limited displacement or reduction in stress values **Figure 16-20**.

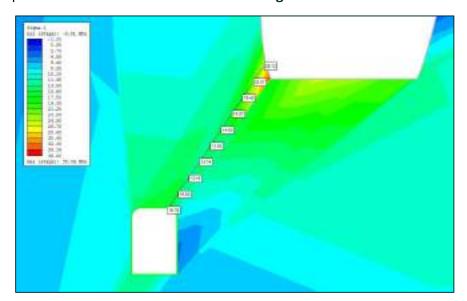


Figure 16-20 RS2 Model regarding nearby development to Bluebird - Source: Westgold.

The mine designs were developed in Deswik software. **Figure 16-21** and **Figure 16-22** depict the design concluded for Bluebird.

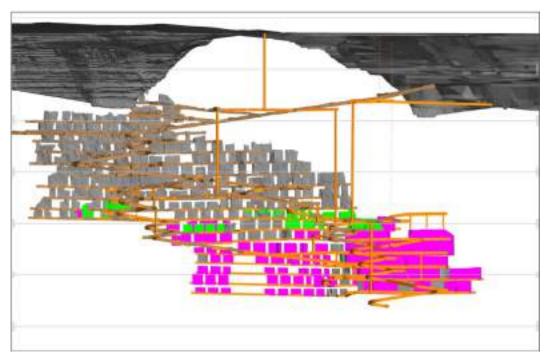


Figure 16-21 Underground Mineral Reserve design with existing pit (grey) looking east - Source: Westgold.

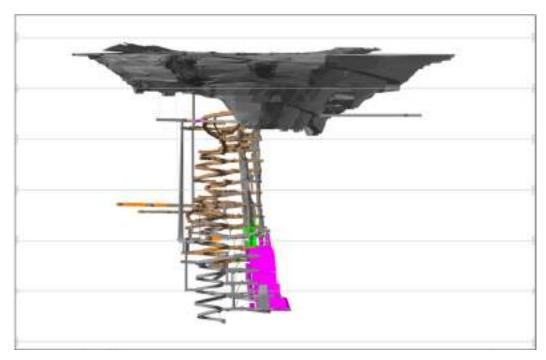


Figure 16-22 Bluebird Underground Mineral Reserve design with existing pit (grey) looking north - Source: Westgold.

16.2.1.8 Mine Scheduling

The mining schedule for the LOM plan was generated using Deswik mine planning software. Once the development and stope designs are produced, they are evaluated in Deswik against the geological block model. Development and stope shapes are then reviewed and included in the schedule if they are economic to mine. All activities that make up the stoping cycle, such as production drilling, charging and bogging are

added into the mine schedule. The development and stoping activities are then linked in a logical extraction sequence which considers mining practicality, geotechnical and productivity constraints. Each task has an equipment resource applied to it, with schedule productivities based on current site performance and parameters appropriate to the equipment being used.

The current mine life is scheduled over 37 months (subject to further schedule refinements).

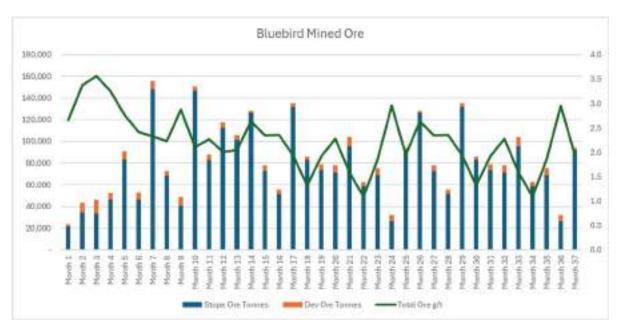


Figure 16-23 Bluebird Underground schedule - Source: Westgold.

16.2.1.9 Mobile Equipment

The mine equipment proposed for Bluebird is industry standard trackless underground diesel equipment constructed by reputable manufacturers and well suited to current site operations. The primary underground fleet is shown below.

Unit Description	Unit Quantity
Twin Boom Jumbo	1-3
Production Drill	
15 t LHD	2–3
60 t Truck	2–3
Integrated Tool Carrier	

Table 16-23 Primary underground fleet.

16.2.1.10 Labour Estimate

The cost model simulated the following labour requirements for the scheduled production at Bluebird is shown below.

Table 16-24 Labour requirements.

Labour	Maximum	Year 1	Year 2	Year 3
Jumbo Operators	8	8	8	8
Charge-Up Operators	8	8	8	8
Long Hole Drill Operator	4	4	4	4
LHD Operators	10	10	10	10
Truck Operators	12	12	12	12
Grader Operators	1	1	1	1
Water Cart Operators	1	1	1	1
Serviceman	9	9	9	9
Storeman	2	2	2	2
Nipper	8	8	8	8
Lead Hand Fitter	4	4	4	4
Fitters	10	10	10	10
Drill Fitter	4	4	4	4
Electricians	4	4	4	4
Project Manager	2	2	2	2
Mine Foreman	2	2	2	2
Shift Supervisor	4	4	4	4
Safety Trainer	2	2	2	2
Maintenance Foreman	1	1	1	1
Maintenance Senior Leading Hand	1	1	1	1
Electrical Supervisor	2	2	2	2
Site Administrator	2	2	2	2
Mining Engineer	6	6	6	6
Surveyor	3	3	3	3
Geologist	19	19	19	19
Total Labour		129	129	129

16.2.1.11 Site Layout

Bluebird has a well-established site layout with infrastructure including workshop, change rooms and technical and administrative facilities.

Ore will be hauled by mine trucks direct to the Bluebird mill.

16.3 NANNINE

16.3.1 Aladdin

16.3.1.1 Open Pits

This section describes the mining methods applicable to the Aladdin Mineral Reserves.

16.3.1.2 Open Pit Mining Infrastructure

The Aladdin pit is located 22 km from the Bluebird mill and office complex and as such will require both WGX and contractor equipment parking areas and fit-for-purpose maintenance and office areas to be established on site.

16.3.1.3 Mining Methods

The mining method for open pits is drill, blast loading by excavator and trucking the waste rock to a dedicated waste rock dump area close to the pit and ore trucked to a local pit stockpile ready for road train haulage to the Bluebird mill.

Mining will take place in benches with flitch loading (on either 2.5 m or 3 m high flitches). The open pit operations require diligent ore control / grade control procedures and resources. Grade control RC drilling will be performed ahead of blasting when required with the drilling chip samples assayed. In combination with the planning block model, zones within the ore bench are demarcated (by coloured tape / spray or a combination of the two) to define if a parcel of ore is low grade, medium grade, or high grade.

The post loading grade control process is important to ensure the reconciliation is in line with planning and to ensure ore modifying factors are reasonable and follow due process.

The typical open pit mining cycle involves the following:

- Demarcation (on each bench level) of ore / waste and low-grade zones;
- RC drilling (grade control drilling prior to mining to refine / update waste / ore zones);
- Bench drilling floor preparation and survey depths for each blast hole (depth/lengths of each blast hole are key to ensure bench floor controls);
- Drilling of blast holes;
- Review and QA/QC of blast holes to ensure they are drilled to design;
- Re-drilling of any holes not deemed correct / appropriate;
- Charging and firing of blast holes;
- Loading of the heave when necessary;
- Loading of the flitches, loading to be supervised in ore blocks to ensure correct truck destinations; and
- Trucks haul ore to a stockpile close to the open pit.

16.3.1.4 Hydrology

Most of the open pits (historical pits) in the Bluebird area have groundwater inflows and there is obvious rain / surface water ingress throughout rain events.

Hydrogeological modelling indicates that expected groundwater inflow would be in the order of 11.6 L/s at a maximum. These volumes of water will be disposed of via normal dust suppression activities during the course of mining with any excess being pumped to Lake Annean 1 km to the southeast of the pit.

Surface water ditches, culverts and bund walls in places around the pit will be designed to divert surface water runoff away from the open pit operations (as far as practicable). These designs will be informed by hydrogeological modelling.

16.3.1.5 Geotechnical

The Aladdin pit was optimised using generic geotechnical criteria based on material oxidation states. These values are set out below.

Table 16-25 South Emu-Triton Underground Mineral Reserves – net gold price calculation.

Oxidation State	Face Height (m)	Face Angle (deg)	Berm Width(m)
Oxide	15	55	6
Transitional	20	60	7
Fresh	20	75	7

16.3.1.6 Historical Mining

There are several open pit voids / historical open pit operations in and around the Aladdin open pit target zones. With the abundance of historical mining, existing pit walls pointed to reasonably good to fair ground conditions with minimal major slope damage. There will naturally be the need to account for pit specific geological structures and jointing, and the relative face angles to these features and joints are very important as it could increase the probability of failure.

A geotechnical engineer will review each pit design and may require further design alterations. These should be facilitated at or prior to mining commencement.

16.3.1.7 Mine Design

The mine design was developed using SURPAC software. **Table 16-26** depicts the typical pit wall design criteria for the Aladdin open pit as endorsed by independent geotechnical consultants Peter O'Bryan and Associates.

The upper portion of the pit was designed to accommodate Caterpillar 777 rigid body (90 t) trucks whilst the lower section was designed for articulated (60-40 t) trucks.

Table 16-26 Pit design parameters.

Region	Zone	Face Height (m)	Face Angle (deg)	Berm Width (m)	Ramp Width (m)	Ramp Gradient
All Walls	Surf-420 mRL	15	55	6	12	1 in 8
All Walls	420-380 mRL	20	60	7	12	1 in 8
All Walls	380-350 mRL	20	60	7	9	1 in 6
Overall Slope Angles			37° - 42°			
Pit Depth (m)		110				

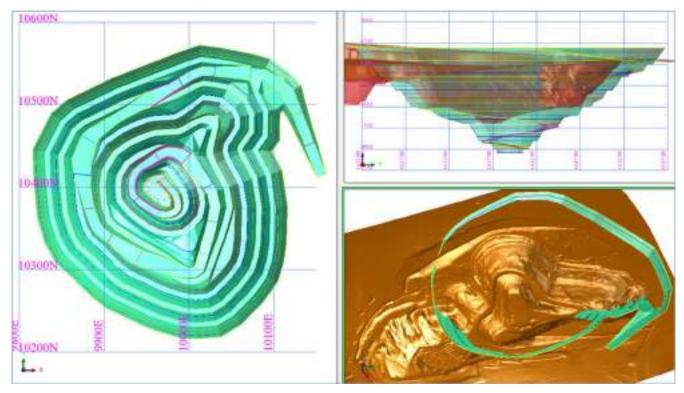


Figure 16-24 Aladdin open pit design - Source: Westgold.

16.3.1.8 Mine Scheduling

The Aladdin pit was scheduled manually using the Excel software package. Mining production rates were determined by the mining width of the cutback and based on a 120 t excavator and Caterpillar 777 trucks fleet from surface to the 435 mRL. It is planned to mine the lower section of the pit (380 mRL to final pit base) utilising an articulated fleet so as to maximise the depth of the pit. Maximum dig rates were set to 290 kbcm/month and reduced depending on available working areas, interactions with other activities in the pit (grade control drilling or blast hole drilling), truck fleet size and working bench area. The mining schedules are considered realistic and achievable considering past performance.

The Aladdin schedule is detailed in **Table 16-27** and shown graphically in **Figure 16-25**.

Parameter	Unit	Total	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2
Mined Ore Tonnes	kt	262	3	29	93	137	262	3
Mined Grade	g/t	1.93	1.29	1.35	1.68	2.23	1.93	1.29
Mined Ounces	koz	16	0	1	5	10	16	0
Mined Waste Volume	kbcm	1,290	631	381	220	57	1,290	631
Total Mined Volume	kbcm	1,387	632	394	255	106	1,387	632
Strip Ratio (bcm : bcm)	W:O	13.3	488.6	30.5	6.3	1.2	13.3	488.6

Table 16-27 Aladdin Mineral Reserves schedule.

The tonnes and grades are stated to a number of significant digits reflecting the confidence of the estimate. Since each number is rounded individually, the table may show apparent inconsistencies between the sum of rounded components and the corresponding rounded total.

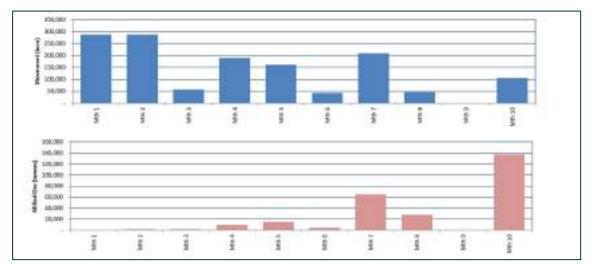


Figure 16-25 Monthly Aladdin schedule - Source: Westgold.

16.3.1.9 Mobile Equipment

The Aladdin open pit is planned to be developed by means of excavators and haul trucks. Mining is proposed to be conducted by contractors and the specific equipment may vary as the contractor sees fit. At present, mining of Aladdin is scheduled using a 120 t excavator matched to a fleet of 90 t capacity trucks from surface to the 380 mRL and then 60 t trucks to pit base.

16.3.1.10 Site Layout

It is envisaged that the site will require both WGX and contractor equipment parking areas, fit-for-purpose maintenance / workshop and office areas to be established on site.

Areas are available for ROM pads and waste dumps.

16.4 **REEDY'S**

16.4.1 South Emu - Triton

16.4.1.1 Underground Infrastructure

The South Emu-Triton underground mine will be accessed the existing South Emu and Triton portals and declines to the base of the mine. The declines are developed at a 1:7 (down) gradient to the various orebody development horizons. The decline is typically $5.3 \, \text{mW} \times 5.8 \, \text{mH}$, with a standard ore drive size of $5 \, \text{mW} \times 5 \, \text{mH}$. Lateral development profiles are well matched to the mobile fleet. Ore is hauled from the underground to surface via the decline where it is then transported via a separate surface haulage fleet to the Bluebird mill.

South Emu-Triton is not an active underground mine and therefore key infrastructure such as underground communications, electrical reticulation, pumping and ventilation will need to be re-established.

Equipment will be maintained and serviced at a surface workshop.

16.4.1.2 Mining Methods

The current planned mining method for South Emu and Triton mines is Long-Hole Open Stoping (LHOS) as a retreat to central access. Mining blocks are delineated based on cut-off grade along the ore lodes. Generally, levels are spaced at 20 m vertical intervals. Stopes are retreated to the cross-cut access. In-situ rib and sill pillars are designed where required to maintain ground stability. Stopes are generally not backfilled, however, CRF and loose fill was used in the 1383 stope to eliminate the open void after mining out the crown pillar.

A slot is created in the first firing, after this the stopes are longhole blasted into the lower extraction drive using 76 mm production holes.

Bench stopes are usually mined between levels (between ore drives) but can be designed as blind up-hole stopes. This method will generally utilise one bogging level for ore extraction. The ore lode is generally sub-divided into multiple panels (or individual stopes) along the strike length. Pillars are designed where required between alternate extraction drives to reduce the overall hydraulic radius and increase the stability of the stope.

Production stoping typically follows the cycle outlined below:

- Upholes are drilled in a pattern to form rise and slot for initial stope opening.
- Uphole production rings follow to define stope excavation boundary.
- Rise and slot are fired into open stope.
- Ring blasting commences towards opened void.

16.4.1.3 Hydrology

Historic water inflows of 14.9 L/s were experienced when operating and no significant increases are expected.

16.4.1.4 Geotechnical

Geotechnical data will be collected on an ongoing basis in the South Emu-Triton mine. This will include logging of borehole cores, mapping of underground conditions, monitoring of instrumentation and visual inspections.

Rock defect data collected from window mapping at South Emu were assessed using DIPS software. Pole plots and contour plots were used to identify the major defect orientations for the window mapping data. **Table 16-28** and **Figure 16-30** summarises the major defect orientations at South Emu. There are generally only two sets plus the ubiquitous foliation present at any development heading.

Table 16-28 Main discontinuity sets at South Emu as of May 2019.

DISCONTINUITY SET	DESCRIPTION	DIP (°)	DIP DIRECTION (°)
1	Dominant joint set, sub-vertical east-west dipping	89	283
2	Flat north-west dipping	21	317
3	Moderate joint set, steeply north-south dipping	78	188

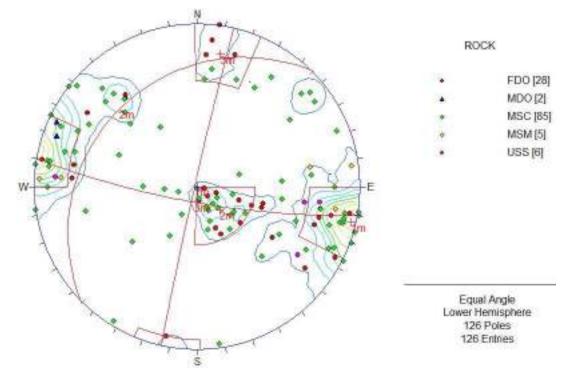


Figure 16-26 Stereonet of structures at South Emu from underground mapping - Source: Westgold.

Additional mapping data is collected during geotechnical inspections, with discontinuity data (when collected) applied to kinematic and stope stability assessments accordingly No stress measurements have been undertaken to date at any mines in the Reedy's project area. The maximum depth of only 400 m below surface is not expected to be sufficient to generate damaging stresses. However, the ultramafic lithologies (USS) are expected to suffer from deterioration due to their poor rock mass strength when under low stress conditions.

In 2020, a comprehensive suite of rock mass testing occurred on the major rock units in South Emu and Triton.

Table 16-29 South Emu uniaxial compressive strength (UCS) test results.

BOREHOLE	FROM	то	LITHOLOGY	UCS (MPa)	DENSITY (tonne/m³)	COHESION (MPa)	RAISEBORE INDEX
	204.69	205.39	USS	44.5	3.05		
	200	200.48	USS	33.42	2.96	11.82	16.7
	198.22	199.05	USS	35.1	3.06		
	114.08	114.56	MBM	191.93	2.91		
	118	118.88	MBM	229.72	2.87	33.53	10.9
	25	25.6	MBM	201.88	2.8		
	130.6	131	FDO/PORPHRY	266.16	2.69		
<u></u>	172.53	173.03	FDO/PORPHRY	254.99	2.63	39.59	9.5
000	90.41	90.92	FDO/PORPHRY	268.45	2.67		
]]	162.18	162.68	MSC	90.41	2.91	20.07	11.7
20SEDD038	165.55	166	MSC	219.95	2.96	20.07	11.7
72	181.29	181.77	MSM	69.6	2.79		

Table 16-30 Triton uniaxial compressive strength (UCS) test results.

BOREHOLE	FROM	то	LITHOLOGY	UCS (MPa)	DENSITY (tonne/m³)	COHESION (MPa)	RAISEBORE INDEX	
	269.43	270	USS	16.25	2.86			
7	270	270.7	USS	16.36	2.86	1.68	1.00	28
D001	287	287.51	USS	28.08	2.94		20	
ZD[291.3	292.09	USS	5.3	2.94			
20TRDI	275.96	276.81	MSC	31.18	3		21	
7	279.19	279.67	MSC	44.81	2.91		21	

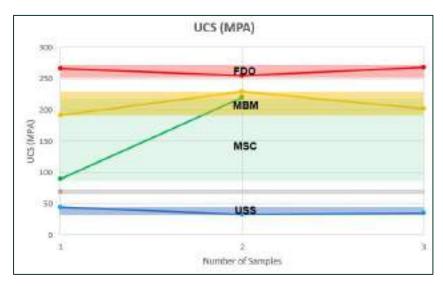


Figure 16-27 Major rock mass units - UCS strength ranges - Source: Westgold.

The updated Norwegian Geological Institute (NGI) Q-System an empirical rock mass classification scheme, has been used to characterise ground conditions and provide guidance for ground support and reinforcement design.

A geotechnical assessment for South Emu - Triton was conducted in 2015 using the data from four diamond drill holes. This forms the basis of the rock mass classification and geotechnical modelling at South Emu.

Table 16-31 Q-System values for South Emu - Triton 2015.

DOMAIN	RQD	J _n	J _r	J _a	Q'	J _w	SRF	Q
Hangingwall	79	6	1	2	6.6	1	1	6.6
Orebody	90	6	1.5	2	11.2	1	1	11.2
Footwall	75	6	1	2	6.3	1	1	6.3

Since 2020, additional works have been conducted to provide more representative ranges of Q rock mass quality. Future assessments have been utilising a combination of underground inspections, geotechnical Q drill hole logging data and model creations.

In June 2020, a first pass geotechnical model was created for Triton – South Emu. This model uses GEM4D software to project geotechnically logged drill holes and various Q parameters onto the mine plan. The model allows for the potential location of poor ground conditions to be anticipated before planned development or stoping occurs.

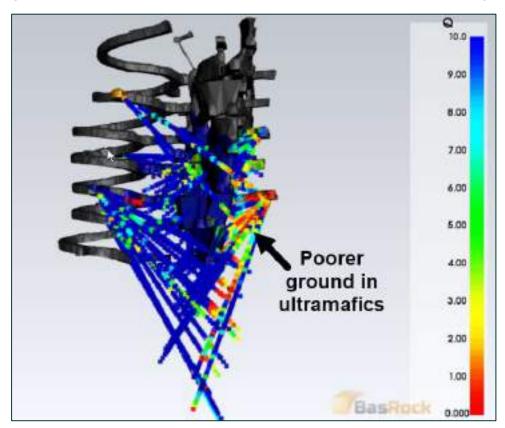


Figure 16-28 Looking North: Rock Mass Quality (Q) along drill holes - Source: Westgold.

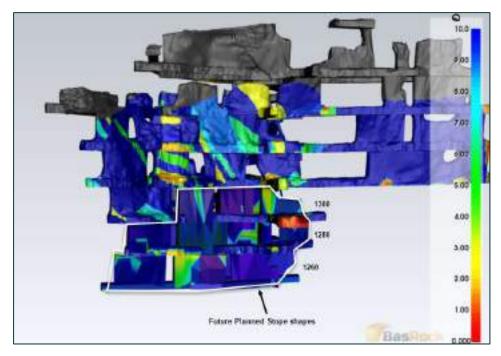


Figure 16-29 Looking West: Rock Mass Quality (Q) Projected onto the mining area - Source: Westgold.

This model has since been updated to a 3D block model (July 2021) to best replicate the expected rock mass quality (Q) within the South Emu - Triton mine. The model itself utilises a 14 m draw distance for data and is set to a "shallow, apertures opening" stress reduction factor (SRF) parameter of 2.5 to best reflect the ultramafic lithologies (USS) behaviour observed at depth.

The following parameters apply to the colours in the block model (**Figure 16-30** and **Figure 16-31**):

- VERY GOOD GROUND Q>40 (DARK BLUE).
- GOOD GROUND Q>10 (YELLOW TO BLUE).
- FAIR GROUND Q<10 (**ORANGE**).
- POOR GROUND Q<5 (**RED**).

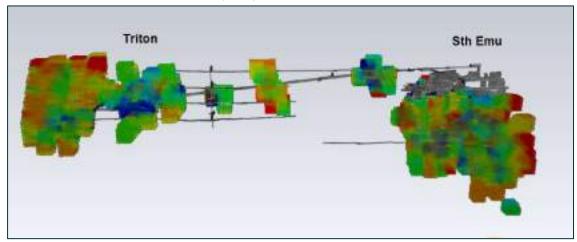


Figure 16-30 Geotechnical Q Model for South Emu - Triton - Source: Westgold.

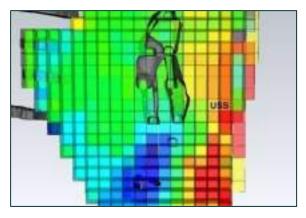


Figure 16-31 Example of Geotechnical Q Model in section view - Source: Westgold.

16.4.1.5 Geology

The Reedy's gold deposits occur within a north-south trending greenstone belt, two to five kilometres wide, composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled gold occurs at the sheared contacts of dolerite, basalt, ultramafic schist, quartz-feldspar porphyry, and shale. The Reedy's gold deposits occur within two lineaments or structural corridors. The western one corresponds to the Reedy Shear Zone along which gold mineralization extends over 15 kilometres. The second one to the east sits on a structural corridor called the Turn of the Tide Shear Zone. It corresponds to the northern extension of the Mount Magnet Shear Zone. Both shear zones are located on either side of the Culculli Granitoid complex. Mineralisation along the Reedy Shear Zone (RSZ) has long been recognized as the most economically important.

Two main mining centres are located along the RSZ: a northern centre including the Phoenix-Kurara and the Boomerang deposits; and a southern centre hosting mineralisation at Jack Ryan, Missing Link, Rand, Triton, South Emu and Pegasus. The RSZ is flanked by steeply dipping, folded, west facing Archaean sequence of tuffaceous pelitic sediments, mafic and ultramafic volcanics and dolerites from east to west. Black shale horizons occur in the vicinity of the sediment / mafic contact and a series of Banded Iron Formation units occur at higher levels in the mafic sequence. Syn deformation to late quartz-feldspar porphyritic microgranites intruded the greenstone sequence within the broad vicinity of the RSZ. The RSZ is generally developed layer parallel to the greenstone sequence. It is marked by strong flattening, mylonite development and occasional breccia zone. A combination of separate dipslip and strike-slip displacement has been documented. Gold is controlled in the first instance by the RSZ and deposited within this structure which is parallel to the axial plane cleavage of regional folds such as the Polelle syncline to the east of Meekatharra.

Gold is systematically concentrated in small volumes or shoots. Two main shoot orientations have been documented in the RSZ. One is shallowly plunging, probably overall horizontal whilst the other corresponds to a steep to vertical plunge with a mean steeply south. Deformation and mineralisation occur within a zoned alteration envelope characterised by biotite, carbonate, albite and silica replacement and sulphidation of wall rocks. The common occurrence of black shale against the lode may account for a chemical control on the gold mineralization. Quartz stock work veining occurs in some areas (Thébaud, 2008).

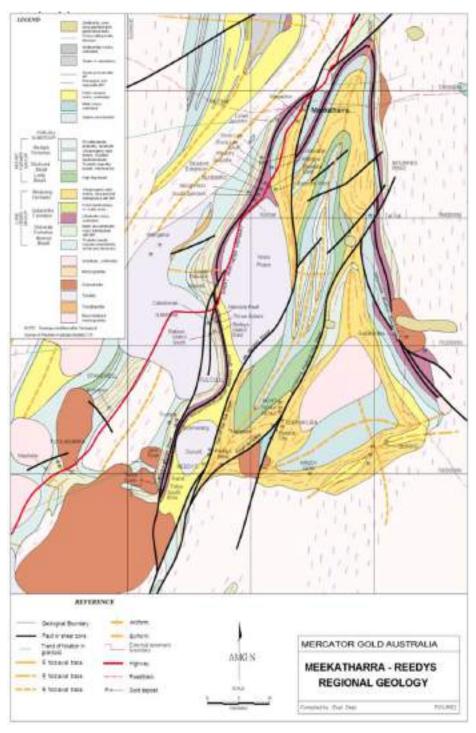


Figure 16-32 Regional Geology of Meekatharra - Source: Westgold.

The sequence at South Emu - Triton consists of a western (footwall) mafic - ultramafic schist unit overlain by eastern (hangingwall) meta-mafic volcanics and meta-dolerite. The contact is strongly sheared, and in the mine area, the shear has been intruded by a massive quartz / feldspar porphyry. The sequence dips at 75 to 80° to the east.

Gold mineralisation occurs in pyritic lodes within shear zones on both margins of the porphyry intrusive and within the eastern (hangingwall) unit. The footwall schists are mainly amphibole-chlorite+-biotite in composition, with gradations to narrow talccarbonate+-magnetite zones. Carbonation is widespread, tending to pervasive in the talc-carbonate zones, occurring as irregular stringers and patches and interfolial laminae. Biotite is variably developed, parallel to foliation, becoming dominant locally. Foliation varies from weak to strong and is mainly regular with local contortions and warping. The contact shear is about 1.5 m true width in the drillhole intersections. It is very fine grained and is silicified and variably carbonated, with a streaky foliated to brecciated texture. Quartz replacement areas and boudinaged veinlets occur. Pyrite is present as disseminations and patches oriented parallel to foliation and as chunky remobilised clusters. The content varies from trace to 20% locally and averages about 2%. The porphyry is massive with coarse grained white feldspar and quartz phenocrysts in a very fine-grained felsic groundmass. It is weakly carbonated throughout and contains local foliated and pyritic shear zones and occasional mafic inclusions.

There are no recognised major structural features that will impact the mining of the South Emu - Triton, however, minor faults are mapped in underground development.

The highly foliated nature of the mineralisation and host rocks is expected to result in only minor spalling from drive and stope walls due to the overall intense silicification of the ore zone. However, at depth the reduced distance between ore lodes and the ultramafic lithology contact is expected to induce rock mass deterioration when running alongside this zone.

16.4.1.6 Historical Mining

Historic open pit and underground workings are located in the Reedy's project area and particularly in the vicinity of South Emu and Triton. The Triton historical workings are extensive but reasonably well understood from old survey plans and information. The South Emu old workings are limited and closer to the open pit. A survey void model has been created of these historical workings to used when designing development.

Westgold re-commenced underground mining in 2018 and paused operations in 2022.

16.4.1.7 Mine Design Parameters

The following stope design parameters were applied within the mine design:

- Minimum footwall dip angles were set at 45°;
- Minimum mining widths (excluding dilution) of 1.5 m;

Table 16-32 South Emu stope design parameters (2015).

DOMAIN	FACTORS			Q'	N'	HR	SPAN FOR 25 m HEIGHT (and 5 m orebody width)		
	Α	В	С				MIN	MAX	MEAN
Hanging Wall	1.0	0.5	5.2	6.6	15.5	6.4	8	34	28
Orebody	1.0	0.5	6.4	11.2	32	8.6	Unlimited for 5 m width		
Footwall	1.0	0.5	6.4	6.3	18.1	6.7	3	42	31

Pillars between development drives are designed based on their skin-to-skin separation distance, according to the following convention:

- The skin-to-skin horizontal separation distance between two development drives, divided by the height of the drive, is the width: height ratio.
- The minimum required width: height ratio is estimated to be 1:1.
- The skin-to-skin vertical separation distance between two development drives, divided by the width of the drive, is the height: width ratio.
- The minimum height: width ratio is estimated to be 1.5:1.
- Pillar design ratios which do not meet the above should be assessed geotechnically on a case-by-case basis to ensure stability and suitability for the design life.

The mine designs were developed in Deswik software. **Figure 16-33** and **Figure 16-34** depict the design concluded for South Emu - Triton.

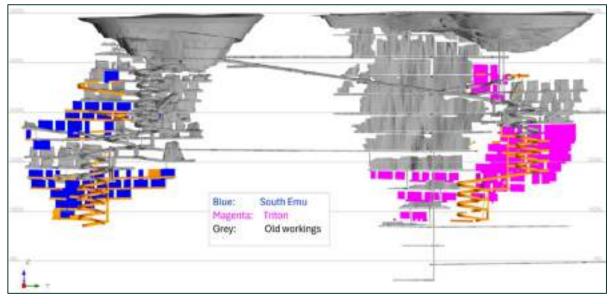


Figure 16-33 South Emu-Triton Underground Mineral Reserve design with looking west - Source: Westgold.

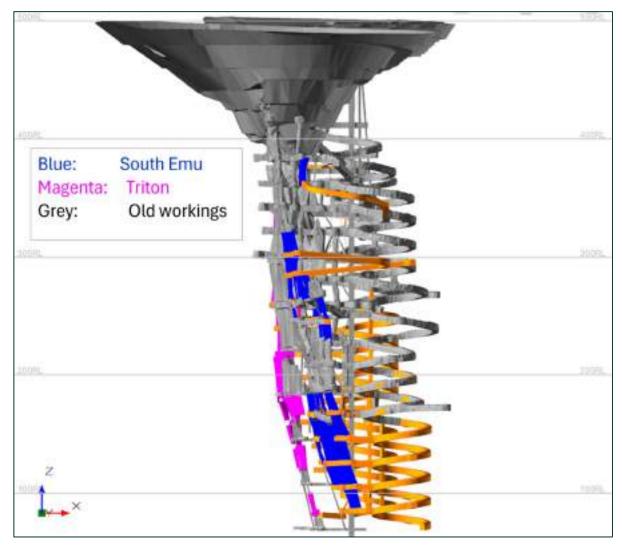


Figure 16-34 South Emu-Triton Underground Mineral Reserve design looking north - Source: Westgold.

16.4.1.8 Mine Scheduling

The mining schedule for the LOM plan was generated using Deswik mine planning software. Once the development and stope designs are produced, they are evaluated in Deswik against the geological block model. Development and stope shapes are then reviewed and included in the schedule if they are economic to mine. All activities that make up the stoping cycle, such as production drilling, charging and bogging are added into the mine schedule. The development and stoping activities are then linked in a logical extraction sequence which considers mining practicality, geotechnical and productivity constraints. Each task has an equipment resource applied to it, with schedule productivities based on current site performance and parameters appropriate to the equipment being used.

The current mine life is scheduled over twenty-nine months (subject to further schedule refinements).

Figure 16-35 South Emu-Triton Underground schedule - Source: Westgold.

16.4.1.9 Mobile Equipment

The mine equipment proposed for South Emu-Triton is industry standard trackless underground diesel equipment constructed by reputable manufacturers and well suited to current site operations. The primary underground fleet is shown below.

Table 16-33 Primary underground fleet.

Unit Description	Unit Quantity
Twin Boom Jumbo	1
Production Drill	1
15 t LHD	1–2
60 t Truck	1-2
Integrated Tool Carrier	1

16.4.1.10 Labour Estimate

The cost model simulated labour requirements for the scheduled production at South Emu-Triton as shown below.

Table 16-34 Labour requirements.

Labour	Max.	Year 1	Year 2	Year 3
Jumbo Operators	3	3	3	1
Charge-Up Operators	6	4	6	2
Long Hole Drill Operator	3	3	3	1
LHD Operators	9	7	9	4
Truck Operators	6	6	6	4
Grader Operators	0.5	0.5	0.5	0.5
Water Cart Operators	0.5	0.5	0.5	0.5
Service crew	6	6	6	4
Storeman	2	2	2	1
Nipper	3	3	3	3
Lead Hand Fitter	3	3	3	3
Fitters	12	12	12	12
Drill Fitter	3	3	3	3
Electricians	3	3	3	3
Project Manager	2	2	2	2
Mine Foreman	2	2	2	2
Shift Supervisor	4	4	4	4
Safety Trainer	2	2	2	1
Maintenance Foreman	1	1	1	1
Maintenance Senior Leading Hand	1	1	1	1
Electrical Supervisor	1	1	1	1
Site Administrator	2	2	2	1
Mining Engineer	5	5	5	3
Surveyor	2	2	2	2
Geologist	7	7	7	4
Total Labour		85	89	64

16.4.1.11 Site Layout

The previous South Emu-Triton infrastructure area will be utilised for workshop, change rooms and technical and administrative facilities.

Ore will be hauled by mine trucks to the pre-existing pit ROM pad from where it will be rehandled to road trucks for transport to the Bluebird Mill.

16.5 STOCKPILES

16.5.1 Stockpiles

The various stockpiles located within the Meekatharra region are hauled to the Bluebird mill via Road Trains loaded via diesel wheel loaders.

17 PROCESSING

17.1 BLUEBIRD MILL

Westgold treats gold mineralisation at its Bluebird Mill, a 1.8 Mtpa Semi-Autogenous Ball Mill Crusher (SABC) grinding conventional CIL processing plant. The plant consists of an open circuit jaw crusher followed by a primary screen and secondary crusher, coarse ore stockpiles, grinding circuit, gravity separation circuit, two leach tanks and six carbon adsorption tanks and gold recovery section.

The primary sections of the processing plant shown in **Figure 17-1** currently in use are:

- Crushing and conveying;
- Ore storage and reclaim;
- SABC grinding circuit;
- Leaching and carbon adsorption;
- Carbon stripping, electrowinning, refining and carbon regeneration;
- Tailings deposition and storage;
- Reagent mixing and handling; and
- Plant services.

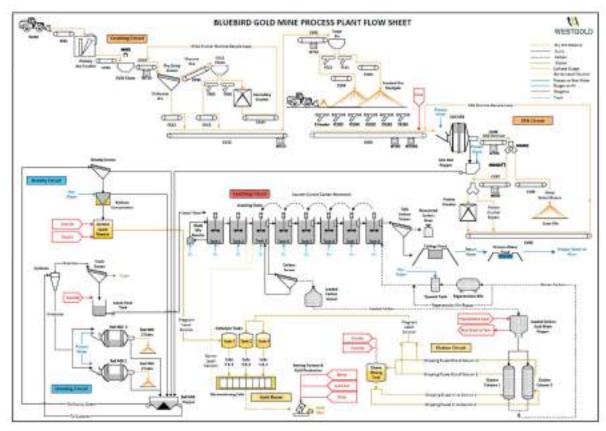


Figure 17-1 Bluebird process flowsheet 2024- Source: Westgold.

17.1.1 Process Description

17.1.1.1 Crushing

Mill feed is trucked to the ROM pad directly from the adjacent Bluebird underground mine and any of the other ore sources scheduled to be processed. The mill feed is classified and stockpiled according to source, gold grade and metallurgical recovery to blend an optimal feed mix to the mill. Oversize mill feed is sorted from stockpiles and broken on the ROM pad using a Front-End Loader (FEL) and a rock breaker. Any oversize that cannot pass through the primary crusher grizzly is broken by a rock breaker.

The crushing circuit consists of two stages of crushing:

- A 9 m x 2 MA400N000 apron feeder;
- A Nordberg C125 950 mm x 1,250 mm single toggle jaw crusher;
- A 1.68 m Weir Trio Turbocone TC66 (standard configuration) secondary cone crusher; and
- A Weir TIO8242 double deck screen.

Crushed material from the screen undersize passing through the bottom deck 46×68 mm apertures along with some jaw crushed lump ore is conveyed to two open coarse ore stockpiles for feed to the comminution circuit.

17.1.1.2 Grinding

Crushed coarse feed is drawn from the coarse ore stockpiles via one of five belt feeders, which transfers the crushed ore onto the SAG mill feed conveyor. Coarse ore can also be fed via an emergency feeder discharging onto the same feed conveyor.

The SABC grinding circuit consists of an Allis Chalmers 6.5 m x 4.5 m EGL Metal Lined 1.2 MW SAG Mill, in closed circuit with a Weir Trio TC51 SHM cone crusher for pebble crushing. hydrocyclone cluster classifier and gravity recovery circuit. The ball mill is a 4.90 m diameter by 6.77 m effective grinding length (EGL) LMMP / CITIC-HMC overflow ball mill.

SAG discharge product is pumped to the ball mill discharge hopper where it is combined with ball mill discharge to be classified by a cluster of hydrocyclones. Sixteen Weir 250CVX hydrocyclones are used to classify the slurry with the cyclone underflow returning to two Babcock 4.0 m diameter x 5 m EGL 1.2 MW ball mills. The ball mills operate in closed circuit with the with the cluster of hydrocyclones.

Oversize ore particles and reject grinding balls are removed from the ball mill discharge slurry by a 16 mm aperture trommel screen connected to the discharge trunnion of the mills. The oversize material (mill scats) is removed from the circuit to protect the cyclone feed slurry pumps and reduce wear rate on cyclone liners and the slurry handling equipment. Mill scats are rejected to a scats bin for removal by wheel loader.

Slurry from the grinding and classification circuit passes over a trash screen to ensure that no oversize particles enter the leaching circuit and to remove plastic and other containments from the slurry. The trash screen is an Oreflow HS304801 3.0 m wide by 4.88 m long horizontal vibrating screen with an aperture size of 0.80 mm. Undersize from the trash screen gravitates to the Leach Tank feed pumps to be pumped to the Leach circuit. Cyanide solution at 30% strength by weight is added to the leach tank feed pump hopper via a flow meter and automatic control valve.

17.1.1.3 Gravity and Intensive Cyanidation

A gravity separation circuit is included in the design to improve coarse gold recovery from the grinding circuit.

A slurry stream is pumped from an internal hopper in the mill discharge hopper that collects slurry from the initial ball mill discharge. This slurry is pumped by 32 kW Curve C100 WEK centrifugal slurry pumps up to the gravity feed screen, which is an Oreflow HS 12/24-34 1.2 m wide by 2.4 m long step deck vibrating screen with an aperture size of 2.5 mm.

Oversize from this screen is combined with the Knelson concentrator tailings and flows back to the Ball Mill discharge hopper. The undersize Gravity screen slurry flows to a centrifugal concentrator to recover any coarse gold. The gravity concentrator is a XD30 Knelson Concentrator.

The collected concentrate is subjected to intensive cyanidation in a CS1000DM ConSep Acacia dissolution module to recover the gold. Pregnant solution from the intensive cyanidation process is pumped to the gold room for electrowinning.

17.1.1.4 Leaching and Adsorption

The leach and adsorption circuit consists of two 1,700 m³ leach tank and six 1,700 m³ CIL carbon adsorption tanks.

All tanks are mechanically agitated with dual, open, down-pumping agitator systems powered by 75 kW drives. Facilities are currently available to inject oxygen into Tanks 1, 2 and 3 with a high shear oxygen injector pump recirculating into Tank 1. Air sparging is available on Tank 4.

Leach Tank 1 is the initial oxygen addition point with oxygen supplied in the form of Liquid Oxygen (LOX) stored on site in a 50,000 L vacuum insulated storage vessel. Slurry dosed with cyanide is pumped from the trash screen underflow into the leach circuit. Cyanide strength in the first leach tank is monitored by Cynoprobe online cyanide analyser and adjusted automatically. Slurry flows from the leach tanks into the carbon adsorption circuit. Combined residence time of the circuit is nominally thirty-two hours.

Dissolved gold in the cyanide leach solution is recovered and concentrated by adsorption onto activated carbon in the adsorption tanks.

In the CIL tanks, the carbon is advanced counter-current to the slurry flow, with new and regenerated carbon added to the last tank and advanced to the first tank while the slurry flows from Tank 3 to Tank 8. Loaded carbon is periodically pumped from Adsorption Tank 3 to the gold room elution circuit for stripping of the gold.

The target pH in the leach circuit is 10.5, and the target cyanide concentration is up to 220 ppm. An on-line free cyanide analyser is used to control the cyanide addition into the leach feed hopper. Dissolved oxygen is measured manually through the circuit.

17.1.1.5 Carbon Stripping, Electrowinning, Refining, and Carbon Regeneration

Gold is recovered from the loaded carbon by two 2.5 t split Anglo American Research Limited (AARL) stripping circuits. Gold is deposited onto steel wool cathodes by the electrowinning cells. The cathodes are subsequently washed to remove the gold concentrate which is then dried and smelted in the gold room furnace to produce gold bullion for shipment.

The gold from the gravity circuit is leached in the Acacia reactor, and it is then electroplated by the Acacia electrowinning circuit onto stainless steel wool cathodes. The gold is recovered and smelted in a similar manner to the gold produced by the AARL elution circuit.

Barren carbon is reactivated using a liquified natural gas (LNG) fired ANSAC HK640LP horizontal kiln at around 700°C and is returned to the adsorption circuit for reuse.

17.1.1.6 Tailings Disposal

Slurry from the last CIL tank flows by gravity to the feed box of the tailings screen. The tailings screen is a Oreflow HS304801 3.0 m wide by 4.88 m long horizontal vibrating screen with an aperture size of 1.00 mm. The screen undersize flows by gravity the tailings pump hopper and is pumped through a polyethylene pipeline to the TSF.

The screen oversize (trash and carbon fines) is collected and stored in a self-draining carbon fines bin located at ground level.

17.1.1.7 Plant Services

All necessary plant services are available to support the operation of the Bluebird mill. Raw water is sourced from disused open pits to the Nnrth of the plant. Regular inflow into these pits from rain events provides an essentially permanent raw water supply.

Process water is stored for use in a 24,800 m³ process water dam. Process water is made up of raw water from the raw water storage pits, tailings return water and underground dewatering in the vicinity of the plant.

Potable water is sourced from a bore field approximately 7 km east of the plant. The water is treated at a small treatment plant and is utilised in the process plant, administration building, workshop, stores, main camp and mining offices.

High pressure air from the plant air compressors is provided at a nominal pressure of 650 kPa.

Power is generated on site with a hybrid 10.7 MW power station consisting of 7 CAT 3512H gas gensets, 2 dual fuel Cummins KTA50 gensets, along with 13.050 MW solar array and 4.959 MW Battery Energy Storage System (BESS).

17.1.2 Plant Performance

The Bluebird Mill has been operated by Westgold since 2015 with throughput v. recoveries from January 2022 shown in **Figure 17-2**.

Recoveries have ranged from 82.9% to 92.7% since January 2022, with the average recovery over that period of 89.4%. Plant recovery is dependent on the ore type being treated. Some of the Paddy's Flat ores are semi-refractory, with arsenopyrite effecting gold recovery. High As ores have low recoveries and months like Oct 2022 with higher percentages of these ores treated result in lower plant recoveries. More free milling ores like Bluebird underground when treated with higher amounts in the blend, improve the plant recovery as evidenced months May 2022, July 2023 and June 2024.

Throughput is generally higher when more softer oxide material is treated, although the plant handles harder underground ores easily. Low throughput around October 2023 was a result of a full reline on the SAG mill and rotation of one of the ball mill girth gears along with maintenance on the coarse ore stockpile reclaim feeders.

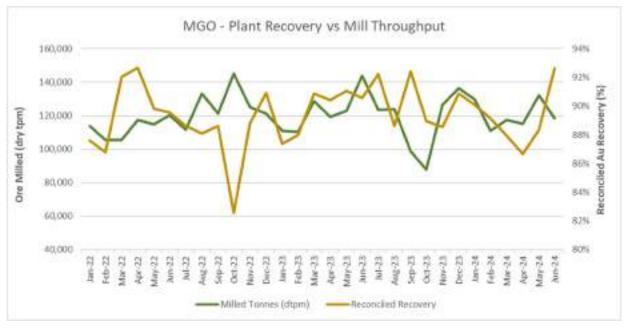


Figure 17-2 Bluebird process recoveries v. plant throughput - Source: Westgold.

Figure 17-3 shows the processing recoveries against the calculated / reconciled and assayed head grades, showing improved plant recovery with improved head grades from free milling Bluebird underground ore. Reconciled head grades have ranged between 1.99 g/t and 3.46 g/t averaging 2.56 g/t over the period. The tails grade during the same period has ranged from 0.21 g/t Au to 0.38 g/t Au, with an average tail grade of 0.27 g/t Au.

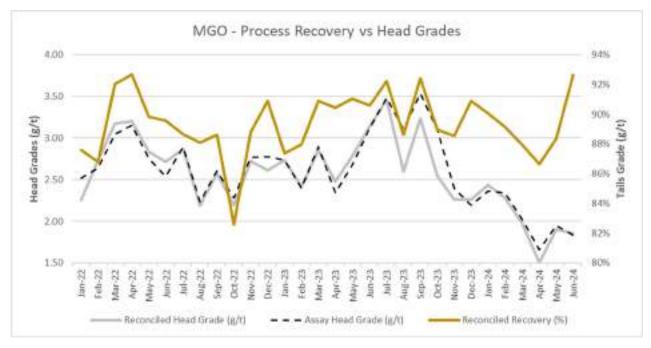


Figure 17-3 Bluebird process recoveries v. head grade - Source: Westgold.

18 PROJECT INFRASTRUCTURE

18.1 BLUEBIRD MILL

MGO is a well-established mine which has services and infrastructure consistent with an isolated area operating mine.

Infrastructure specific and available to the Bluebird mill includes:

- 1.8 Mtpa processing plant and supporting infrastructure;
- A hybrid power stations;
- Medical facilities;
- A 400 room accommodation village;
- Administration blocks and training buildings;
- Fuel storage and dispensing facilities;
- Waste water treatment plants; and
- Water storage and distribution facilities;

18.1.1 Utilities

Power is generated on site with a hybrid 10.7 MW power station consisting of 7 CAT 3512H gas gensets, 2 dual fuel Cummins KTA50 gensets, along with 13.05 MW solar array and 4.959 MW Battery Energy Storage System (BESS). The site has a 365 kl gas storage tank and a smaller 15 kL diesel storage. Supply is reticulated to all the site buildings, services, camp, Bluebird underground mine and the processing plant.

Figure 18-1 Bluebird solar farm - Source: Westgold.

18.1.2 Disposal and Drainage

Domestic and industrial waste is disposed of by burial in designated licensed landfills situated on the Surprise, South Junction, Romsey, Mickey Doolan and Aladdin waste rock dumps, as well as at the Reedy ROM Pad. MGO employs best practices such as burial and consistent soil cover for landfilled waste materials. Additionally, measures are implemented to control windblown waste escape from the landfill.

Sewage generated from the camp, administration building, and processing plant undergoes treatment at a dedicated wastewater treatment plant. Used oil, grease, and lubricants are collected from site and removed for proper recycling or disposal at licensed facilities. On-site storage of used oil adheres to all relevant regulations, and any oil-contaminated soil is treated using existing bioremediation facilities.

18.1.3 Buildings and Facilities

All infrastructure required for mineral processing is in place and operational, including offices, workshops, first aid/emergency response facilities, stores, water and power supply, ROM pad and site roads.

Figure 18-2 Bluebird heavy vehicle workshop - Source: Westgold.

Figure 18-3 Bluebird light vehicle workshops - Source: Westgold.

Figure 18-4 Bluebird mill, workshop, store and administration complex - Source: Westgold.

MGO operates primarily as a FIFO operation and maintains a camp on site for employees and contractors. A small number of employees drive in / out from regional centres such as Geraldton.

The Bluebird camp has a room capacity for 400 persons, and contains wet and dry mess facilities, a recreational gymnasium, terrestrial and satellite TV in room entertainment, WiFi connectivity and an entertainment room.

18.1.4 Communications

The mine site has a communication network of landline and limited mobile coverage within the administration, camp and mill areas, and licensed UHF radio system within the main mining areas. Outside these areas, communication is by means of mobile, radio or satellite phone only.

18.1.5 Tailings Storage

MGO has a number of approved sites for the deposition of tailings, with the Bluebird East in-pit TSF (BETSF) currently in use. BETSF is 500 m east of the Bluebird Processing plant on the other side of the Great Northern Highway. There is approximately 9 months life left until the approved capacity is reached. Bluebird East open pit is part of a larger excavation with a second open pit, Great Northern Highway (GNH) next to it. Approval and design are in progress for a combined TSF fully utilising both these open pits. This would provide greater than 15 years tailings disposal capacity.

The Surprise open pit, 1.0 km to the north of the processing plant has been approved for tailings disposal and has capacity for around 4.0 years.

19 MARKET STUDIES AND CONTRACTS

19.1 GOLD MARKET STUDIES

The following discussion of gold markets is provided as background to cut-off grade calculations used in this Technical Report and is derived from Devlin et. al., 2024.

As shown in **Table 19-1**, mined gold production totalled 3,625 t in 2022, up from 3,576 t in 2021. Net producer de-hedging of -13 t, plus recycled gold of 1,140 t in 2022, brought the total gold supply to 4,752 t, 45 t higher than 2021. For the YTD Q3 2023 period, total gold supply was estimated to be 3,692 t, 164 t higher than the same period in 2022.

The demand side totalled 4,752 t of gold in 2022. Jewellery, fabrication and technology applications, totalled 2,195 t of demand, while investment, central banks and other institutions net purchases made up the balance of demand. Through the first three quarters of 2023, total gold demand was estimated to be 3,69 t, 101 t higher than the same period in 2022.

	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	YTD Q3 2023
Supply											
Mine production	3,167	3,270	3,361	3,515	3,576	3,656	3,596	3,482	3,576	3,625	2,744
Net producer hedging	-28	105	13	38	-26	-12	6	-39	-5	-13	25
Recycled gold	1,195	1,130	1,067	1,232	1,112	1,132	1,276	1,293	1,136	1,140	924
Total Supply	4,334	4,505	4,441	4,785	4,663	4,776	4,878	4,736	4,707	4,752	3,692
Demand											
Jewellery Fabrication	2,735	2,544	2,479	2,019	2,257	2,290	2,152	1,324	2,230	2,195	1,583
Technology	356	348	332	323	333	335	326	303	330	309	216
Investment	800	904	967	1,616	1,315	1,161	1,275	1,794	991	1,113	687
Central banks & other inst.	629	601	580	395	379	656	605	255	450	1,082	800
OTC and other	-186	107	83	432	379	334	520	1,060	706	53	407
Total demand	4,334	4,505	4,441	4,785	4,663	4,776	4,878	4,736	4,707	4,752	3,692
LBMA Gold Price (US\$/oz)	1,411	1,266	1,160	1,251	1,257	1,268	1,393	1,770	1,799	1,800	1,931

Figure 19-1 shows the monthly average price history for gold over the period December 2018 through November 2023. The price generally trended upward over the selected period from a month-average low of US\$1,279/oz at the beginning of the period to a high of US\$1,990/oz in May 2023, ending the selected period at US\$1,985/oz. Over the period 2024 to 2026, consensus annual gold price estimates range from an average annual price of US\$1,921/oz in 2024, US\$1,898/oz in 2025 and US\$1,835/oz in 2026.

The forecast for periods shown in **Figure 19-1** from December 2023 out to 2026 is from data compiled by S&P Capital IQ and is based on averages from a survey of 31 analysts for FY 2024, 27 analysts for FY 2025 and 20 analysts for FY 2026.

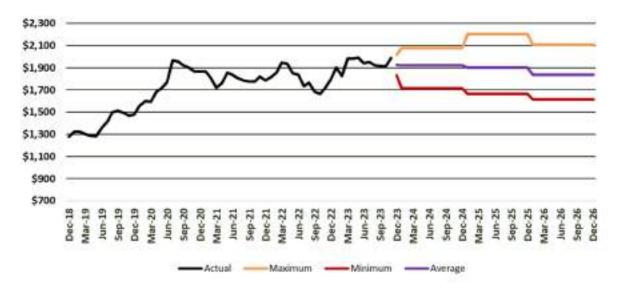


Figure 19-1 Gold price history and consensus forecast - Source: S&P Capital IQ.

19.2 CONTRACTS

Westgold conducts all primary mining in-house, via its wholly owned Westgold Mining Services subsidiary. Some specialist mining activities are contracted out where required.

Material contracts relate to haulage of material from the mine to processing facilities, the supply of fuel and electricity for the purposes of mining activities, and the contract for the refining of gold doré produced from Westgold's gold processing facilities. The terms of these contracts are within industry norms.

20 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT

The Meekatharra Gold Operations (MGO) is a multi-deposit operating mine with an operating gold mill (Bluebird) that is in possession of all required permits. Environmental permitting and compliance requirements for mining and processing are the responsibility of Westgold. MGO covers over 732 km² and has a significant disturbance footprint including tailings storage facilities, an operating mill, open pits, underground mines, accommodation village, office and workshop complexes and haul roads.

20.1 MEEKATHARRA GOLD OPERATIONS

20.1.1 Environmental Approvals

Mining Act 1978

MGO's mining and processing activities are undertaken within Western Australia's regulatory framework established by the Mining Act 1978 (Mining Act). This framework ensures responsible mining practices and environmental protection throughout the entire mine life cycle. A critical component of this framework is the Mining Lease, which grants MGO the exclusive right to extract minerals from a defined area.

To ensure comprehensive planning and responsible mine closure, the Mining Act requires the submission of a detailed Mining Proposal (MP). The MP outlines the project in detail, including the proposed mining methods, environmental management strategies, and social impact assessments. It also incorporates a Mine Closure Plan (MCP) that details the steps for post-mining rehabilitation to ensure the site's long-term stability and safety.

The Government of Western Australia; Department of Energy, Mines, Industry Regulation and Safety (DEMIRS) administers this process. DEMIRS reviews both the MP and MCP to ensure alignment with the Mining Act and relevant environmental regulations. Once approved, these documents become the guiding principles for MGO's mining operations. A list of the MP and MCP documents that have been approved for MGO are listed as follows:

- Yaloginda Project (Reg ID: 117227): Mining Proposal and Mine Closure Plan.
- Nannine Project (Reg ID: 97574): Mining Proposal and Mine Closure Plan.
- Paddy's Flat Project (Reg ID: 71857): Mine Closure Plan.
- Paddy's Flat Project (Reg ID's: 100222, 83802, 82595, 80513, 71286, 70868, 70420, 57927 and 54830): Mining Proposals
- Paddy's Flat Project (Reg ID: 71857): Mine Closure Plan
- Reedy Project (Reg ID: 123097): Mining Proposal and Mine Closure Plan.

Environmental Protection Act 1986

To facilitate the operation of MGO's mining and processing activities, DEMIRS has granted clearing permits for the removal of native vegetation in accordance with the Environmental Protection Act 1986 (EP Act).

- CPS 6615/2, granted on 08 August 2015 and valid until 31 July 2025, permits the clearing of up to 50 hectares (ha) at the Reedy South Emu mining area.
- CPS 6832/4, granted on 22 January 2016 and valid until 22 January 2026, permits the clearing of up to 12 ha at the Nannine – Lake Annean mining area.
- CPS 9070/2, granted on 26 December 2020 and valid until 25 December 2025, permits the clearing of up to 1581.75 ha at the Nannine mining area.
- CPS 9390/1, granted on 28 October 2021 and valid until 27 October 2026, permits the clearing of up to 450 ha at the Albury Heath mining area.
- CPS 9573/1, granted on 16 April 2022 and valid until 15 April 2027, permits the clearing of up to 30 ha at the Reedy Boomerang mining area.

The EP Act further regulates certain industrial facilities, designated as "prescribed premises," which require a licence for operation. The Department of Water and Environmental Regulation (DWER), under the authority of the EP Act, has issued Prescribed Premises Licence (L4496/1988/11) to support MGO's ongoing operations. The approved licence categories for the MGO are as follows:

- Cat 5: Processing or Beneficiation of Ore (2,500,000 tonnes per annual period)
- Cat 6: Mine Dewatering (5,953,000 tonnes per annual period)
- Cat 52: Electric Power Generation (21 MW in aggregate)
- Cat 54: Sewage Facility (150 cubic metres per day)
- Cat 63: Class II Inert Landfill Site (3,000 tonnes per annual period)
- Cat 64: Class II Putrescible Landfill Site (1,000 tonnes per annual period)
- Cat 84: Electric Power Generation (15.2 MW in aggregate)

Rights in Water and Irrigation Act 1914

In Western Australia, the Rights in Water and Irrigation Act 1914 governs activities such as constructing bores, extracting surface and groundwater, and undertaking works that may impact watercourses. However, a collaborative agreement exists between the DEMIRS and DWER. This agreement streamlines the permitting process for certain mining activities. While these activities may be exempt from formal DWER approval, they are still subject to oversight through a mining proposal approved by DEMIRS (DMIRS and DWER, 2021).

Westgold maintains a compliant water management strategy, evidenced by the possession of four current water licenses: GWL 156252(13), GWL 205844 (1), GWL 207249 (1) and GWL 207576 (1). These licenses authorise a combined withdrawal of 11,900,000 kilolitres for water supply.

Key licences and approvals for the operation of mining and processing activities at MGO are listed in **Table 20-1**.

Table 20-1 Licenses and Approvals.

Reference	Approval	Issuer	Date Commenced	Expiry Date	Project
CPS 6615/2	Clearing Permit for Native Vegetation (up to 50 hectares) for Mineral Production	DEMIRS	08/08/2015	31/07/2025	Reedy – South Emu
CPS 6832/4	Clearing Permit for Native Vegetation (up to 12 hectares) for Mineral Exploration and Pipeline	DEMIRS	22/01/2016	22/01/2026	Nannine – Lake Annean
CPS 9070/2	Clearing Permit for Native Vegetation (up to 1,581.75 hectares) for Mineral Production and Associated Activities	DEMIRS	26/12/2020	25/12/2025	Nannine
CPS 9390/1	Clearing Permit for Native Vegetation (up to 450 hectares) for Mineral Production and Associated Activities	DEMIRS	28/10/2021	27/10/2026	Albury Heath
CPS 9573/1	Clearing Permit for Native Vegetation (up to 30 hectares) for Dewatering Pipeline	DEMIRS	16/04/2022	15/04/2027	Reedy - Boomerang
L4496/1988/11	Prescribed Premises Licence for: - Cat 5: Processing or beneficiation of metallic or non-metallic ore (2,500,000 tonnes per annual period) Cat 6: Mine dewatering (5,953,000 tonnes per annual period) Cat 52: Electric power generation (21 MW in aggregate) Cat 54: Sewage facility (150 cubic metres per day) Cat 63: Class I inert landfill site (3,000 tonnes per annual period) Cat 64: Class II putrescible landfill site (1,000 tonnes per annual period) Cat 84: Electric power generation (15.2 MW in aggregate)	DWER	01/10/2013	30/09/2033	Yaloginda, Paddy's Flat, Nannine, Reedy
GWL 156252(13)	Water Abstraction Licence for the abstraction of up to 6,250,000 kL per annual period	DWER	16/01/2020	30/10/2025	Yaloginda, Paddy's Flat, Nannine, Reedy

Reference	Approval	Issuer	Date Commenced	Expiry Date	Project
GWL 205844 (1)	Water Abstraction Licence for the abstraction of up to 400,000 kL per annual period	DWER	06/05/2021	05/05/2031	Nannine
GWL 207249 (1)	Water Abstraction Licence for the abstraction of up to 2,450,000 kL per annual period	DWER	20/04/2022	30/10/2025	Paddy's Flat
GWL 207576 (1)	Water Abstraction Licence for the abstraction of up to 2,800,000 kL per annual period	DWER	12/07/2022	30/10/2025	Nannine – Baileys Island

Proposals with the potential for significant environmental impact fall under Part IV of the EP Act. Although the EP Act itself does not provide a specific definition of "significant impact," the Environmental Impact Assessment (Part IV Divisions 1 and 2) Administrative Procedures 2012 offer detailed criteria. MGO does not trigger any requirements for a separate assessment under Part IV of the EP Act.

20.1.2 Required Permits and Status for Future Mining

MGO's mining strategy has utilised both underground and open-pit methodologies. Currently authorised underground mining operations include the Bluebird, South Junction, Nannine Reef, Vivian/Consols-Prohibition, South Emu, Rand, Boomerang, Triton and Turn of the Tide pits. Open pits have been established across all project areas. Construction of the Three Sisters, Nannine Reef, Caledonian Splay, Golden Shamrock extension, Aladdin extension and Caledonian Extension pits have been approved, but these remain undeveloped.

The dewatering of both underground and open-pit mines is permitted, with designated discharge locations. Abstraction from the Yaloginda and Paddy's Flat projects is approved for discharge into a series of existing open pits, while abstraction from Nannine is discharged at Lake Annean, and abstraction from Reedy is discharged to an ephemeral creek line.

The Bluebird Processing Facility is capable of handling 2.5 million tonnes of ore annually. Water for the processing comes from a network of open pits in the Yaloginda area, with a bore field guaranteeing a sustainable water supply in the long term. To extend operations for an additional 15 years, studies are underway to expand the TSF capacity. An application for this expansion, called the Bluebird East/Great Northern Highway In-Pit TSF, is planned for submission in 2024. Currently, approved TSF capacity is sufficient for the next 5 years, utilising the Bluebird East (first stage) and Surprise pit voids.

Furthermore, studies are being conducted to support the construction of a paste plant at the Bluebird mine to facilitate underground mining operations. To progress with this project, an application to amend the Mining Proposal and obtain Works Approval will be submitted to the relevant regulatory bodies in 2024.

20.1.3 Environmental Compliance

Westgold maintains a detailed Environmental Management Plan that includes site specific processes and procedures. The site has a detailed record of the applicable legislation and legal requirements as well as various management and monitoring programs required to ensure compliance with legal and legislative requirements.

20.1.4 Environmental Studies

Flora, Vegetation and Fauna

Biodiversity assessments have been conducted across all four project areas within MGO. These assessments aimed to characterise the flora and fauna within the designated disturbance envelopes, with a particular focus on threatened and conservation-significant species.

A review confirmed the absence of World Heritage Properties, Nationally Important Wetlands (excluding Lake Annean), Marine Parks, or Commonwealth Marine Areas within the project areas. The assessments revealed that all mining areas support assemblages of flora and fauna typical of the Murchison bioregion. However, all areas also exhibited evidence of historical mining activity, indicating some degree of ecological disturbance. Importantly, no priority or threatened ecological communities were identified within the disturbance footprints.

Targeted surveys at each project area revealed the following:

- Nannine: Field surveys documented five conservation-significant fauna species, including the Priority 1 listed Meekatharra Slider (*Lerista eupoda*).
 Additionally, a potential new flora species of *Tecticornia* was identified, requiring strict adherence to clearing permit conditions during any development activities.
- Paddy's Flat: No Threatened Flora were documented. One Priority 3 flora species (*Calytrix verruculosa*) was identified. No fauna of conservation significance was encountered during field surveys.
- Reedy: No Threatened Flora were recorded. Surveys identified one Priority 3
 flora species (*Ptilotus beardii*). The ephemeral wetland habitat located centrally
 within the project area may hold local significance for some fauna species,
 although no conservation-significant fauna was observed.
- Yaloginda: The potential occurrence of one Priority 1 flora species (*Eremophila retropila*) has been identified. No conservation-significant fauna was recorded.

The flora, vegetation and fauna communities identified within the MGO project areas are characteristic of the Murchison bioregion and are not considered unique or isolated ecosystems. While some conservation-significant species were documented, the project is not expected to have a significant impact on their local or regional populations due to the widespread distribution of these species and the presence of suitable habitat outside the project footprint.

When considering the broader ecological context, the biodiversity assessments suggest that mining activities are unlikely to have significant impacts on the overall environmental health of the project areas. Several factors contribute to this outlook. Firstly, the surrounding landscapes offer similar habitat for the flora and fauna identified within the mining area. Secondly, some Project areas already exhibit signs of past ecological disturbance due to historical mining activities.

Soils

The Yaloginda region is characterised by a predominance of shallow, infertile loams with a scarcity of organic matter. These predominantly sandy soils are underlain by a ubiquitous red brown siliceous hardpan, a testament to the region's extensive weathering history. This prolonged weathering event, likely occurring during the Tertiary period, is responsible for the leaching of vital nutrients from the soil profile and the subsequent formation of the hardpan layer. The arid climatic conditions further restrict soil development by limiting moisture availability and hindering the formation of organic matter. These factors combine to create a challenging environment for plant growth and introduce significant hurdles for land rehabilitation efforts.

Reedy and Paddy's Flat exhibit comparable soil profiles to Yaloginda, with both areas dominated by shallow, sandy loams with low organic content and a similar underlying hardpan. Soil textures at Nannine, however, can range considerably, with some areas exhibiting higher clay content than those typically observed in Yaloginda. This variation in texture can significantly impact drainage patterns and influence the success of rehabilitation.

Nannine's drainage and soil pH profiles are also more varied compared to Yaloginda. Salinity levels within Nannine demonstrate significant spatial variation, with certain pockets reaching extremely saline states. These saline areas pose specific challenges for plant re-establishment as they can restrict the availability of freshwater to plant roots. Sodic soils pose a distinct challenge due to their inherent susceptibility to dispersion, hardsetting, and erosion if left undisturbed on the surface during rehabilitation. Dispersion can lead to the breakdown of soil aggregates, reducing soil stability and hindering plant growth. Hardsetting can create a compacted layer that impedes water infiltration and root penetration. Erosion can remove valuable topsoil, further limiting the potential for successful rehabilitation.

The shallow depth, inherent infertility, and presence of a hardpan layer present significant impediments to successful land rehabilitation throughout MGO. The observed variations within Nannine, particularly the presence of sodic soils and variations in texture, drainage, salinity, and pH, necessitate a more precise approach to rehabilitation planning.

Hydrology

The MGO projects are situated within local catchments that eventually drains into an ephemeral lake; Lake Annean. The catchments themselves are characterised by low-lying plains with occasional drainage channels. Notably, Paddy's Flat functions as a local topographic divide.

Rainfall events in these arid regions generate temporary surface water flows. While these ephemeral water bodies, including Lake Annean, are typically dry for most of the year, they can retain water for several months following significant precipitation events. Salinity levels exhibit significant spatial variation, with some areas, such as those surrounding Nannine's Aladdin discharge point, demonstrating hypersaline conditions exceeding 146,000 mg/L TDS.

Historic mining activities have already impacted the natural drainage patterns in most of these areas. Additionally, existing pit voids can act as repositories for groundwater. To effectively manage surface water, pit bunds and levees have been constructed around mine pits to prevent flooding. In certain cases, existing pits are utilised for controlled floodwater storage, thereby minimising environmental impacts on surrounding areas.

Given the aridity of the environment and the potential for flooding after heavy rainfall events, surface water management practices are carefully considered. The primary strategies focus on minimising disruptions to natural drainage patterns and mitigating potential flood risks.

Hydrogeology

Groundwater depth varies, ranging from shallow (5 metres) to deeper zones (over 45 metres). The regional flow typically heads south towards ephemeral lakes, including Lake Annean. Salinity levels are highly variable, with some areas boasting fresh groundwater (less than 10,000 mg/L TDS) while others reach hypersaline conditions (over 145,000 mg/L TDS). Generally, salinity increases with depth. Fractured rock aquifers within greenstone belts and occasional alluvial deposits are the main sources of groundwater. Banded iron formations (BIF) can act as channels for water flow in some areas.

Mining operations require dewatering to control pit water levels. Existing pits are often used for controlled storage of dewatered water. Dewatered water disposal options include on-site storage, controlled discharge to designated areas for evaporation, or, with proper permitting, discharge to nearby water bodies (e.g., Lake Annean).

There are no known groundwater-dependent ecosystems (GDEs) near the projects that could be affected by dewatering activities. Assessment of each project area reveals the following:

- Reedy: Existing pits act as groundwater sinks, influencing local water tables. The
 project utilises dewatering and has licences for water discharge and groundwater
 extraction.
- Yaloginda: Aquifers are typically brackish and uneven. The project uses water from existing pits and a bore field.

- Paddy's Flat: Groundwater resources are limited. The main aquifer is associated with BIF and chert.
- Nanine: Groundwater is brackish to hypersaline. Existing pits act as groundwater sinks. Dewatering involves inter-pit transfer or controlled discharge to Lake Annean. The low permeability of aquifers and proximity to the lake limit the impact on surrounding areas.

A critical aspect of groundwater management in the Meekatharra region is the recognition of its inherently limited availability. Potential environmental receptors are identified prior to the commencement of mining operations, and ongoing monitoring programs are undertaken to assess potential impacts on groundwater quality and levels. Yaloginda contains potable groundwater resources in the form of production bores, while Reedy and Nannine groundwater sources are not considered to have any beneficial uses for potential livestock watering.

20.1.5 Mine Rehabilitation and Closure

The MGO tenements are subject to the *Mining Rehabilitation Fund Act 2012* (MRF Act). A 1% levy is paid annually by tenement, and the pooled funds are utilised by DEMIRS to rehabilitate abandoned mine sites in Western Australia. As required, Westgold contributes an annual levy of approximately A\$337,000 to the MRF. The most recent payment covered the period ending June 2024, and the next contribution is due in July 2025.

Westgold recently reviewed and updated its closure cost model for MGO. The estimated closure cost for the MGO tenements is approximately A\$31.5 million.

As mandated by the Mining Act, Westgold, as the current tenement holder, is responsible for the rehabilitation and closure of any areas disturbed by its mining operations. As a result, rehabilitation efforts are actively incorporated throughout the mining process. As mining progresses in specific areas, Westgold works concurrently to restore the land. Westgold also prioritises the rehabilitation of the mining areas that were disturbed before its acquisition, addressing any environmental issues arising to remediate legacy landforms.

20.1.6 Aboriginal Heritage Act 1972

There are a number of Aboriginal sites within the MGO tenements, as documented in the Government of Western Australia's Aboriginal Heritage Inquiry System (AHIS). The Department of Planning, Lands and Heritage (DPLH) preserves all Aboriginal sites in Western Australia, whether or not they are registered. Aboriginal sites may exist that are not recorded on the register.

Various ethnographic and archaeological surveys have been undertaken over the MGO tenements. No sites of ethnographic or archaeological significance were recorded that would impact on the operation of the Bluebird Mill.

There are a number of registered Aboriginal Sites within the MGO tenements, however no current or planned activities relating to the operation of the existing underground mines and Bluebird Mill require disturbance of these Aboriginal Sites. Registered

Heritage Sites or Potential Heritage Sites in close proximity to Project areas have been demarcated, adequately signed and removed from any mining activities use.

20.1.7 Social and Community

The Meekatharra region has a substantial history of exploration and mining. Gold has been mined from Paddy's Flat since the late 1800's, with extensive high grade underground mining from the early 1900's until the 1930's. Large-scale mining in the region began again in the late 1970's and has continued until the present with several minor pauses. Westgold has continually mined the MGO project since 2015.

Meekatharra, has a population of 849 (2021 Census), and is located 15 km north-northeast of the Bluebird mill. Meekatharra is serviced by several general stores, several service station, several hotels, a caravan park, a hospital, a Mine Warden's office and a Flaying Doctor base. Transport links between Meekatharra and Perth are predominantly via the Great Northern Highway, although charter flights service the Meekatharra airport, and commercial flight options are available in the nearby towns of Wiluna (183 km east) and Mouth Magnet (195 km south-southwest).

Geraldton, the primary regional centre with a population of 38,634 (2021 Census), is located 520 km via road, to the west-southwest of MGO. Geraldton is the regional centre for the Mid-West and is a regional hub for transport, communications, commercial activities and community facilities. Geraldton is also the nearest port.

The current workforce at MGO (Westgold employees and contractors) comprises 265 personnel. All are accommodated on site during their rostered-on periods. Most workers permanently reside in Perth and FIFO from Perth to MGO on either a 4 days-on / 3 days-off, 8 days-on / 6 days-off or 14 days-on / 7 days-off rotation. The FIFO workers are supplemented by workers who reside in regional towns such as Geraldton.

The FIFO workforce arrives at the Meekatharra airport via Westgold chartered flights four days a week, to the state capital of Perth. Perth is a major centre with a population in excess of 2 million and an international airport.

21 CAPITAL AND OPERATING COSTS

Capital and operating costs are derived from current site costs, in addition to recent supplier quotations. As such, these costs are well understood and allow enough detail for Mineral Reserves to be declared.

Westgold apportions their group costs against each region. This is done by pooling the total costs and proportioning them according to the proposed ounce profile within the mine plan. The group costs are constantly reviewed and updated as part of the Westgold forecasting and budgeting processes to ensure these costs are aligned to the actuals determined from site.

21.1 MEEKATHARRA

21.1.1 Meekatharra Complex

21.1.1.1 Capital Costs

The wider Meekatharra Complex consumes specific processing and mining upfront and sustaining capital costs. Major capital specific to the mines will be attributed to those mines whereas costs associated outside of those mines will sit within the complex costs.

Table 21-1 Meekatharra Complex capital costs.

Capital	Units	Total	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
Costs			1	2	3	4	5	6	7	8	9	10
Processing	\$A M	143.9	23.9	0.0	5.0	60.0	5.0	30.0	0.0	0.0	5.0	15.0
Capital												
Processing	\$A M	29.3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.3
Sustain												

21.1.1.2 Operating Costs

Operating costs associated to the Meekatharra complex include the following:

- Processing.
 - o Additives.
 - o Power.
 - Additional variables.
- Site administration.
 - o Insurance.
 - Information technology.
 - o Compliance.
 - Occupational Health and Safety.
 - o Environment.
 - o Stores.
 - o Corporate allocations.
- Other (consumables, unbudgeted costs).
- Exploration.
 - Tenement.
 - Salaries and travel.
 - Exploration (Westgold exploration).
 - Other (consumables, unbudgeted costs).

As such the operating costs for the complex are as set out below.

Table 21-2 Meekatharra Complex operating costs.

Operating Costs	Units	Total	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
Operating Costs			1	2	3	4	5	6	7	8	9	10
Processing	\$A M	593.0	59.2	57.6	58.0	58.0	59.6	59.6	61.0	61.0	61.0	58.1
Site Administration	\$A M	232.8	30.1	27.9	27.9	27.9	27.9	27.9	27.9	12.8	12.8	9.6
Exploration	\$A M	73.9	10.5	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	5.4

21.2 PADDY'S FLAT

21.2.1 Paddy's Flat

21.2.1.1 Capital Costs

As an operating mine, most major infrastructure capital is already in place at Paddy's Flat. The operation intends to primarily incur sustaining capital costs as the planned production rates are achieved with the infrastructure networks that are already in place. New heavy vehicle equipment purchases already made in 2022, along with existing heavy vehicles, are expected to last the life of the Mineral Reserves schedule.

The sustaining capital expenditure is allocated for ongoing capital development, mining equipment costs (rebuilds and major overhauls), and other underground infrastructure refurbishment. Sustaining capital requirements also include extensions to the ventilation, pumping and electrical networks that follow capital decline development as the mine goes deeper. This includes an allowance for sustaining costs associated with ongoing processing plant infrastructure maintenance. The sustaining capital costs per annum are detailed below.

Table 21-3 Paddy's Flat capital costs.

Capital Costs	Units	Total	Year 1	Year 2	Year 3
	\$A M	32.6	6.8	12.9	12.9

21.2.1.2 Operating Costs

As an established operation, Paddy's Flat has a good understanding of its costs and has a functioning cost management system. Operating cost inputs are based on site actual costs, this is inclusive of the following cost profiles:

- Mine development (operating only).
- Mine production.
- Surface haulage.
- Geology.
- Mine services (power, water, ventilation).
- Administration.

Table 21-4 Paddy's Flat operating costs.

Operating Costs	Units	Total	Year 1	Year 2	Year 3
Mining Operating	\$A M	126.0	25.5	50.3	50.3
Processing	\$A M	20.6	4.2	8.2	8.2
Overhead	\$A M	10.5	2.1	4.2	4.2
Royalties	\$A M	10.9	2.2	4.4	4.4

21.2.1.3 Closure

Paddy's Flat is within close vicinity of the Meekatharra area; closure costs are covered as part of the wider Meekatharra closure liabilities.

The closure liability estimate for the Paddy's Flat mine site indicates that waste rock dumps will be the most expensive features to reclaim. These stockpiles, with a rehabilitation requirement encompassing over 140 ha combined, are projected to cost more than \$4 million to remediate. Transport corridors are another significant cost contributor at over \$700,000 for their 58 ha. The entire Paddy's Flat site, including these features, is expected to cost \$6 million to rehabilitate.

Tailings storage facilities, while present at the site, are classified with minimal closure liability. Exploration disturbances and diversion channels are also expected to have minimal impact on closure costs.

21.3 YALOGINDA

21.3.1 Bluebird Group

21.3.1.1 Capital Costs

As an operating mine, most major infrastructure capital is already in place at Bluebird. The operation intends to primarily incur sustaining capital costs as the planned production rates are achieved with the infrastructure networks that are already in place. New heavy vehicle equipment purchases already made in 2022, along with existing heavy vehicles, are expected to last the life of the Mineral Reserves schedule.

The sustaining capital expenditure is allocated for ongoing capital development, mining equipment costs (rebuilds and major overhauls), and other underground infrastructure refurbishment. Sustaining capital requirements also include extensions to the ventilation, pumping and electrical networks that follow capital decline development as the mine goes deeper. This includes an allowance for sustaining costs associated with ongoing processing plant infrastructure maintenance. The sustaining capital costs per annum are detailed below.

Table 21-5 Bluebird capital costs.

Capital Coata	Units	Units Total		Year 2	Year 3
Capital Costs	\$A M	120.0	40.3	40.3	39.4

21.3.1.2 Operating Costs

As an established operation, Bluebird has a good understanding of its costs and has a functioning cost management system. Operating cost inputs are based on site actual costs, this is inclusive of the following cost profiles:

- Mine development (operating only).
- Mine production.
- Surface haulage.
- Geology.
- Mine services (power, water, ventilation).
- Administration.

Table 21-6 Bluebird operating costs.

Operating Costs	Units	Total	Year 1	Year 2	Year 3
Mining Operating	\$A M	278.9	92.6	91.7	94.6
Processing	\$A M	134.8	44.4	43.4	46.9
Overhead	\$A M	68.5	22.6	22.1	23.9
Royalties	\$A M	38.8	12.8	12.6	13.4

21.3.1.3 Closure

Bluebird is within close vicinity of the Meekatharra area; closure costs are covered as part of the wider Meekatharra closure liabilities.

The rehabilitation cost of areas requiring restoration at Yaloginda is estimated to total \$10.2 million. TSF's, transportation corridors, and waste rock dumps are identified as the primary cost drivers due to their extensive footprints (exceeding 200 ha collectively) and more complex rehabilitation methods necessary to guarantee postmining environmental stability. Remediation of these features is projected to incur a cost of more than \$6.5 million.

While occupying a comparatively smaller surface area (approximately 10 hectares), buildings and camps also contribute significantly to the overall closure liability, with anticipated expenses approaching \$1 million. In contrast, the impact on closure costs is negligible for features such as exploration disturbances, freshwater and saline water storage dams, and mining voids. Each of these areas is expected to generate closure costs under \$15,000.

The Bluebird Processing Facility and associated infrastructure is expected to cost up to \$1.2 million to rehabilitate.

21.4 NANNINE

21.4.1 Aladdin

21.4.1.1 Capital Costs

Aladdin is a relatively small open pit within minor capital only for set up. Much of the capital infrastructure is already owned by Westgold and can be moved into place without major capital expense.

Table 21-7 Aladdin capital costs.

Capital Costs	Units	Total	Year 1	Year 2	
	\$A M	0.6	0.6	0.0	

21.4.1.2 Operating Costs

Westgold has a previously established open pit (contract mining) operations throughout the Murchison therefore has a good understanding of its costs and has a functioning cost management system.

Table 21-8 Aladdin operating costs.

Operating Costs	Units	Total	Year 1	Year 2
Mining Operating	\$A M	21.3	3.1	18.1
Processing	\$A M	9.2	0.0	9.2
Overhead	\$A M	4.8	0.0	4.8
Royalties	\$A M	1.4	0.0	1.4

21.4.1.3 Closure

Aladdin closure costs are consumed within the wider Meekatharra area cost profile.

The primary financial considerations for rehabilitation efforts at Nannine will be transport corridors and waste dumps. These features collectively encompass over 85 ha and are projected to incur closure costs exceeding \$1.3 million. Waste dumps (exceeding 17 ha) are a dominant factor due to refined methods required to guarantee long-term environmental stability following mine closure. Transport corridors, with their substantial footprint (nearly 68 ha), are another significant contributor to closure liabilities.

21.5 REEDY'S

21.5.1 Triton - South Emu

21.5.1.1 Capital Costs

As an operating mine, most major infrastructure capital is already in place at Triton - South Emu. The operation intends to primarily incur sustaining capital costs as the planned production rates are achieved with the infrastructure networks that are already in place. New heavy vehicle equipment purchases already made in 2022, along with existing heavy vehicles, are expected to last the life of the Mineral Reserves schedule.

The sustaining capital expenditure is allocated for ongoing capital development, mining equipment costs (rebuilds and major overhauls), and other underground infrastructure refurbishment. Sustaining capital requirements also include extensions to the ventilation, pumping and electrical networks that follow capital decline development as the mine goes deeper. This includes an allowance for sustaining costs associated with ongoing processing plant infrastructure maintenance. The sustaining capital costs per annum are detailed below.

Table 21-9 Triton - South Emu capital costs.

Capital Costs	Units	Total	Year 1	Year 2	Year 3	Year 4
	\$A M	52.3	11.1	13.3	13.1	11.1

21.5.1.2 Operating Costs

As an established operation, Triton - South Emu has a good understanding of its costs and has a functioning cost management system. Operating cost inputs are based on site actual costs, this is inclusive of the following cost profiles:

- Mine development (operating only).
- Mine production.
- Surface haulage.
- Geology.
- Mine services (power, water, ventilation).
- Administration.

Table 21-10 Triton - South Emu operating costs.

Operating Costs	Units	Total	Year 1	Year 2	Year 3	Year 4
Mining Operating	\$A M	48.5	0.8	30.0	19.6	5.7
Processing	\$A M	45.0	11.4	11.2	11.0	11.4
Overhead	\$A M	22.9	5.8	5.7	5.6	5.8
Royalties	\$A M	18.9	4.8	4.7	4.6	4.8

21.5.1.3 Closure

Closure costs have been included in the wider Meekatharra cost profile.

The TSF, transportation infrastructure, and airstrip are the primary cost contributors for future rehabilitation at Reedy's. The TSF's (over 70 ha) are estimated to require nearly \$4 million for closure activities. Remediation of the transportation corridors (exceeding 120 ha) is projected to cost more than \$1.3 million. The Reedy's airstrip (over 33 ha) has an anticipated cost exceeding \$367,000.

These features collectively represent the most significant financial considerations for future closure activities at the Reedy mine site, to cost almost \$5.7 million of the combined \$6.5 million cost to close Reedy. Stockpiles, building sites, and workshops are expected to generate relatively modest closure costs (under \$100,000 each), while exploration disturbances and borrow pits are anticipated to have minimal impact on closure expenses.

21.6 STOCKPILES

21.6.1 Stockpiles

21.6.1.1 Capital Costs

There are no specific capital costs associated to stockpiles. All group costs proportioned to the stockpiles are considered operational.

21.6.1.2 Operating Costs

It is determined that all operational (mining, administration, contractor management) costs have been consumed as part of the mining process. The costs associated with the stockpiles shall only include the proportional group costs, haulage (where required), processing and royalties.

21.6.1.3 Closure

An allowance for rehibition of all stockpiles is included in the wider Meekatharra closure liabilities.

22 ECONOMIC ANALYSIS

22.1 CASH FLOW ANALYSIS

Westgold is using the provision for producing issuers, whereby producing issuers may exclude the information required under Item 22 for Technical Reports on properties currently in production and where no material production expansion is planned.

The Mineral Reserve declaration for the Meekatharra Gold Operations is supported by a positive cash flow.

22.2 COMMENTS ON SECTION 22

An economic analysis was performed in support of estimation of Mineral Reserves. This indicated a positive cash flow using the assumptions and parameters detailed in this Technical Report.

23 ADJACENT PROPERTIES

23.1 SIDE WELL GOLD PROJECT

Great Boulder Resources Limited (Great Boulder) owns the Side Well Project. The project is located to the east of MGO's Paddy's Flat project area.

The following information is taken from Great Boulder, 2024.

23.1.1 Side Well Gold Project Overview

The Side Well project covers a 28 km strike extent of prospective, under-explored greenstone stratigraphy at Meekatharra. Historically the area has received very little attention from exploration companies, partly because of an outdated view that gold at Meekatharra was mainly hosted in the banded iron formation (BIF) units on the western side of the greenstone belt, and also because a thin layer of alluvial sheet wash covers the central part of the project area. This alluvial material obscures underlying gold mineralisation from detection by surface geochemistry.

The Side Well Project is a group of 12 Prospecting Leases and 1 Exploration License covering more than 150 km² around the town of Meekatharra in the Murchison region. The project overlies the Meekatharra – Wydgee greenstone belt and includes upper greenschist-facies rocks of the Luke Creek and Mount Farmer groups. Within the project area lithologies comprised of ultramafics, basalts, Banded Iron Formation and felsic to intermediate volcaniclastics are folded into a large regional syncline known as the Pollele syncline. Alluvium and lacustrine clays overlie the area.

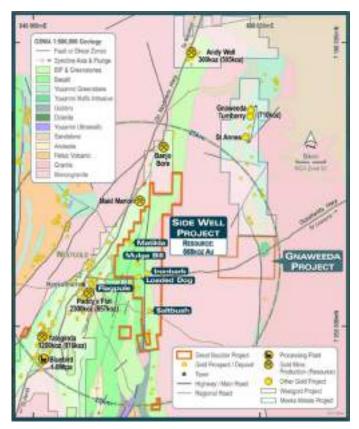


Figure 23-1 Side Well Project tenure - Source: Great Boulder, 2024.

23.1.2 Side Well Gold Project Geology

The regional aeromagnetic image clearly shows the iron-rich BIF and mafic units in red, striking northeast through Paddy's Flat before wrapping around the fold nose of the Polelle Syncline and then down the eastern side of Side Well. This stratigraphy includes the Matilda and Ironbark prospects. These magnetic units have traditionally been the main targets for gold exploration in the Meekatharra area.

In the core of the syncline a package of felsic and intermediate volcanics and volcaniclastics host the Mulga Bill – Loaded Dog trend, a 6 km-long zone of elevated gold and intense alteration with coincident pathfinder anomalism, chief of which is bismuth. Bismuth remains stable during weathering, and its correlation with gold at Mulga Bill makes it an ideal pathfinder for early-stage exploration. The Bi-Mo-Ag-Au-Cu association at Mulga Bill indicates a magmatic origin and, more specifically, an intermediate sulphidation epithermal system. There are no known direct analogues for this type of gold system in WA.

To the north of the syncline the magnetic image shows attenuation of the greenstone belt between two granite plutons. This deformation and a number of cross-cutting structures and smaller internal intrusive bodies provide a number of conceptual structural targets for gold mineralisation. Soil sampling and first-pass AC drilling in this area has generated a number of low-level multi-element anomalies, and these will be followed by with further drilling in the future.

The regional aeromagnetic image clearly shows the iron-rich BIF and mafic units in red, striking northeast through Paddy's Flat before wrapping around the fold nose of the Polelle Syncline and then down the eastern side of Side Well. This stratigraphy includes the Matilda and Ironbark prospects. These magnetic units have traditionally been the main targets for gold exploration in the Meekatharra area.

In the core of the syncline a package of felsic and intermediate volcanics and volcaniclastics host the Mulga Bill – Loaded Dog trend, a 6 km-long zone of elevated gold and intense alteration with coincident pathfinder anomalism, chief of which is bismuth. Bismuth remains stable during weathering, and its correlation with gold at Mulga Bill makes it an ideal pathfinder for early-stage exploration. The Bi-Mo-Ag-Au-Cu association at Mulga Bill indicates a magmatic origin and, more specifically, an intermediate sulphidation epithermal system. There are no known direct analogues for this type of gold system in Western Australia.

To the north of the syncline the magnetic image shows attenuation of the greenstone belt between two granite plutons. This deformation and a number of cross-cutting structures and smaller internal intrusive bodies provide a number of conceptual structural targets for gold mineralisation. Soil sampling and first-pass AC drilling in this area has generated a number of low-level multi-element anomalies, and these will be followed by with further drilling in the future.

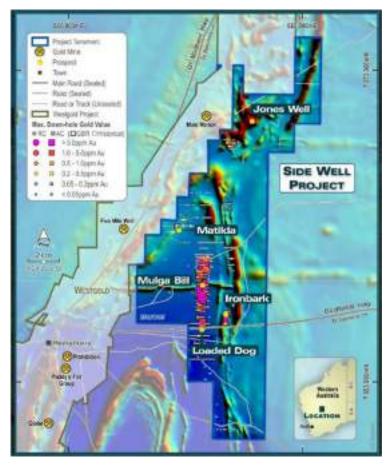


Figure 23-2 Side Well project regional aeromagnetic image - Source: Great Boulder (2024).

In February 2023 Great Boulder announced an Inferred Mineral Resource Estimate for the Mulga Bill and Ironbark deposits based upon all Diamond, RC and AC drilling completed over the past two years. The high-grade resource of 518,000 oz averaging 2.6 g/t Au includes a high-grade core at both deposits, with 300 koz at 5.0 g/t at Mulga Bill and 71 koz at 4.7 g/t Au at Ironbark.

The Qualified Person has been unable to verify the information on these adjacent properties. This information is not necessarily indicative of the mineralisation on the property that is the subject of the Technical Report.

23.2 MURCHISON GOLD PROJECT (MEEKA METALS)

Meeka Metals Limited (Meeka Metals) owns the Turnberry and Saint Anne's deposits and the Andy Well processing plant in their Murchison Gold Project. The project is located to the north of MGO's Paddy's Flat and Meekatharra North project areas.

The following information is taken from the Meeka Metals website (2024) and Feasibility Study Summary (2023).

23.2.1 Murchison Gold Project Overview

The Murchison Gold Project (MEK 100%) covers the northern extent of the highly prospective Mount Magnet and Youanmi Shear Zones in the prolific Murchison goldfield of Western Australia.

The project is located adjacent to several multi-million ounce gold mines and includes 281 km² of granted Mining Leases and Exploration Licences. The project hosts a high grade 1.2 Moz Mineral Resource with all Mineral Resources located on granted Mining Leases, hence there are minimal impediments to production.

The Company is also progressing through a staged pathway to mine development. A Feasibility Study was released for the Murchison Gold Project in July 2023, which outlined a flexible and straightforward development strategy. The study delivered meaningful production and financial outcomes, including an average annual gold production of 80,000 oz over the first eight years, with peak production of 103,000 oz in year six.

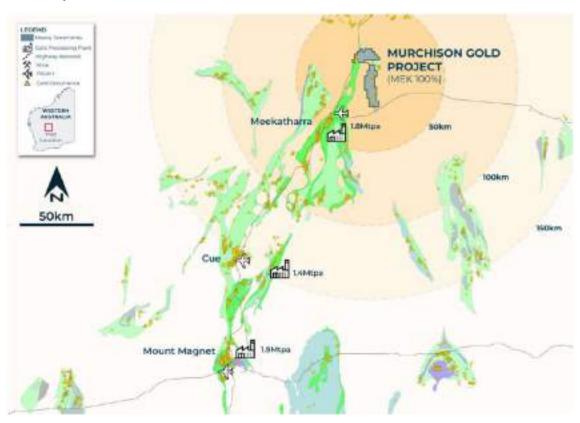


Figure 23-3 Meeka Metals' Murchison Project tenure - Source: Meeka Metals (2023).

23.2.2 Murchison Gold Project Geology

Andy Well is located at the northernmost end of the north-north easterly trending Archaean Meekatharra-Wydgee greenstone belt, within the Youanmi Terrane. The belt comprises a succession of metamorphosed mafic to ultramafics, felsic and sedimentary rocks interpreted to belong to the Norie Group formerly Luke Creek and Mount Farmer Groups. The northern extent of the Mount Magnet shear zone is interpreted to be <1 km to the east and exhibits a change of orientation in the vicinity of Andy Well. Regionally the Mount Magnet shear zone is associated with several other gold occurrences in the Meekatharra - Wydgee greenstone belt.

The Andy Well local stratigraphy is comprised of a north-northeast striking, subvertical (~80°) dipping, Achaean volcano-sedimentary package. The stratigraphy youngs toward the west based on sedimentary textures and immobile element

geochemistry of basalts. The local package follows a general transition from a basaltic subaqueous lava sequence at its base which becomes mafic volcaniclastic dominated before transitioning to a siliciclastic sequence of argillites and arenites to the west of the Great Northern Highway.

The lowermost unit in the local sequence is a voluminous gabbro unit which is generally massive with a leucocratic texture at its core. West of this unit, a series of at least 3 distinct >200 m thick basalt episodes have been recognised texturally and geochemically within the local sequence which are themselves comprised of multiple individual lava flows. Flows generally show a fractionation from high-Mg bases to lower Mg flow tops with flow contacts recognised as having a spatial relationship with the mineralised structures of Wilber, Judy and Suzie lodes.

The high-Mg basalts are typically chlorite-carbonate altered, however replaced by a strong chlorite-sericite-carbonate-pyrite alteration when sheared. Sometimes talc and biotite are included in this assemblage. Coarse bladed amphiboles may overprint basalts for several metres on the margins of the shear structures but are not preserved within the shearing itself. Original volcanic textures are preserved away from shearing including pillow and variolitic textures in basalts.

Towards the top of the basaltic sequence, mafic derived volcaniclastic sediment becomes more abundant interfingered with thin basalt flows. An ultramafic unit exists towards the top of the volcaniclastic sequence and approximately marks the transition to a siliciclastic dominated domain.

Above the ultramafic, a unit of black shale and laterally equivalent massive pyrite up to 8 m thick occurs within fine grained silty arenites and argillites. A 2 - 5 m garnetiferous mafic sediment can be used as a marker within the sedimentary package.

Minor Archaean dolerites are present generally parallel to stratigraphy and most obvious within the sedimentary sequence. Felsic intrusive cross-cut stratigraphy at all levels. An older dacitic porphyry has been reported which is itself cut by earlier quartz feldspar-phyric porphyry. Intrusives are typically normal to stratigraphy and have an affinity to intrude along basalt flow boundaries. Porphyries are most abundant within the basaltic sequence and scarce within sediments. Rare lamprophyre has been recorded. East-west Proterozoic dykes cross-cut all units approximately perpendicular to stratigraphy within the mine area.

It is interpreted that shearing at Andy Well has developed adjacent to (and in response to) movement along the Mount Magnet Shear zone, which is located ~1 km to the east. Shearing along the northeast-southwest trend is likely to have exploited lithological contacts due to rheological contrast between differing basalt flow compositions. Strain appears to have been preferentially accommodated in fractionated magnesium rich basalt flow bases, which contain a higher proportion of ductile alteration minerals such as chlorite and talc compared to more robust brittle flow tops.

Turnberry is located within the Gnaweeda greenstone belt, a narrow belt of Archaean volcano-sedimentary rocks up to 10 kilometres wide in the northern half and decreasing to less than one kilometre in the south, situated at the northernmost margin between the Achaean Murchison, Southern Cross, and Yeelirrie Provinces. The belt comprises a succession of metamorphosed mafic to ultramafic, felsic and metasedimentary rocks with minor felsic to intermediate intrusives interpreted to belong to the Norie Group formerly Luke Creek within the Murchison Supergroup. The belt is separated from the adjacent sub-parallel Meekatharra-Widgie Greenstone Belt located 7 km to the east by an envelope of gneiss and massive granitoid. Structurally the belt is situated along the northernmost extent of two main structural lineaments bounding the Murchison and Southern cross domains, the Evanstone-Edale and the Youanmi shear zones. Regionally both lineaments are associated with several other gold occurrences in the Sandstone greenstone belt to the south of Gnaweeda.

The geological package is largely comprised of fractionated dolerite with an ultramafic base, basalt, felsic volcaniclastics and porphyry surrounded by a package of siliciclastic sediments and shales. Stratigraphy is steeply east to sub-vertically dipping which is interpreted from portable XRF analysis to be isoclinally folded along a north-northeast fold axis with a north-northeast trending foliation.

Lithologies at Turnberry are dominated by dolerites with the best section of mineralisation hosted within a magnetic quartz dolerite which forms a discrete 'double bullseye' aeromagnetic anomaly. The magnetic dolerite is likely to represent a fractionated portion of a layered dolerite sill with a contribution of magnetite from alteration creating the anomaly within the hinge of the folded mafic. This mineralisation style is the most well developed at Turnberry as it hosts the highest and most consistent grades and widths. The area is covered with transported colluvium to a depth of ~10-25 m and is highly weathered with a depth to fresh rock of ~100 m.

Preliminary structural interpretation suggests that the mineralisation may be aligned along north-northeast trending interpreted fold axes and sub-parallel to the regional fabric. The northern part of Turnberry is defined by a folded, differentiated mafic sill that is younging south, as determined by interpretation of chromium from pXRF analysis, and has a sharp, often sheared, contact with lower felsic volcanic units. Folds are interpreted to plunge steeply north in the northern part of Turnberry and more sub-vertical in the southern part. Several northwest-southeast structures are interpreted from geophysical imagery to crosscut the stratigraphy and appear to offset both lithology and mineralisation.

The structural data (e.g. foliation, veins, fractures, joints, crenulation) from drill core at Turnberry are indicative of high-strain deformation within a steeply east-southeast dipping shear zone. The alignment of discontinuous and boudinaged veins subparallel to the measured foliation, as well as the precipitation of quartz in fold hinges, suggest that Au mineralisation typically occurs in dilational sites during fault slip, whereas the shear zone may have acted as fluid pathway. Folding of lithological units, especially at the contacts to other units, may have provided space for Au mineralisation to be

deposited as saddle reefs within the hinges of these folds. In fact, some of the highest Au grades have been reported in the hinges of folded lithological contacts or along fold limbs.

Mineralisation forms a 1.7 km north-northeast trending gold anomalous corridor, which is broadly defined into three zones, Turnberry South, Central and North.

Mineralisation is primarily hosted where shears intersect fold hinges (saddles) and limbs of felsic lithological boundaries. Vein and shear-hosted mineralisation are also present at the mafic contact, which tends to host narrow, high-grade gold. In other areas (e.g. outside of fold hinges or lithological contacts), gold mineralisation is controlled by the orientation of steeply, dipping veins within the shear zone.

Mineralisation at Turnberry South and Turnberry North has developed within felsic volcanics and porphyries with strong pervasive sericite-pyrite alteration, which hosts broad low grade gold mineralisation and local sporadic high grades. Vein and shear mineralisation is also present at the mafic contact which tends to host narrow, high grades with occasional visible gold in RC chips.

At Turnberry Central, gold is hosted within a broad alteration zone within a quartz dolerite unit. Gold is believed to occur on the flanks of an intense silica-albite-pyrite 'core' surrounded by distal chlorite and epidote alteration. Gold is associated with disseminated pyrite, which occurs at a background level of around 1% in unmineralised magnetic dolerite and increases to up to 30% within the centre of the alteration zone. Gold-bearing alteration is typically associated with 3-10% disseminated pyrite with moderate chlorite-magnetite+silica alteration and can occur on either side of the core of the altered zone.

Saint Anne's is located centrally within the north-south trending Archaean Gnaweeda greenstone belt. At Saint Anne's, the belt comprises a succession of metamorphosed mafic to ultramafic, felsic and metasedimentary rocks with minor felsic to intermediate intrusives interpreted to belong to the Norie Group, formerly Luke Creek, within the Murchison Supergroup.

The Saint Anne's area is covered with transported colluvium to a depth of ~20 m and is highly weathered with a depth to fresh rock of ~100 to 160 m.

The local geology and stratigraphy of Saint Anne's from east to west, interpreted from portable pXRF analysis and geological logging, is comprised of an ultramafic base, sediments, a fractionated mafic package including ultramafic, dolerite and basalt overlain by felsic volcaniclastics. The stratigraphy dips steeply to the east and strikes north–northeast with a stratigraphy sub-parallel foliation.

Structural interpretation suggests a broad zone of shearing trends north-northeast at Saint Anne's. Several northwest-southeast structures are interpreted from geophysics to cross-cut the stratigraphy and appear to off-set stratigraphy regionally and mineralisation locally.

Mineralisation at Saint Anne's forms an 800 m north-northeast trending gold anomalous corridor, which occurs within a broad alteration zone logged by geologists and mapped by arsenic anomalism in pXRF analysis. Mineralisation is widespread and occurs within multiple mineralised envelopes, predominantly concentrated within the mafic rocks proximal to lithology contacts.

23.2.3 Murchison Gold Project Mining and Milling

A 165 ktpa mill, which ultimately proved capable of processing 350 ktpa, was constructed at Andy Well during 2012 and 2013. Open pit mining commenced in September 2012 and processing commenced in June 2013. Mining transitioned underground in 2013 with the decline established on 13 April 2013, within the Stage 1 pit. Open pit mining recommenced in December 2014 through October 2015 with the excavation of the Stage 2, Stage 2B and Suzie open pits. Mining produced a total of 333 koz of gold between 2012 and September 2017 when project was placed on care and maintenance.

Existing infrastructure at Andy Well includes the processing plant, mill workshop, stores building, and powerhouse. The Andy Well CIL process plant was commissioned in July 2013 and the infrastructure remains in excellent condition.

The Qualified Person has been unable to verify the information on these adjacent properties. This information is not necessarily indicative of the mineralisation on the property that is the subject of the Technical Report.

23.3 MURCHISON GOLD PROJECT (MONUMENT MINING)

Monument Mining Limited (Monument) owns the Burnakura, Gabanintha, and Tuckanarra projects in their Murchison Gold Portfolio. The Project is located to the south and east of MGO's Bluebird mill. The MGO's Reedy project area in between Monument's Tuckanarra and Burnakura project areas.

The following information is taken from Monument Mining, 2024.

23.3.1 Murchison Gold Project Overview

The Murchison Gold Project ("Murchison") includes the Burnakura, Gabanintha, and Tuckanarra (20% free carry interest) properties, which are located in the Murchison goldfield of Western Australia, 40 km southeast of Meekatharra and 765 km northeast of Perth.

The Company is currently undertaking a two-year aggressive exploration programme at Murchison and expand the existing resource base, in an effort to turn Murchison into its cornerstone project.

Murchison was acquired in 2014 with historical JORC Mineral Resources of 644 koz of gold, a fully operational camp, 260 ktpa gold processing plant (currently on care and maintenance) and a number of historical open pits and underground mines.

The Burnakura and Gabanintha properties were acquired in February 2014, having a total historical JORC Mineral Resources of 563 koz Au (153 koz Au for Gabanintha, 410 koz Au for Burnakura). Gabanintha is within trucking distance to the Burnakura plant. Since acquisition, 381 koz of gold Mineral Resources have been reported to NI 43-101 standards at Burnakura comprising Indicated Resources of 293 koz Au and Inferred Resources of 88 koz Au. Monument has also refurbished a set of crushing circuits to upgrade the Burnakura gold processing plant, upgraded and maintained the 118 person mine camp and associated infrastructure ready for near term production.

The Tuckanarra project was purchased in November 2014 and contains a historical Indicated and Inferred JORC compliant Mineral Resource of approximately 80 koz Au. In December 2020, Monument sold an 80% interest in Tuckanarra to Odyssey Gold Ltd., leaving Monument with a 20% free carried interest and a 1% NSR royalty over Odyssey's 80% interest in the property. An unincorporated joint venture was formed with Odyssey to advance the exploration over Tuckanarra. Odyssey will be solely responsible for funding the exploration and evaluation activities at Tuckanarra until a decision to mine is reached. The future processing of ore from tenements held by Odyssey through the Burnakura plant remains an option should commercial terms be reached.

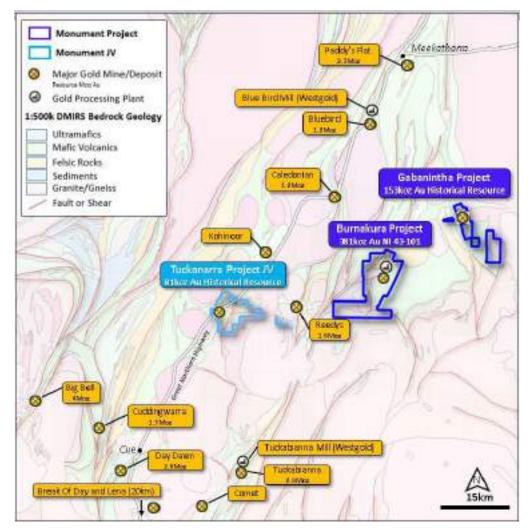


Figure 23-4 Monument's Murchison Project tenure - Source: Monument Mining, 2024.

23.3.2 Murchison Gold Project Geology

The majority of the Burnakura Property area covers Archaean basement rocks assigned to the 2814-2800 Ma basal Norie Group of the Murchison Supergroup within the eastern margin of the Meekatharra-Wydgee greenstone belt. The Norrie group comprises: a thick succession of pillowed and massive tholeiitic basalts of the Murrouli Basalt; and conformably overlying felsic volcaniclastics with interbedded Banded Iron Formations (BIF's) and felsic volcanic rocks of the Yaloginda Formation.

The Burnakura gold deposits are situated along a northeast trending splay (Burnakura Shear Zone) that parallels and is linked to the north-northeast trending regional scale Mount Magnet fault. The Mount Magnet fault is the major east bounding structure to the "Meekatharra structural zone", a major regional, northeast-trending shear dominated zone, about 50 to 60 km wide, incorporating the Meekatharra area and extending through the Cue region as far south as Mount Magnet (Spaggiari, 2006). The Meekatharra structural zone is dominated by north and northeast-trending folds and shears, including refolded folds with approximately coplanar fold axes. Many of the folds are truncated by shears or faults, and the structural zone is interpreted as a major zone of shear-related deformation.

Gold mineralisation is thought to have extended from 2,660 to 2,630 Ma during predominantly strike-slip D4 shearing and coincident with the peak of granitic magmatism. The Burnakura Shear Zone gold mineralisation is typical of a brittle to semi-ductile shear zone forming semi-continuous dilational veins. The mineralisation is dominated by steep dipping quartz (±minor sulphides) veins orientated parallel to the foliation of the fault zone. Minor sulphides are present and little alteration of the host lithology is also observed.

The Gabanintha property consists of tholeiitic and komatiitic mafic and ultramafic volcanic and intrusive rocks of the Gabanintha Formation. It is bound to the east by older granites and to the west by BIF's and epiclastics of the Windaning Formation. Further west these rocks are unconformably overlain by felsic to andesitic volcanics and sediments of the Mount Farmer Group. A granitoid has intruded the greenstone sequence to the east and southeast of Gabanintha.

A northwest trending transcurrent shear zone, known as the Gabanintha Shear Zone, is the dominant structural trend in the area extending approximately 1 km in width. It has intensive shear fabrics and extensive linear quartz veins. The contact with the granitoids and greenstones has also produced shear zones within the greater shear envelope. The gold mineralisation has formed along parallel and sub-parallel structures within the shear envelope. There is a northeast structural control on the mineralization with north-northwest en-echelon ore shoots aligned along the north axis and seen in the Terrells, Kavanagh and Yagahong open pits.

23.3.3 Murchison Gold Project Mining and Milling

Monument own a well maintained and centrally located 260 ktpa gold processing plant, that is currently on care and maintenance. The Burnakura plant circuit was reviewed and a three-stage crushing circuit was rebuilt and refurbished and transported to the plant site ready for installation. Continuous mine planning work, pit designs and optimisations have been prepared and are periodically reviewed.

Since acquisition, extensive development work has been carried out to organise the site and upgrade camp facilities. The onsite laboratory has been expanded and upgraded, the stores area was organised, and the access road construction was completed. Site accommodation and catering facilities are fully functional and used for exploration drilling and are ready for a potential near-term re-start of production.

The Gabanintha property, acquired in February 2014, has a historical Mineral Resource of 153 koz Au, and is within trucking distance to the Burnakura plant. The Gabanintha package consists of two Mining Leases, three Exploration Licences and eighteen Prospecting Licences. There are 6 historical open pits with high grade intersections that are open at depth as well as substantial greenfields potential with over 14 km of available strike.

The Qualified Person has been unable to verify the information on these adjacent properties. This information is not necessarily indicative of the mineralisation on the property that is the subject of the Technical Report.

24 OTHER RELEVANT DATA AND INFORMATION

No additional information or explanation is necessary to make this Technical Report understandable and not misleading.

25 INTERPRETATION AND CONCLUSIONS

The Meekatharra Gold Operations marked a significant milestone in 2023, marking the tenth year of Westgold ownership and operation of the project. The ongoing definition of the South Junction deposit during FY2024 has provided MGO with a tangible growth project which will come to fruition during FY2025. The continued growth of the Meekatharra Gold Operation Mineral Resources provides a strong foundation for ongoing investment in the operations.

Specific conclusions by area follow.

25.1 MINERAL RESOURCES

The future of the MGO is reliant on the ongoing replacement and growth of the Mineral Resources across the five MGO Mineral Fields, primarily Yaloginda. This is highlighted by Westgold's production plan which has Bluebird supplying approximately 82% of the ounce feed to the Bluebird mill during FY2025.

The maintenance of Westgold's Mineral Resources provides confidence for ongoing investment in MGO. The updated Consolidated Measured and Indicated gold Mineral Resource totals 1.7 Moz, an decrease of 1% over previously reported June 30, 2023 estimate (Westgold, 2023). The Consolidated Inferred Gold Mineral Resource now totals 1.7 Moz, a 41% year-on-year increase. The result continues the trend of steady-state Mineral Resources post mining depletion (**Figure 25-1**) and provides the Company with the opportunity to develop medium- to long-term plans.

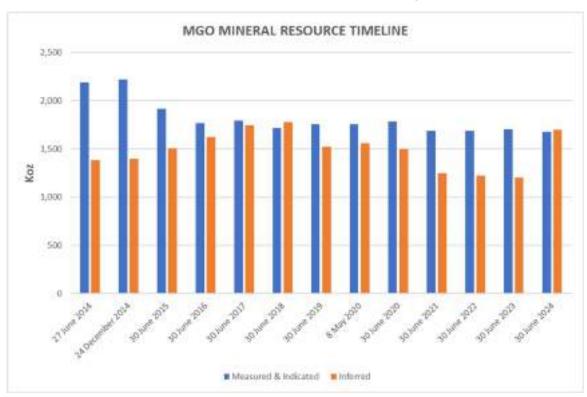


Figure 25-1 Consolidated Gold Mineral Resource timeline, 2014 to 2024.

The property-wide exploration potential for both gold remains significant and is outlined in Sections 9 and 25.7.

25.2 MINERAL RESERVES

The 2024 Mineral Reserve statement represents a 51% increase in the Mineral Reserves over the previously reported June 2023 estimate for MGO with a majority of the increase due to the focus on resource improvement at Bluebird.

The Gold Mineral Reserve provides a fundamentally strong basis for a robust future production profile. It is recommended that exploration and resource definition work at MGO is conducted with the aim of adding to the current Mineral Resource and Reserve base to offset mining depletion.

25.3 MINERAL PROCESSING

There is limited risk associated with the ongoing processing of mineralisation at MGO. All current ore sources including Bluebird, Paddy's Flat and Fender have been or are current being processed through the Bluebird mill.

25.4 MINING

MGO's mine plan for FY2025 is based on production from the Bluebird – South Junction underground mines which is currently active. The Fender underground mine at CGO also contributes to the FY2025 Bluebird mill ore feed, as will various stockpiles.

It is recommended that required regulatory approvals are progressed to allow for the mining of the Mineral Reserves. MGO and Westgold has a demonstrated history of gaining regulatory approvals in time to allow for mining and it can be reasonably expected that Westgold will complete the work required to gain approvals prior to mining of the Mineral Reserves.

25.5 ENVIRONMENTAL

Environmental Risk Registers are in place for each mining area at MGO. These registers proactively identify potential environmental hazards associated with mining and processing activities. Westgold further strengthens its environmental management by assigning specific risk mitigation and control measures to each high-risk activity. These measures are designed to reduce environmental risks to an acceptable level.

Furthermore, Westgold utilises a comprehensive Environmental Management Plan and procedures to ensure the ongoing effectiveness of the implemented controls. This structured approach ensures that environmental risks are consistently managed within acceptable parameters.

Water, tailings management and legacy landform management are a key focus area for Westgold. Since acquiring MGO, Westgold has undertaken significant efforts to ensure full compliance with all relevant environmental approvals, licences, and permits.

25.6 CAPITAL REQUIREMENTS

The capital modest for MGO is moderate for the following reasons:

- The Bluebird mill is fully functional requiring limited capital to maintain current production rates. Supporting capital requirements including multiple office complexes and workshops, accommodation villages in, and a fully stocked store including most critical spares are also in place.
- Ongoing sustaining capital will be required for the currently producing Bluebird
 South Junction mine and TSF capacity.
- Growth capital will be invested in the South Junction underground project. The
 quantum of this investment is modest due to the ability to leverage of the
 existing Bluebird mine infrastructure.

25.7 GOLD EXPLORATION POTENTIAL

The Murchison Province has a significant gold endowment with approximately 35 million ounces in past production and remaining resources documented (the second largest endowment in the Yilgarn Craton after the Kalgoorlie region). It also contains a number of +1 million ounce deposits, including Big Bell, Great Fingall, Bluebird – South Junction, Hill 50 and Morning Star.

A significant component of this historical production has been from small pits and mines, typically less than 50,000 oz. Mining of these small resources has provided the basis of for a number of profitable operations.

The Westgold tenements encompasses approximately 1,145 km² are located in the southern and central sections of the Murchison Province, centred upon the Cue and Meekatharra districts. The Murchison Province has received less exploration activity than the similar, highly mineralised, Eastern Goldfields region, despite Westgold's tenement holdings having a current endowment in excess of ten million ounces in past production and remaining resources. The district is therefore considered to hold excellent potential for the discovery of further economic resources.

MGO has a large number of prospects at various stages of progress to deliver a new resource. The Resource Definition and Growth teams at MGO use a milestone-based system to rank and target these prospects (**Figure** 25-2). Very little greenfields exploration has occurred in recent decades with drilling focusing on upgrading existing resources, and as such there have been a lack of significant discoveries in the last 20 years on MGO tenure. This is more a reflection of a lack of work than indicative of the prospectivity of the property.

Exploration drilling planned for FY2025 includes various AC drilling programs across early-stage targets at Nannine and Reedy West along with RC drilling programs at more advanced targets such as Champion, Nannine Reef, Maylands, Duyfken and Haveluck North.

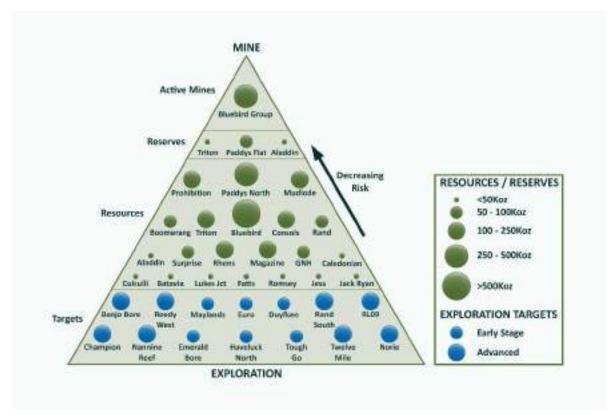


Figure 25-2 MGO Exploration Target Pipeline Source - Source: Westgold.

25.7.1 Nannine Project Area Resource Development

The Nannine project area development plan is centred on the open pit cut-back at Aladdin. Resource development and exploration activity is targeted to bolster the mining inventory and provide operational flexibility within the window of activity at Aladdin.

25.7.2 Paddy's Flat Project Area Resource Development

The focus of resource development activity at Paddy's Flat has turned to expanding the Mineral Resource base both north and south of the current Paddy's Flat mine infrastructure. This will underpin a restart of operations in the future.

25.7.3 Meekatharra North Resource Development

RC drilling undertaken in 2018 north of the Haveluck waste dump intercepted what is considered the faulted extension of the Haveluck orebody. Drilling intercepted 24 metres at 0.89 g/t 102 m downhole hosted with a porphyry unit below 42 m of Proterozoic cover. Panning of drill chips identified visible gold. There is opportunity for additional drilling to define the extents and gold tenor of Haveluck North.

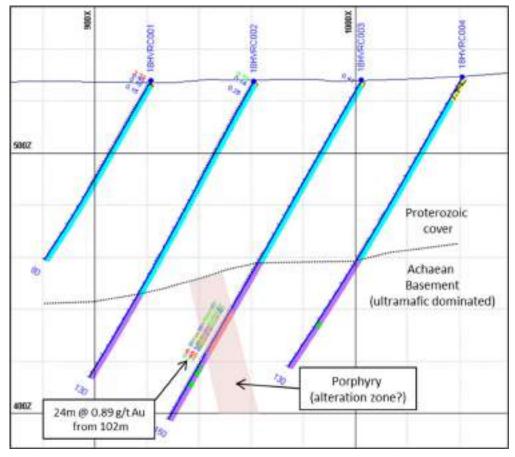


Figure 25-3 2018 Haveluck North drill intercept through mineralised porphyry/alteration - Source: Westgold.

25.7.4 Reedy Project Area Resource Development

25.7.4.1 Triton-Rand Bridge

With underground mining commencing at Triton, exploration drilling of the Rand-Triton bridge presents an opportunity to increase the near mine resource inventory. Grade contouring of the Rand deposit shows a shallow southerly plunge which projects towards high grades intercepted in historical development at Triton deeps.

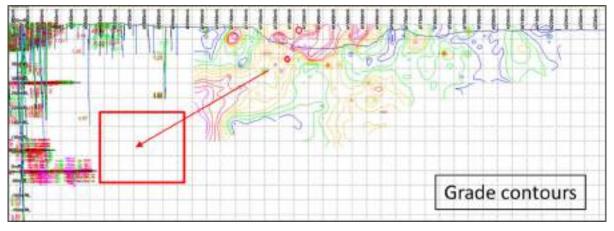


Figure 25-4 Grade contouring of Rand mineralisation highlighting a down plunge target in the Triton-Rand Bridge - Source: Westgold.

25.7.4.2 Boomerang

In late 2016, Metals X undertook a remodelling exercise of the historically significant Boomerang-Kurara deposit. This work indicated that a modest series of cutbacks may be viable and the potential for a moderate-scale underground operation beneath existing workings. Also identified was the potential for a repeat of the Boomerang-Kurara lodes in the footwall of the current deposit, sitting below the Gidgee laterite. A drill program was designed to assess historic drillhole deviation, quantify the width of the mineralised package in order to inform decline design / stand-off as part of future economic assessments, and provide intercepts across the strike of mineralisation below existing workings was validation of historic drilling.

Mineralisation observed within Boomerang - Kurara is hosted within mafic schists adjacent to a talc-carbonate altered ultramafic unit. The talc-carbonate unit is a marker horizon within the stratigraphic sequence and ranges in thickness from metres to tens of metres. The footwall and hangingwall wall rock is characterised by a chlorite and carbonate alteration halo and quartz-carbonate veins (or veinlets) which host the majority of the gold mineralisation.

Mineralised lodes encountered historically, and during this drilling program can be summarised as follows:

- (1) Hanging Wall Lode The predominant gold producing lode within the Kurara Mine area. The lode exhibits varying amounts of relatively tight angular brecciation with quartz and quartz-carbonate veining. Sulphide mineralisation is predominantly pyrite, with minor occurrences of chalcopyrite, bornite and galena. Partial bleaching and alteration to an albite carbonate is apparent within the lode horizon, along with varying degrees of silicification.
- (2) Main Lode Occurs within the footwall unit (also referred to as the 2.1 Footwall Lode) and is generally adjacent to the eastern contact of the central ultramafic unit. The Main Lode comprises irregular quartz-carbonate-pyrite veining, and rare varying amounts of thin, often brecciated, jaspilitic banded iron formation material with associated disseminated pyrite mineralisation.
- (3) Footwall Lode(s) Two additional sub-parallel zones known as the 2.2 and 2.4 Footwall lodes occur to the east of the Main Lode. Quartz-carbonate-pyrite alteration is associated with mineralisation.

The three drillholes successfully intersected the Hangingwall, Main and Footwall lodes. Further drilling will be designed for the forthcoming reporting period to test for the theorised structural repeat of the mine sequence to the east that may be due to an anticlinal fold structure, and to further infill drill and validated the resource below the historic underground workings.

Figure 25-5 Cross section of 17BMDD001 - Source: Westgold.

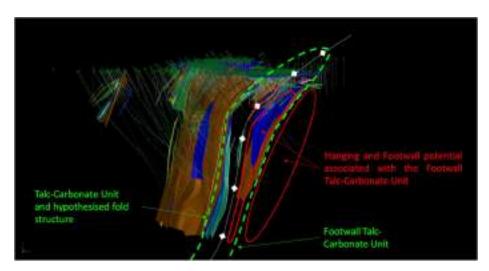


Figure 25-6 Exploration potential associated with the footwall talc-carbonate unit based on hypothesised anticlinal fold structure - Source: Westgold.

25.7.5 Yaloginda Project Area Resource Development

25.7.5.1 Euro

Euro is currently defined as broad mineralised zone with an internally erratic nature with the most recent resource estimation defining 2 million tonnes at 1.3 g/t for 83,600 ounces (Inferred). Given its close proximity to the Bluebird mill (7 km east) there is opportunity to develop the resource to an indicated category through additional RC and diamond drilling adding substantial ore tonnes to the mining schedule.

26 RECOMMENDATIONS

At MGO, the authors recommend that Westgold use the recently defined Gold Mineral Reserve as the basis for providing medium- to long-term security for the ongoing development of MGO.

Specific recommendations include the following:

- Using the security of the Gold Mineral Reserve to develop medium- to long-term improvements in operational performance and costs, and also to provide leverage for capital investment if required.
- Complete a property-wide review of the Mineral Resources with the aim to prioritise extensional opportunities to support the combined mill capacity for future production.
- Realise the growth potential of the project by supporting exploration with sufficient funds to test high quality greenfields exploration targets.
- Progress regulatory approvals to allow the mining of the Mineral Reserve.
- The authors are unaware of any other significant factors and risks that may affect access, title or the right or ability to perform the exploration work recommended for MGO.

27 REFERENCES

Augenstein, C. (2018). Paddy's Flat site visit and 3D modelling July 2018. Model Earth Global Geological Servies. Westgold Resources Limited. Internal Report. August 1, 2018.

Australian Bureau of Statistics, 2024, Australian Bureau of Statistics Website, accessed 29 April 2024, https://www.abs.gov.au/census/find-census-data/>.

Australasian Joint Ore Reserves Committee (JORC), (2012). The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves 2012 Edition. (the JORC Code).

Berkman, D. A., (2001). Field Geologists' Manual. Australasian Institute of Mining and Metallurgy (AusIMM). Monograph No. 9, Fourth Edition. 2001.

Bertoli, O., Job, M., Vann, J., & Dunham, S., (2003). Two-Dimensional Geostatistical Methods—Theory, Practice and a Case Study from the 1A Shoot Nickel Deposit, Leinster, Western Australia: 5th International Mining Geology Conference. AusIMM. Conference proceedings. 2003.

Bromby, R, 2023, Small Caps website, accessed 23 April 2024, https://smallcaps.com.au/mining-survey-reveals-top-20-global-jurisdictions-fraser-institute/.

Bureau of Meteorology, 2022. Bureau of Meteorology website, Climate Data Online, accessed 15 January, 2022, http://www.bom.gov.au/climate/data/

Butt, C. R. M., 1998. Supergene gold deposits. AGSO Journal of Australian Geology & Geophysics, 17, 89 - 96.

Carras, S. (1988). Report of Reedy North Joint Venture, Nord Resources – Boomerang Pit. Access Consulting Services. Nord Resources Internal Report. April 27, 1988.

Cassidy, K. F., Champion, D. C., Krapež, B., Barley, M. E., Brown, S. J. A., Blewett, R. S., Groenewald, P. B. and Tyler, I. M., 2006. 'A revised geological framework for the Yilgarn Craton, Western Australia': Geological Survey of Western Australia, Record 2006/8.

Clarke JD. (1993). 'Stratigraphy of the Lefroy and Cowan palaeodrainages'. Western Australia J D A Clarke: Journal of the Royal Society of Western Australia, 76: 13-23,1993

Colville, R.G. (1982). Report on Albury Heath Gold Mine, Meekatharra. June 1982. WAMEX Report No: A37137

Cowan, M. (2001). A Biodiversity Audit of Western Australia's 53 Biogeographic Subregions in 2002 – Section Coolgardie 3 (COO3- Eastern Goldfields Subregion). Available:

https://www.dpaw.wa.gov.au/images/documents/about/science/projects/waaudit/c oolgardie03_p156-169.pdf Prepared for the Department of Conservation and Land Management (now DBCA).

Clarke, E. (1916). The Geology and Ore Deposits of Meekatharra, Murchison Goldfield. Western Australia Geological Survey Bulletin No. 68. 1916.

Cowan, M., Graham, G., and McKenzie, N. (2001). A Biodiversity Audit of Western Australia's 53 Biogeographical Sub-Regions in 2002. Kensington, W.A.: Department of Conservation and Land Management.

CSA Global, Mining Industry Consultants, (2016). Technical Review, Structural Geology of the Consols and Vivian Au Deposits. CSA Global Report R213.2017. Internal Report for Westgold Resources Limited. May 28, 2016.

Cube Consulting. (2005a). Mickey Doolan Resource Estimate. Internal Report. Saint Barbara Mines. April 2005.

Cube Consulting. (2005b). Reedy Resource Estimate. Internal Report. Saint Barbara Mines. July 2005.

Cuplan, N. (2006). Bluebird Project, South Junction reporting group, Murchison Region, Western Australia. Mercator Gold. Internal Report. November 2006.

Department of Mines, Industry Regulation and Safety. Mines and mineral deposits (MINDEX),

https://www.dmp.wa.gov.au/Mines-and-mineral-deposits-1502.aspx

Devlin S. P., Crimeen J. D. 1990 - Lady Bountiful Extended Gold deposit: in Hughes F E (Ed.), 1990 Geology of the Mineral Deposits of Australia & Papua New Guinea the AusIMM, Melbourne. Mono 14, v1 pp 405-410

Devlin S. P., Ganza, P. and de la Mare, G., 2024. NI 43-101 Technical Report - Beta Hunt Operation, Eastern Goldfields, Western Australia. Report prepared for Karora Resources Inc.

Etheridge and Henley., 1992. Structural controls of high-grade gold mineralisation at Ingliston Alberts, Meekatharra, Western Australia. Etheridge & Henley Geoscience Consultants. Dominion Mining Ltd. Internal Report. 1992

Evans, D. (2023). Memo – Bluebird GCX Model 2023_0615_-100_1. Westgold Resources Limited. Internal Report. June 21, 2023.

Fielding, I, McCusker, J. (2007). Project Review, Luke;s Junction. Mercator Gold. Internal Report. February 7, 2007.

Fieldgate, S. (2012). Great Northern Highway July 2012 Resource Estimate. Snowden Mining Industry Consultants. Reed Resources. Internal Report. August 9, 2012.

Finch, A. (2015). Jack Ryan (jack_ryan_201503.mdl) Identified Mineral Resource Estimate (JORC) as at 30th June 2015. Westgold Resources Limited. Internal Report. March 10, 2015.

Gibb Maitland, A., 1919: The Gold Deposits of Western Australia, Extract from the Mining Handbook, Geological Survey, Memoir No. 1, Chapter IT, Economic Geology. Part III., Section 1. Reprinted 1979 Hesperian Press, 91p.

Goldfield Key, 2024, Goldfield Key website, accessed 27 May 2024, < https://www.goldfieldskey.com.au/about-the-

region/meekatharra#:~:text=Meekatharra's%20History&text=Gilles%20McPherson% 20is%20reputed%20to,the%20Nannine%20Gold%20Mining%20Company>.

Graindorge, J. (2011a). Vivians-Consols and Fatt's-Mudlode June 2011 Mineral Resource Estimates. Snowden Mining Industry Consultants for Reed Resources. Internal Report. July 27, 2011.

Graindorge, J. (2011b). Paddy's Flat North September 2011 Resource Estimate. Snowden Mining Industry Consultants for Reed Resources. Internal Report. October 11, 2011.

Graindorge, J. (2011c). Rand March 2011 Resource Estimate. Snowden Mining Industry Consultants for Reed Resources. Internal Report. July 27, 2011.

Graindorge, J. (2011d). Surprise April 2011 Resource Estimate. Snowden Mining Industry Consultants for Reed Resources. Internal Report. July 27, 2011.

Great Boulder Resources Limited, 2024, Great Boulder Website, accessed 27 May 2024,

< https://www.greatboulder.com.au/our-projects/side-well-project/ >.

Hallberg, J.A. 2000. Notes to accompany the Hallberg Murchison 1:25 000 Geology Dataset, 1989–1994. J. A. Hallberg and Associates. Western Australia Geological Survey, Record 2000/20. 2000.

Harris, J. (2015). Batavia (bat_1501.mdl) Identified Mineral Resource Estimate (JORC) as at 30th January. Westgold Resources Limited. Internal Report. February 23, 2015.

Hollingsworth, D. (2008). Euro Resource Comparative Study. Mercator Gold Australia Pty Ltd. Internal Report. September 15, 2008.

Hollingsworth, D. (2010). Paddy's Flat Review, A History of Mining and Exploration. Internal Report. August 2010.

Hollingsworth, D. (2022). Production Summary MGO. Westgold Resources Limited. Internal Report. 2022.

Hunt, D. (2015). Whangamata (whangamata_gc_1502_depl.mdl) Identified Mineral Resource Estimate (JORC) as at 30 June 2015. Westgold Resources Limited. Internal Report. June 30, 2015.

Hunt, D. (2016a). Bluebird (bluebird_151005_depl.mdl) Identified Mineral Resource Estimate (JORC) as at 30 June 2016. Westgold Resources Limited. Internal Report. June 30, 2016.

Hunt, D. (2016b). Rand (rand_150918_depl.mdl) Identified Mineral Resource Estimate (JORC) as at 30 June 2016. Westgold Resources Limited. Internal Report. June 30, 2016.

Isatelle, F. (2021). Paddy's Flat – Prohibition Identified Mineral Resource Estimate (JORC) as of 03 2021. Westgold Resources Limited. Internal report. May 20, 2021.

Le Grange, R. (2017). South Emu Triton Identified Mineral Resource Estimate (JORC). Westgold Resources Limited. Internal Report. November 9, 2017.

Meeka Metals Limited, 2023. Murchison Gold Project Feasibility Study Summary, July 2023.

Meeka Metals Limited, 2024, Meeka Metals Website, accessed 27 May 2024,

< https://meekametals.com.au/murchison-gold-project/>.

Metals X Limited, 2014, 20140514 Meekatharra Acquisition (Final).pdf. Australian Securities Exchange Release.

Metana Minerals. (1991), Culculli: Report on detailed development studies. Metana Minerals Internal Report. March 1991.

Monument Mining Limited, 2024, Monument Mining Website, accessed 27 May 2024,

< https://monumentmining.com/projects/murchison-gold-portfolio/>.

Morton, S. R., Short, J., and Barker, R. D. (1995). Refugia for Biological Diversity in Arid and Semi-arid Australia. Retrieved from Department of the Environment, Sport and Territories, Canberra, ACT: https://nccarf.edu.au/climate-change-refugia-terrestrial-biodiversity-defining-areas-promote-species-persistence/

Osiejak, M. (2013). Surprise March 2013 Resource Review. GMK Administration Pty Ltd. Internal Report. March 2013.

Outback Ecology (2012). Central Murchison Gold Project Level 1 Vegetation, Flora and Fauna Assessment. Internal Report for Westgold Resources Limited, Perth, Western Australia.

Pidgeon, R. T., and J. A. Hallberg. 2000. "Age relationships in supracrustal sequences of the northern part of the Murchison Terrane, Archaean Yilgarn Craton, Western Australia: A combined field and zircon U-Pb study." Australian Journal of Earth Sciences 47 (1): 153-165.

Plunkett, S.G. (1993). Development and Resource Report, Culculli North Deposit, Reedy Gold Project. Metana Minerals. 1993. WAMEX Report No: A41277.

Runge. (2008). Mineral Resource Estimate for the Euro Gold Deposit: Meekatharra Region, Western Australia. Mercator Gold Australia. Internal Report. May 2008.

S&P Capital IQ. Capital IQ - S&P Global Market Intelligence, a division of S&P Global Inc. (company subscription).

Schoknecht, N. and Pathan, S. 2013. Soil Groups of Western Australia. In Resource Management Technical Report 380, Soil Physical Measurement and Interpretation for Land Evaluation, Australian Soil and Land Survey Handbooks Series 5 (4th ed). Perth: DAFWA.

Shire of Meekatharra, 2024, Shire of Meekatharra website, accessed 27 May 2024, https://www.meekashire.wa.gov.au/community/new-residents/our-background.aspx/.

Smith, G. (2002). Saint Barbara Mines Limited Annual Report 1 November 2000 to 31 October 2001 Aladdin - Bailey Island – Caledonian – Three Sisters Subgroup. Saint Barbara Mines. January 16, 2002. WAMEX a064242.

Spaggiari, C.V. 2006. Interpreted Bedrock geology of the northern Murchinson Domain, Youanmi Terrane, Yilgarn Craton. Geological Survey of Western Australia, Record 2006/10. 2006.

Staney, J. (2018). 20181101 Caledonian resource model (MGO – Nannine M 51/31). Westgold Resources Limited. Internal Report. November 2018.

Stanley, J. (2019a). 20190109 Magazine resource model. Westgold Resources Limited. Internal Report. February 19, 2019.

Stanley, J. (2019b). Magazine Geological Interpretation Strategy. Westgold Resources Limited. Internal Report. January 14, 2019.

Stanley, J. (2019c). Bluebird Resource Model update November 2019 (Yaloginda – M51/132). Westgold Resources Limited. Internal Report. December 15, 2019.

Saint Barbara Mines. (1999). Caledonian Open Pit Feasibility Report. St Barabra Mines. Internal Report. 1999.

Saint Barbara Mines. (2000). Magazine Feasibility Study. St Barabra Mines. Internal Report. 2000.

Saint Barbara Mines. (2001). Caledonian Resource Report. St Barabra Mines. Internal Report. 2001.

Saint Barbara Mines. (2002). Historical Production Summary. Saint Barbara Mines. Internal spreadsheet. June 23, 2002.

Thébaud, N. (2007). Paddy's Flat Geological Report. Mercator Gold Australia. Internal Report. July 2007.

Thébaud, N. (2008). Reedy Regional Geological Review. University of Western Australia, Centre for Exploration Targeting. Report for Mercator Gold Australia. Internal Report. March 5, 2008.

Tille, P. (2006). Soil Landscapes of Western Australia's Rangelands and Arid Interior. Department of Primary Industries and Regional Development, Western Australia, Perth. Report 313.

Timms, N. (2011). Geological Mapping Report, Yaloginda Area, Murchison Region, Western Australia. Geological Survey of Western Australia, Record 2011/21.

Tomsett, A. (2016). Boomerang, Kurara, Washdown and Phoenix: August 2016. Westgold Resources Limited. Internal Report. September 19, 2016.

Tomsett, A. (2018). Boomerang, Kurara, Washdown and Phoenix Mineral Resource Update - Dec 2017. Westgold Resources Limited. Internal Report. January 12, 2018.

Van Kranendonk, MJ and Ivanic, TJ 2009, A new lithostratigraphic scheme for the northeastern Murchison Domain, Yilgarn Craton: Geological Survey of Western Australia, Annual Review 2007–08, p. 34–53

Vann, J., Jackson, S., Bertoli, O., (2003). Quantitative Kriging Neighbourhood Analysis for the Mining Geologist — A Description of the Method With Worked Case Examples. AusIMM 5th International Mining Geology Conference. Conference Proceedings. November 19, 2003.

Watkins, K. & Hickman, A. 1990. Geological evolution and mineralisation of the Murchinson province, Western Australia. Geological Survey of Western Australia, Bulletin 137, 1990.

WeatherSpark, 2024, Meekatharra, Australia Average Weather. WeatherSpark website, accessed 27 May 2024, https://weatherspark.com/y/149210/Average-Weather-at-Meekatharra-Airport-Australia-Year-Round.

Westgold Resources Limited. (2017). Surprise Open Pit Closure Report. Westgold Resources Limited. Internal Report. August 2017.

Westgold Resources Limited. (2019). Aladdin Pit Mine Closure Report, Meekatharra Gold project. Westgold Resources Limited. Internal Report. September 2019.

Westgold Resources Limited. (2022). Meekatharra Gold Operations Annual Mineral Resource Commentary, June 2022. Westgold Resources Limited. Internal Report. June 30, 2022.

Westgold Resources Limited. (2023). Meekatharra Gold Operations Annual Mineral Resource Commentary, June 2023. Westgold Resources Limited. Internal Report. June 30, 2023.

Wijayadi, D. (2016). Gibraltar – Mystery (GM_BM_2016.mdl) Identified Mineral Resource Estimate (JORC) as at 30th June. Westgold Resources Limited. Internal Report. March 5, 2020.

Witten, R. (2015). Luke's Junction (lj_201508.mdl) Identified Mineral Resource Estimate (JORC)

as at 17th September 2015. Westgold Resources Limited. Internal Report. December 9, 2015.

Witten, R. (2016a). Gidgee Laterite 2016/05 Resource Model. Westgold Resources Limited. Internal Report. May 31, 2016.

Witten, R. (2016b). Turn of the Tide (tt_1610_depl.mdl) Identified Mineral Resource Estimate (JORC) as at 2nd November 2016. Westgold Resources Limited. Internal Report. November 9, 2016.

Witten, R. (2017a). Culculli (cc_1610_parent.mdl) Identified Mineral Resource Estimate (JORC) as at 31st October 2016. Westgold Resources Limited. Internal Report. April 3, 2017.

Witten, R. (2017b). Fatt's (Fatt's_1608.mdl) Identified Mineral Resource Estimate (JORC) as at 7th September 2016. Westgold Resources Limited. Internal Report. March 17, 2017.

Witten, R. (2017c). Gibraltar South resource model (Yaloginda M51/28). Westgold Resources Limited. Internal Report. August 23, 2017.

Witten, R. (2017d). Jack Ryan (jr_170927_depl_eng.mdl) Identified Mineral Resource Estimate (JORC) as at 27th September 2017. Westgold Resources Limited. Internal Report. November 11, 2017.

Witten, R. (2017e). Karangahaki resource model (Yaloginda M51/28). Westgold Resources Limited. Internal Report. September 12, 2017.

Witten, R. (2017f). Five Mile Well (fmw_1708_depl_eng.mdl) Identified Mineral Resource Estimate (JORC). Westgold Resources Limited. Internal Report. August 8, 2017.

Witten, R. (2018a). Aladdin (al_1802_depl_eng.mdl) Identified Mineral Resource Estimate (JORC) as at 21st February 2018. March 5, 2018.

Witten, R. (2018b). Fatt's grade control model review (MGO Paddy's Flat M51/439). Westgold Resources Limited. Internal Report. June 26, 2018.

Witten, R. (2018c). Romsey (ro_1711_eng.mdl) Identified Mineral Resource Estimate (JORC) as at 25th November 2017. Westgold Resources Limited. Internal Report. January 23, 2018.

Witten, R. (2020). 20200305 Albury Heath evaluation model. Westgold Resources Limited. Internal Report. March 5, 2020.

Witten, R. (2024a). Bluebird Group Reportable Resource 20240328. Westgold Resources Limited. Internal Report. March 23, 2024.

Witten, R. (2024b). Bluebird Group Reportable Resource 20240730. Westgold Resources Limited. Internal Report. August 30, 2024.

World Gold Council: www.gold.org

Zammit, M. (2018). Paddy's Flat incl Vivian, Consol's and Mudlode Identified Mineral Resource Estimate (JORC) as at 31st June 2018. Westgold Resources Limited. Internal Report. October 1, 2018.

28 APPENDIX 1 DEFINITIONS

All currency amounts are stated in Australian dollars (A\$ or AUD). The choice of currency reflects the underlying currency for an item and location of the operations, for example:

Capital and operating costs are expressed in A\$ as this is the currency in use at site. Moreover, the size of the Australian economy is such that these costs are relatively insensitive to variation in the exchange rates.

Commodity prices in this Technical Report are generally expressed in A\$.

Quantities are generally stated using the Système International d'Unités (SI) or metric units, the standard Australian and international practice, including metric tonnes (t), kilograms (kg) or grams (g) for weight, kilometres (km) or metres (m) for distance and hectares (ha) for area.

Wherever applicable, imperial units have been converted to SI units for reporting consistency.

Frequently used acronyms and abbreviations are listed below.

Aboriginal Heritage Act 1972 (WA)	AHA
Aboriginal Heritage Inquiry System	AHIS
Aircore	AC
Annum (year)	а
Atomic Absorption Spectroscopy	AAS
'Australasian Code for Reporting of Mineral Resources and Ore Reserves' 2012	
Edition prepared by the Joint Ore Reserves Committee of the Australasian	JORC
Institute of Mining and Metallurgy, Australian Institute of Geoscientists and	Code
Mineral Council of Australia	
Australian Height Datum	AHD
Australian Securities Exchange	ASX
Banded Iron Formation	BIF
Bank cubic metre	bcm
Base of alluvial	BOA
Base of complete oxidation	ВОСО
Bureau Veritas	BV
Calendar year	CY
Canadian Securities Administrators	CSA
Carbon-in-leach	CIL
Centimetre	cm
Certified reference material	CRM
Coefficient of variation	CV
Commonwealth of Australia	Cth
Cubic metre	m3
Cue Gold Operations	CGO
Degree	0
Degrees Celsius	°C
Department of Biodiversity, Conservation and Attractions	DBCA
Department of Climate Change, Energy, the Environment and Water	DCCEEW

Department of Water and Environment Regulation, amalgamation of previous DWER. government bodies: Department of Environmental Regulation and Department DoW, or of Water DER DMIRS, Department of Mines, Industry Regulation and Safety **DMP** Department of Planning Lands and Heritage **DPLH** Department of Water DoW Digital terrain model DTM Downhole DH **EGL** Effective grinding length Electromagnetic EΜ End of hole **EOH** End of mine **EOM Environmental Protection Act 1986 EP Act Environmental Protection Authority EPA** Estimated true width **ETW FIFO** Fly-in / fly-out Footwall FW **Footwall Basalts FWB** Fortnum Gold Operations **FGO** Front end loader FEL General and administrative G&A Geological Database Management System **GDMS GFD Great Fingall Dolerite** Gold Au Grade control GC Gram g Grams per litre g/L Grams per tonne g/t Greater than Greenstone-hosted quartz-carbonate vein GQC HW Hangingwall Hectare (10,000 m²) ha HW Hangingwall Hangingwall Basalts **HWB** HG High grade Hour h **ICP** Inductively coupled plasma Inductively coupled plasma atomic emission spectroscopy **ICP-AES** Inductively coupled plasma mass spectrometry **ICP-MS** Inductively coupled plasma optical emission spectroscopy **ICP-OES IBRA** Interim Biogeographic Regionalisation for Australia Inverse distance ID Inverse distance squared ID2 Inverse distance cubed ID3 **JORC** Joint Ore Reserves Committee Kilogram kg Kilometre km Kilovolts kV

Kilowatt hour kWh kW Kilowatt Kriging neighbourhood analysis KNA Less than < LOM Life of mine Line-of-lode LOL **LNG** Liquified natural gas L Litre Litres per second L/s Load-haul-dump LHD **LHOS** Longhole open stoping LG Low grade Maxwell Data Model MDM Metals X or Metals X Limited MLX Metre m Metres above sea level masl Metres reduced level mRL Meekatharra Gold Operations MGO Micrometre (micron) μm Milligal; unit of acceleration typically used in precision gravimetry mgal Millimetre mm Million Μ Million troy ounces Moz Million pounds Mlbs Million pounds per annum Mlbs/a Million tonnes per annum Mtpa Million years Ma Mine Closure Plan **MCP** Mineable Shape Optimizer MSO Mineral Titles Online MTO Minimum design width **MDW MMW** Minimum mining width Mining Act 1978 (WA) Mining Act Mining Proposal MP **MRF** Mining Rehabilitation Fund Mining Rehabilitation Fund Act 2012 (WA) MRF Act Minute (plane angle) Minute min National Instrument 43-101 NI 43-101 Native Title Act 1993 (Cth) NTA Not applicable N/A NOI Notice of Intent OK Ordinary kriging Parts per billion ppb Parts per million ppm Percent % Polar Metals Pty Ltd **PMT** pXRF Portable X-ray fluorescence

Pound(s)	lb(s)
Power Purchase Agreement	PPA
Preliminary economic assessment	PEA
Prefeasibility study	PFS
Proven and Probable	2P
Qualified Person	QP
Quality Assurance and Quality Control	QA/QC
Ramelius Resources Limited	Ramelius
Real-time kinematic	RTK
Reasonable prospects for eventual economic extraction	RPEEE
Reduced level	RL
Return air rise	RAR
Reverse circulation	RC
Reverse circulation/diamond tail	RCD
Rock Quality Designation	RQD
Rotary airblast	RAB
Run of mine	ROM
Second (plane angle)	
Selective mining unit	SMU
Spartan Resources Limited	Spartan
Specific gravity	SG
Square kilometre	km²
Square metre	m^2
System for Electronic Document Analysis and Retrieval	SEDAR+
Tailings storage facility	TSF
Thousand tonne	kt
Thousand tonne per day	kt/d
Thousand troy ounces	koz
Top of fresh rock	TOFR
Tonne (1,000 kg)	t
Tonnes per day	t/d
Tonnes per hour	t/h
Tonnes per year	tpa
Total dissolved solids	TDS
Troy ounce (31.10348 grams)	OZ
Two Boy Shear Zone	TBSZ
Unconfined compressive strength	UCS
Underground	UG
Waste rock landform	WRL
Westgold Resources Limited	Westgold or WGX

29 CERTIFICATE OF QUALIFIED PERSON

Jake Russell

Westgold Resources Limited Level 6, 200 Saint George's Terrace Perth WA 6000, Australia

Telephone: +61 (0) 8 9462 3400

Email: jake.russell@westgold.com.au

To accompany the Technical Report titled: 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated September 27, 2024, with an effective date of June 30, 2024.

I, Jake Russell, BSc. (Hons.), MAIG, do hereby certify that:

- 1. I am General Manager Technical Services for Westgold Resource Limited, with an office at Level 6, 200 Saint George's Terrace, Perth, Western Australia, Australia.
- 2. I am a graduate from University of Tasmania, Tasmania Australia in 2000 with a B.Sc. Hons in Economic Geology; and I have practised my profession continuously since 2001. My relevant experience for the purpose of the Technical Report is: Over 20 years of gold industry experience in exploration, resource development, resource estimation/auditing, mining and management of gold, copper, tin and nickel deposits throughout Australia.
- 3. I am a Member of the Australian Institute of Geoscientists.
- 4. I have read the definition of 'Qualified Person' set out in National Instrument 43- 101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a 'Qualified Person' for the purposes of NI 43-101.
- 5. I have prior involvement with the properties that are the subject of the Report. This involvement is my various roles between 2018 and the present for Westgold Resources and preceding owners of the Meekatharra Gold Operation. My last visit to the site for the purpose of technical review of the project was a single day visit on 20 August 2024.
- 6. I am responsible for the following sections in the Technical Report entitled 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated May 31, 2024: 1, 2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 23, 24, 25, 26, and 27.
- 7. I am not an independent 'qualified person' within the meaning of section 1.5 of National Instrument 43-101 Standards of Disclosure for Mineral Projects of the Canadian Securities Administrators.
- 8. I have read NI 43-101 and Form 43-101F1 and have prepared and read the previously mentioned section of the report entitled 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated September 27, 2024 for Westgold Resources Limited, in compliance with NI 43-101 and Form 43-101F1.
- 9. That, at the effective date of this technical report June 30, 2024 to the best of my knowledge, information, and belief it contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

This 27 th day of September 2024	
---	--

Jake Russell

Original Signed and Sealed.

30 CERTIFICATE OF QUALIFIED PERSON

Leigh Devlin

Westgold Resources Limited Level 6, 200 Saint George's Terrace Perth WA 6000, Australia Telephone: +61 (0) 8 9462 3400

Email: leigh.devlin@westgold.com.au

To accompany the Technical Report titled: 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated September 27, 2024, with an effective date of June 30, 2024.

I, Leigh Devlin, BEng., FAusIMM, do hereby certify that:

- 1. I am General Manger LoM Planning and Studies for Westgold Resource Limited, with an office at Level 6, 200 Saint George's Terrace, Perth, Western Australia, Australia.
- 2. I am a graduate from University of Adelaide, South Australia, Australia in 2005 with a BEng. (Mech), I have a GradDipEng (Mining) from Federation University and a BA from University of Southern Queensland; I have practised my profession continuously since 2007. My relevant experience for the purpose of the Technical Report is: Over 15 years of gold industry experience in operational, management and technical positions throughout Australia.
- 3. I am a Fellow of the Australasian Institute of Mining and Metallurgy.
- 4. I have read the definition of 'Qualified Person' set out in National Instrument 43- 101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a 'Qualified Person' for the purposes of NI 43-101.
- 5. I have prior involvement with the properties that are the subject of the Report. This involvement is my various roles between 2018 and the present for Westgold Resources and preceding owners of the Meekatharra Gold Operation. My last visit to the site for the purpose of technical review of the project was a single day visit on 20 August 2024.
- 6. I am responsible for the following sections in the Technical Report entitled 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated May 31, 2024: 13, 15, 16, 17, 18 and 21.
- 7. I am not an independent 'qualified person' within the meaning of section 1.5 of National Instrument 43-101 Standards of Disclosure for Mineral Projects of the Canadian Securities Administrators.
- 8. I have read NI 43-101 and Form 43-101F1 and have prepared and read the previously mentioned section of the report entitled 'Ni 43-101 Technical Report, Meekatharra Gold Operations, Murchison Goldfield, Western Australia' dated September 27, 2024 for Westgold Resources Limited, in compliance with NI 43-101 and Form 43-101F1.
- 9. That, at the effective date of this technical report June 30, 2024 to the best of my knowledge, information, and belief it contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

This 27th day of September 2024

Original Signed and Sealed.

Leigh Devlin